
Symbolical and Numerical Approaches for Solving Nonlinear Systems

Bernhard Bachmann
Kaja Balzereit, Willi Braun, Jan Hagemann,

Lennart Ochel, Vitalij Ruge, Patrick-Marcel Täuber

02. February 2015

1 / 21

Contents

1 Introduction

2 Homotopy Method
General Approach
Calculating Homotopy Path

3 New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

4 Status and Plans with Respect to Tearing
Introduction to Cellier Tearing
Consideration of Solvability

5 Effects of Common Subexpression Elimination
Structural Changes of Strongly Connected Components
Performance Improvements Due to Code Motion

2 / 21

Introduction
What are Algebraic Loops?

Transformation steps for simulation

0 = f (x (t), ẋ (t), y(t), u(t), p, t)

⇓

0 = f (x (t), z (t), u(t), p, t), z (t) =

(
ẋ (t)
y(t)

)
⇓

z (t) =

(
ẋ (t)
y(t)

)
= g(x (t), u(t), p, t)

⇓

ẋ (t) = h(x (t), u(t), p, t)

y(t) = k(x (t), u(t), p, t)

Transformation example

f2(z2) = 0

f4(z1, z2) = 0

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

f1(z3, z4) = 0

Algebraic loop (SCC)

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

3 / 21

Introduction
What are Algebraic Loops?

Transformation steps for simulation

0 = f (x (t), ẋ (t), y(t), u(t), p, t)

⇓

0 = f (x (t), z (t), u(t), p, t), z (t) =

(
ẋ (t)
y(t)

)
⇓

z (t) =

(
ẋ (t)
y(t)

)
= g(x (t), u(t), p, t)

⇓

ẋ (t) = h(x (t), u(t), p, t)

y(t) = k(x (t), u(t), p, t)

Transformation example

f2(z2) = 0

f4(z1, z2) = 0

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

f1(z3, z4) = 0

Algebraic loop (SCC)

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

3 / 21

Introduction
What are Algebraic Loops?

Transformation steps for simulation

0 = f (x (t), ẋ (t), y(t), u(t), p, t)

⇓

0 = f (x (t), z (t), u(t), p, t), z (t) =

(
ẋ (t)
y(t)

)
⇓

z (t) =

(
ẋ (t)
y(t)

)
= g(x (t), u(t), p, t)

⇓

ẋ (t) = h(x (t), u(t), p, t)

y(t) = k(x (t), u(t), p, t)

Transformation example

f2(z2) = 0

f4(z1, z2) = 0

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

f1(z3, z4) = 0

Algebraic loop (SCC)

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

3 / 21

Introduction
What are Algebraic Loops?

Transformation steps for simulation

0 = f (x (t), ẋ (t), y(t), u(t), p, t)

⇓

0 = f (x (t), z (t), u(t), p, t), z (t) =

(
ẋ (t)
y(t)

)
⇓

z (t) =

(
ẋ (t)
y(t)

)
= g(x (t), u(t), p, t)

⇓

ẋ (t) = h(x (t), u(t), p, t)

y(t) = k(x (t), u(t), p, t)

Transformation example

f2(z2) = 0

f4(z1, z2) = 0

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

f1(z3, z4) = 0

Algebraic loop (SCC)

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

3 / 21

Introduction
What are Algebraic Loops?

Transformation steps for simulation

0 = f (x (t), ẋ (t), y(t), u(t), p, t)

⇓

0 = f (x (t), z (t), u(t), p, t), z (t) =

(
ẋ (t)
y(t)

)
⇓

z (t) =

(
ẋ (t)
y(t)

)
= g(x (t), u(t), p, t)

⇓

ẋ (t) = h(x (t), u(t), p, t)

y(t) = k(x (t), u(t), p, t)

Transformation example

f2(z2) = 0

f4(z1, z2) = 0

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

f1(z3, z4) = 0

Algebraic loop (SCC)

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

3 / 21

Introduction
What are Algebraic Loops?

Transformation steps for simulation

0 = f (x (t), ẋ (t), y(t), u(t), p, t)

⇓

0 = f (x (t), z (t), u(t), p, t), z (t) =

(
ẋ (t)
y(t)

)
⇓

z (t) =

(
ẋ (t)
y(t)

)
= g(x (t), u(t), p, t)

⇓

ẋ (t) = h(x (t), u(t), p, t)

y(t) = k(x (t), u(t), p, t)

Transformation example

f2(z2) = 0

f4(z1, z2) = 0

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

f1(z3, z4) = 0

Algebraic loop (SCC)

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

3 / 21

Introduction
Important Aspects with Algebraic Loops!

Algebraic loops in OpenModelica:

Generated code (functionODE, functionAlgebraics,
initialization, etc.)

Efficient handling of (non-)linear equation(s)
I Solution of single equations, Tearing of equation

systems, Good solver implementation, Generation of
symbolic Jacobians, etc.

Proper scaling of iteration variables and equations

Iteration schemes need good starting values

Handling of non-convergence
I Different heuristics possible (varying starting values,

nominal values, accuracy, etc.)

Dealing with non-valid values of iteration variables during
solution process

Transformation example

f2(z2) = 0

f4(z1, z2) = 0

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

f1(z3, z4) = 0

Algebraic loop (SCC)

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

4 / 21

Introduction
Important Aspects with Algebraic Loops!

Algebraic loops in OpenModelica:

Generated code (functionODE, functionAlgebraics,
initialization, etc.)

Efficient handling of (non-)linear equation(s)
I Solution of single equations, Tearing of equation

systems, Good solver implementation, Generation of
symbolic Jacobians, etc.

Proper scaling of iteration variables and equations

Iteration schemes need good starting values

Handling of non-convergence
I Different heuristics possible (varying starting values,

nominal values, accuracy, etc.)

Dealing with non-valid values of iteration variables during
solution process

Transformation example

f2(z2) = 0

f4(z1, z2) = 0

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

f1(z3, z4) = 0

Algebraic loop (SCC)

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

4 / 21

Introduction
Important Aspects with Algebraic Loops!

Algebraic loops in OpenModelica:

Generated code (functionODE, functionAlgebraics,
initialization, etc.)

Efficient handling of (non-)linear equation(s)
I Solution of single equations, Tearing of equation

systems, Good solver implementation, Generation of
symbolic Jacobians, etc.

Proper scaling of iteration variables and equations

Iteration schemes need good starting values

Handling of non-convergence
I Different heuristics possible (varying starting values,

nominal values, accuracy, etc.)

Dealing with non-valid values of iteration variables during
solution process

Transformation example

f2(z2) = 0

f4(z1, z2) = 0

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

f1(z3, z4) = 0

Algebraic loop (SCC)

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

4 / 21

Introduction
Important Aspects with Algebraic Loops!

Algebraic loops in OpenModelica:

Generated code (functionODE, functionAlgebraics,
initialization, etc.)

Efficient handling of (non-)linear equation(s)
I Solution of single equations, Tearing of equation

systems, Good solver implementation, Generation of
symbolic Jacobians, etc.

Proper scaling of iteration variables and equations

Iteration schemes need good starting values

Handling of non-convergence
I Different heuristics possible (varying starting values,

nominal values, accuracy, etc.)

Dealing with non-valid values of iteration variables during
solution process

Transformation example

f2(z2) = 0

f4(z1, z2) = 0

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

f1(z3, z4) = 0

Algebraic loop (SCC)

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

4 / 21

Introduction
Important Aspects with Algebraic Loops!

Algebraic loops in OpenModelica:

Generated code (functionODE, functionAlgebraics,
initialization, etc.)

Efficient handling of (non-)linear equation(s)
I Solution of single equations, Tearing of equation

systems, Good solver implementation, Generation of
symbolic Jacobians, etc.

Proper scaling of iteration variables and equations

Iteration schemes need good starting values

Handling of non-convergence
I Different heuristics possible (varying starting values,

nominal values, accuracy, etc.)

Dealing with non-valid values of iteration variables during
solution process

Transformation example

f2(z2) = 0

f4(z1, z2) = 0

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

f1(z3, z4) = 0

Algebraic loop (SCC)

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

4 / 21

Introduction
Important Aspects with Algebraic Loops!

Algebraic loops in OpenModelica:

Generated code (functionODE, functionAlgebraics,
initialization, etc.)

Efficient handling of (non-)linear equation(s)
I Solution of single equations, Tearing of equation

systems, Good solver implementation, Generation of
symbolic Jacobians, etc.

Proper scaling of iteration variables and equations

Iteration schemes need good starting values

Handling of non-convergence
I Different heuristics possible (varying starting values,

nominal values, accuracy, etc.)

Dealing with non-valid values of iteration variables during
solution process

Transformation example

f2(z2) = 0

f4(z1, z2) = 0

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

f1(z3, z4) = 0

Algebraic loop (SCC)

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

4 / 21

Introduction
Important Aspects with Algebraic Loops!

Algebraic loops in OpenModelica:

Generated code (functionODE, functionAlgebraics,
initialization, etc.)

Efficient handling of (non-)linear equation(s)
I Solution of single equations, Tearing of equation

systems, Good solver implementation, Generation of
symbolic Jacobians, etc.

Proper scaling of iteration variables and equations

Iteration schemes need good starting values

Handling of non-convergence
I Different heuristics possible (varying starting values,

nominal values, accuracy, etc.)

Dealing with non-valid values of iteration variables during
solution process

Transformation example

f2(z2) = 0

f4(z1, z2) = 0

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

f1(z3, z4) = 0

Algebraic loop (SCC)

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

4 / 21

Introduction
Important Aspects with Algebraic Loops!

Algebraic loops in OpenModelica:

Generated code (functionODE, functionAlgebraics,
initialization, etc.)

Efficient handling of (non-)linear equation(s)
I Solution of single equations, Tearing of equation

systems, Good solver implementation, Generation of
symbolic Jacobians, etc.

Proper scaling of iteration variables and equations

Iteration schemes need good starting values

Handling of non-convergence
I Different heuristics possible (varying starting values,

nominal values, accuracy, etc.)

Dealing with non-valid values of iteration variables during
solution process

Transformation example

f2(z2) = 0

f4(z1, z2) = 0

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

f1(z3, z4) = 0

Algebraic loop (SCC)

f3(z2, z3, z5) = 0

f5(z1, z3, z5) = 0

4 / 21

Introduction
Current Status in OpenModelica

Default mixed-solver strategy:

Determine proper starting values
I Check validity of starting values with respect to

regular Jacobian and asserts of function calls

Start damped Newton algorithm
I Damping strategy based on expected function

decrease and validity of iteration step

1st Fallback case: newly developed Homotopy solver
I Already robust prototype

2nd Fallback case: hybrid solver (-nls hybrid)
I Robust solver including several additional heuristics

Nonlinear problem

F (x) = 0

Start vector: x0 ∈ Rn .

Newton iteration step:

JF

(
x (k)

)
· s(k) = −F

(
x (k)

)
x (k+1) = x (k) + τ (k)s(k)

Damping parameter:

τ (k) ∈ [0, 1].

5 / 21

Introduction
Current Status in OpenModelica

Default mixed-solver strategy:

Determine proper starting values
I Check validity of starting values with respect to

regular Jacobian and asserts of function calls

Start damped Newton algorithm
I Damping strategy based on expected function

decrease and validity of iteration step

1st Fallback case: newly developed Homotopy solver
I Already robust prototype

2nd Fallback case: hybrid solver (-nls hybrid)
I Robust solver including several additional heuristics

Nonlinear problem

F (x) = 0

Start vector: x0 ∈ Rn .

Newton iteration step:

JF

(
x (k)

)
· s(k) = −F

(
x (k)

)
x (k+1) = x (k) + τ (k)s(k)

Damping parameter:

τ (k) ∈ [0, 1].

5 / 21

Introduction
Current Status in OpenModelica

Default mixed-solver strategy:

Determine proper starting values
I Check validity of starting values with respect to

regular Jacobian and asserts of function calls

Start damped Newton algorithm
I Damping strategy based on expected function

decrease and validity of iteration step

1st Fallback case: newly developed Homotopy solver
I Already robust prototype

2nd Fallback case: hybrid solver (-nls hybrid)
I Robust solver including several additional heuristics

Nonlinear problem

F (x) = 0

Start vector: x0 ∈ Rn .

Newton iteration step:

JF

(
x (k)

)
· s(k) = −F

(
x (k)

)
x (k+1) = x (k) + τ (k)s(k)

Damping parameter:

τ (k) ∈ [0, 1].

5 / 21

Introduction
Current Status in OpenModelica

Default mixed-solver strategy:

Determine proper starting values
I Check validity of starting values with respect to

regular Jacobian and asserts of function calls

Start damped Newton algorithm
I Damping strategy based on expected function

decrease and validity of iteration step

1st Fallback case: newly developed Homotopy solver
I Already robust prototype

2nd Fallback case: hybrid solver (-nls hybrid)
I Robust solver including several additional heuristics

Nonlinear problem

F (x) = 0

Start vector: x0 ∈ Rn .

Newton iteration step:

JF

(
x (k)

)
· s(k) = −F

(
x (k)

)
x (k+1) = x (k) + τ (k)s(k)

Damping parameter:

τ (k) ∈ [0, 1].

5 / 21

Introduction
Current Status in OpenModelica

Default mixed-solver strategy:

Determine proper starting values
I Check validity of starting values with respect to

regular Jacobian and asserts of function calls

Start damped Newton algorithm
I Damping strategy based on expected function

decrease and validity of iteration step

1st Fallback case: newly developed Homotopy solver
I Already robust prototype

2nd Fallback case: hybrid solver (-nls hybrid)
I Robust solver including several additional heuristics

Nonlinear problem

F (x) = 0

Start vector: x0 ∈ Rn .

Newton iteration step:

JF

(
x (k)

)
· s(k) = −F

(
x (k)

)
x (k+1) = x (k) + τ (k)s(k)

Damping parameter:

τ (k) ∈ [0, 1].

5 / 21

Introduction
Current Status in OpenModelica

Default mixed-solver strategy:

Determine proper starting values
I Check validity of starting values with respect to

regular Jacobian and asserts of function calls

Start damped Newton algorithm
I Damping strategy based on expected function

decrease and validity of iteration step

1st Fallback case: newly developed Homotopy solver
I Already robust prototype

2nd Fallback case: hybrid solver (-nls hybrid)
I Robust solver including several additional heuristics

Nonlinear problem

F (x) = 0

Start vector: x0 ∈ Rn .

Newton iteration step:

JF

(
x (k)

)
· s(k) = −F

(
x (k)

)
x (k+1) = x (k) + τ (k)s(k)

Damping parameter:

τ (k) ∈ [0, 1].

5 / 21

Introduction
Current Status in OpenModelica

Default mixed-solver strategy:

Determine proper starting values
I Check validity of starting values with respect to

regular Jacobian and asserts of function calls

Start damped Newton algorithm
I Damping strategy based on expected function

decrease and validity of iteration step

1st Fallback case: newly developed Homotopy solver
I Already robust prototype

2nd Fallback case: hybrid solver (-nls hybrid)
I Robust solver including several additional heuristics

Nonlinear problem

F (x) = 0

Start vector: x0 ∈ Rn .

Newton iteration step:

JF

(
x (k)

)
· s(k) = −F

(
x (k)

)
x (k+1) = x (k) + τ (k)s(k)

Damping parameter:

τ (k) ∈ [0, 1].

5 / 21

Introduction
Current Status in OpenModelica

Default mixed-solver strategy:

Determine proper starting values
I Check validity of starting values with respect to

regular Jacobian and asserts of function calls

Start damped Newton algorithm
I Damping strategy based on expected function

decrease and validity of iteration step

1st Fallback case: newly developed Homotopy solver
I Already robust prototype

2nd Fallback case: hybrid solver (-nls hybrid)
I Robust solver including several additional heuristics

Nonlinear problem

F (x) = 0

Start vector: x0 ∈ Rn .

Newton iteration step:

JF

(
x (k)

)
· s(k) = −F

(
x (k)

)
x (k+1) = x (k) + τ (k)s(k)

Damping parameter:

τ (k) ∈ [0, 1].

5 / 21

Homotopy Method
General Approach

Nonlinear problem

Solve non-linear equation system

F (x∗) = 0

with given start vector x0 ∈ Rn .

Possible homotopy functions

Fixpoint-Homotopy:

H (x , λ) = λF (x) + (1− λ)(x − x0) = 0

Newton-Homotopy:

H (x , λ) = F (x)− (1− λ)F (x0) = 0

Simple example

f (x) = 2x − 4 + sin(2πx),

x0 = 0.5, x∗ = 2.

Homotopy Path (Fixpoint)

6 / 21

Homotopy Method
General Approach

Nonlinear problem

Solve non-linear equation system

F (x∗) = 0

with given start vector x0 ∈ Rn .

Possible homotopy functions

Fixpoint-Homotopy:

H (x , λ) = λF (x) + (1− λ)(x − x0) = 0

Newton-Homotopy:

H (x , λ) = F (x)− (1− λ)F (x0) = 0

Simple example

f (x) = 2x − 4 + sin(2πx),

x0 = 0.5, x∗ = 2.

Homotopy Path (Newton)

6 / 21

Homotopy Method
General Approach

Homotopy-iteration

Start with (x0, λ0︸︷︷︸
=0

) and H (x0, λ0) = 0.

Determine (x i+1, λi+1) with H (x i+1, λi+1) = 0.

Stop, when λm = 1 yields.

⇒ H (xm , λm︸︷︷︸
=1

) = F (xm) = 0⇒ x∗ = xm .

Procedure:
Perform predictor-corrector steps

⇒ path (x (s), λ(s)), s arc length.

Simple example

f (x) = 2x − 4 + sin(2πx),

x0 = 0.5, x∗ = 2.

Homotopy Path (Iteration)

7 / 21

Homotopy Method
General Approach

Homotopy-iteration

Start with (x0, λ0︸︷︷︸
=0

) and H (x0, λ0) = 0.

Determine (x i+1, λi+1) with H (x i+1, λi+1) = 0.

Stop, when λm = 1 yields.

⇒ H (xm , λm︸︷︷︸
=1

) = F (xm) = 0⇒ x∗ = xm .

Procedure:
Perform predictor-corrector steps

⇒ path (x (s), λ(s)), s arc length.

Simple example

f (x) = 2x − 4 + sin(2πx),

x0 = 0.5, x∗ = 2.

Homotopy Path (Iteration)

7 / 21

Homotopy Method
General Approach

Homotopy-iteration

Start with (x0, λ0︸︷︷︸
=0

) and H (x0, λ0) = 0.

Determine (x i+1, λi+1) with H (x i+1, λi+1) = 0.

Stop, when λm = 1 yields.

⇒ H (xm , λm︸︷︷︸
=1

) = F (xm) = 0⇒ x∗ = xm .

Procedure:
Perform predictor-corrector steps

⇒ path (x (s), λ(s)), s arc length.

Simple example

f (x) = 2x − 4 + sin(2πx),

x0 = 0.5, x∗ = 2.

Homotopy Path (Iteration)

7 / 21

Homotopy Method
General Approach

Homotopy-iteration

Start with (x0, λ0︸︷︷︸
=0

) and H (x0, λ0) = 0.

Determine (x i+1, λi+1) with H (x i+1, λi+1) = 0.

Stop, when λm = 1 yields.

⇒ H (xm , λm︸︷︷︸
=1

) = F (xm) = 0⇒ x∗ = xm .

Procedure:
Perform predictor-corrector steps

⇒ path (x (s), λ(s)), s arc length.

Simple example

f (x) = 2x − 4 + sin(2πx),

x0 = 0.5, x∗ = 2.

Homotopy Path (Iteration)

7 / 21

Homotopy Method
Calculating Homotopy Path (x(s), λ(s))

Predictor step

H (x (s), λ(s)) = 0

⇒ ∂H

∂x
· x ′(s) + ∂H

∂λ
· λ′(s) = 0.

Solve linear system

JH (x i , λi) · v i = 0,

JH ∈ R(n,n+1), Jacobian matrix of H (x , λ).

Perform predictor step(
x#
i+1

λ#i+1

)
=

(
x i

λi

)
+ τi · v i ,

τi step size, v i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with
start values (x#

i+1, λ
#
i+1) until

H (x i+1, λi+1) ≈ 0.

8 / 21

Homotopy Method
Calculating Homotopy Path (x(s), λ(s))

Predictor step

H (x (s), λ(s)) = 0

⇒ ∂H

∂x
· x ′(s) + ∂H

∂λ
· λ′(s) = 0.

Solve linear system

JH (x i , λi) · v i = 0,

JH ∈ R(n,n+1), Jacobian matrix of H (x , λ).

Perform predictor step(
x#
i+1

λ#i+1

)
=

(
x i

λi

)
+ τi · v i ,

τi step size, v i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with
start values (x#

i+1, λ
#
i+1) until

H (x i+1, λi+1) ≈ 0.

8 / 21

Homotopy Method
Calculating Homotopy Path (x(s), λ(s))

Predictor step

H (x (s), λ(s)) = 0

⇒ ∂H

∂x
· x ′(s) + ∂H

∂λ
· λ′(s) = 0.

Solve linear system

JH (x i , λi) · v i = 0,

JH ∈ R(n,n+1), Jacobian matrix of H (x , λ).

Perform predictor step(
x#
i+1

λ#i+1

)
=

(
x i

λi

)
+ τi · v i ,

τi step size, v i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with
start values (x#

i+1, λ
#
i+1) until

H (x i+1, λi+1) ≈ 0.

8 / 21

Homotopy Method
Calculating Homotopy Path (x(s), λ(s))

Predictor step

H (x (s), λ(s)) = 0

⇒ ∂H

∂x
· x ′(s) + ∂H

∂λ
· λ′(s) = 0.

Solve linear system

JH (x i , λi) · v i = 0,

JH ∈ R(n,n+1), Jacobian matrix of H (x , λ).

Perform predictor step(
x#
i+1

λ#i+1

)
=

(
x i

λi

)
+ τi · v i ,

τi step size, v i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with
start values (x#

i+1, λ
#
i+1) until

H (x i+1, λi+1) ≈ 0.

8 / 21

Homotopy Method
Calculating Homotopy Path (x(s), λ(s))

Predictor step

H (x (s), λ(s)) = 0

⇒ ∂H

∂x
· x ′(s) + ∂H

∂λ
· λ′(s) = 0.

Solve linear system

JH (x i , λi) · v i = 0,

JH ∈ R(n,n+1), Jacobian matrix of H (x , λ).

Perform predictor step(
x#
i+1

λ#i+1

)
=

(
x i

λi

)
+ τi · v i ,

τi step size, v i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with
start values (x#

i+1, λ
#
i+1) until

H (x i+1, λi+1) ≈ 0.

8 / 21

Homotopy Method
Calculating Homotopy Path (x(s), λ(s))

Predictor step

H (x (s), λ(s)) = 0

⇒ ∂H

∂x
· x ′(s) + ∂H

∂λ
· λ′(s) = 0.

Solve linear system

JH (x i , λi) · v i = 0,

JH ∈ R(n,n+1), Jacobian matrix of H (x , λ).

Perform predictor step(
x#
i+1

λ#i+1

)
=

(
x i

λi

)
+ τi · v i ,

τi step size, v i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with
start values (x#

i+1, λ
#
i+1) until

H (x i+1, λi+1) ≈ 0.

8 / 21

Homotopy Method
Calculating Homotopy Path (x(s), λ(s))

Predictor step

H (x (s), λ(s)) = 0

⇒ ∂H

∂x
· x ′(s) + ∂H

∂λ
· λ′(s) = 0.

Solve linear system

JH (x i , λi) · v i = 0,

JH ∈ R(n,n+1), Jacobian matrix of H (x , λ).

Perform predictor step(
x#
i+1

λ#i+1

)
=

(
x i

λi

)
+ τi · v i ,

τi step size, v i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with
start values (x#

i+1, λ
#
i+1) until

H (x i+1, λi+1) ≈ 0.

8 / 21

Homotopy Method
Calculating Homotopy Path (x(s), λ(s))

Predictor step

H (x (s), λ(s)) = 0

⇒ ∂H

∂x
· x ′(s) + ∂H

∂λ
· λ′(s) = 0.

Solve linear system

JH (x i , λi) · v i = 0,

JH ∈ R(n,n+1), Jacobian matrix of H (x , λ).

Perform predictor step(
x#
i+1

λ#i+1

)
=

(
x i

λi

)
+ τi · v i ,

τi step size, v i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with
start values (x#

i+1, λ
#
i+1) until

H (x i+1, λi+1) ≈ 0.

8 / 21

Homotopy Method
Calculating Homotopy Path (x(s), λ(s))

Predictor step

H (x (s), λ(s)) = 0

⇒ ∂H

∂x
· x ′(s) + ∂H

∂λ
· λ′(s) = 0.

Solve linear system

JH (x i , λi) · v i = 0,

JH ∈ R(n,n+1), Jacobian matrix of H (x , λ).

Perform predictor step(
x#
i+1

λ#i+1

)
=

(
x i

λi

)
+ τi · v i ,

τi step size, v i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with
start values (x#

i+1, λ
#
i+1) until

H (x i+1, λi+1) ≈ 0.

8 / 21

Homotopy Method
Calculating Homotopy Path (x(s), λ(s))

Predictor step

H (x (s), λ(s)) = 0

⇒ ∂H

∂x
· x ′(s) + ∂H

∂λ
· λ′(s) = 0.

Solve linear system

JH (x i , λi) · v i = 0,

JH ∈ R(n,n+1), Jacobian matrix of H (x , λ).

Perform predictor step(
x#
i+1

λ#i+1

)
=

(
x i

λi

)
+ τi · v i ,

τi step size, v i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with
start values (x#

i+1, λ
#
i+1) until

H (x i+1, λi+1) ≈ 0.

8 / 21

Homotopy Method
Calculating Homotopy Path (x(s), λ(s))

Predictor step

H (x (s), λ(s)) = 0

⇒ ∂H

∂x
· x ′(s) + ∂H

∂λ
· λ′(s) = 0.

Solve linear system

JH (x i , λi) · v i = 0,

JH ∈ R(n,n+1), Jacobian matrix of H (x , λ).

Perform predictor step(
x#
i+1

λ#i+1

)
=

(
x i

λi

)
+ τi · v i ,

τi step size, v i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with
start values (x#

i+1, λ
#
i+1) until

H (x i+1, λi+1) ≈ 0.

8 / 21

Homotopy Method
Calculating Homotopy Path (x(s), λ(s))

Predictor step

H (x (s), λ(s)) = 0

⇒ ∂H

∂x
· x ′(s) + ∂H

∂λ
· λ′(s) = 0.

Solve linear system

JH (x i , λi) · v i = 0,

JH ∈ R(n,n+1), Jacobian matrix of H (x , λ).

Perform predictor step(
x#
i+1

λ#i+1

)
=

(
x i

λi

)
+ τi · v i ,

τi step size, v i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with
start values (x#

i+1, λ
#
i+1) until

H (x i+1, λi+1) ≈ 0.

8 / 21

Homotopy Method
Calculating Homotopy Path (x(s), λ(s))

Predictor step

H (x (s), λ(s)) = 0

⇒ ∂H

∂x
· x ′(s) + ∂H

∂λ
· λ′(s) = 0.

Solve linear system

JH (x i , λi) · v i = 0,

JH ∈ R(n,n+1), Jacobian matrix of H (x , λ).

Perform predictor step(
x#
i+1

λ#i+1

)
=

(
x i

λi

)
+ τi · v i ,

τi step size, v i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with
start values (x#

i+1, λ
#
i+1) until

H (x i+1, λi+1) ≈ 0.

8 / 21

Homotopy Method
Calculating Homotopy Path (x(s), λ(s))

Predictor step

H (x (s), λ(s)) = 0

⇒ ∂H

∂x
· x ′(s) + ∂H

∂λ
· λ′(s) = 0.

Solve linear system

JH (x i , λi) · v i = 0,

JH ∈ R(n,n+1), Jacobian matrix of H (x , λ).

Perform predictor step(
x#
i+1

λ#i+1

)
=

(
x i

λi

)
+ τi · v i ,

τi step size, v i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with
start values (x#

i+1, λ
#
i+1) until

H (x i+1, λi+1) ≈ 0.

8 / 21

Homotopy Method
Status and Outlook

Problems in current implementation (To-Do-List):

Determination of starting direction
I For Newton-Homotopy try both directions
I For Fixpoint-Homotopy only positive direction

Improve scaling of iteration variables and equations
I Problems with differentiated variables

Utilize Homotopy method for initialization
I Proper symbolic preparation of the operator

homotopy(f(x),g(x))=0 necessary.

Provide better starting vector for iteration
I Context-dependent extrapolation:

JfODE =

(
fODE(x + hei)− fODE(x)

h

)
i=1...n

I OR: Generate symbolic Jacobians for all relevant cases

9 / 21

Homotopy Method
Status and Outlook

Problems in current implementation (To-Do-List):

Determination of starting direction
I For Newton-Homotopy try both directions
I For Fixpoint-Homotopy only positive direction

Improve scaling of iteration variables and equations
I Problems with differentiated variables

Utilize Homotopy method for initialization
I Proper symbolic preparation of the operator

homotopy(f(x),g(x))=0 necessary.

Provide better starting vector for iteration
I Context-dependent extrapolation:

JfODE =

(
fODE(x + hei)− fODE(x)

h

)
i=1...n

I OR: Generate symbolic Jacobians for all relevant cases

9 / 21

Homotopy Method
Status and Outlook

Problems in current implementation (To-Do-List):

Determination of starting direction
I For Newton-Homotopy try both directions
I For Fixpoint-Homotopy only positive direction

Improve scaling of iteration variables and equations
I Problems with differentiated variables

Utilize Homotopy method for initialization
I Proper symbolic preparation of the operator

homotopy(f(x),g(x))=0 necessary.

Provide better starting vector for iteration
I Context-dependent extrapolation:

JfODE =

(
fODE(x + hei)− fODE(x)

h

)
i=1...n

I OR: Generate symbolic Jacobians for all relevant cases

9 / 21

Homotopy Method
Status and Outlook

Problems in current implementation (To-Do-List):

Determination of starting direction
I For Newton-Homotopy try both directions
I For Fixpoint-Homotopy only positive direction

Improve scaling of iteration variables and equations
I Problems with differentiated variables

Utilize Homotopy method for initialization
I Proper symbolic preparation of the operator

homotopy(f(x),g(x))=0 necessary.

Provide better starting vector for iteration
I Context-dependent extrapolation:

JfODE =

(
fODE(x + hei)− fODE(x)

h

)
i=1...n

I OR: Generate symbolic Jacobians for all relevant cases

9 / 21

Homotopy Method
Status and Outlook

Problems in current implementation (To-Do-List):

Determination of starting direction
I For Newton-Homotopy try both directions
I For Fixpoint-Homotopy only positive direction

Improve scaling of iteration variables and equations
I Problems with differentiated variables

Utilize Homotopy method for initialization
I Proper symbolic preparation of the operator

homotopy(f(x),g(x))=0 necessary.

Provide better starting vector for iteration
I Context-dependent extrapolation:

JfODE =

(
fODE(x + hei)− fODE(x)

h

)
i=1...n

I OR: Generate symbolic Jacobians for all relevant cases

9 / 21

Homotopy Method
Status and Outlook

Problems in current implementation (To-Do-List):

Determination of starting direction
I For Newton-Homotopy try both directions
I For Fixpoint-Homotopy only positive direction

Improve scaling of iteration variables and equations
I Problems with differentiated variables

Utilize Homotopy method for initialization
I Proper symbolic preparation of the operator

homotopy(f(x),g(x))=0 necessary.

Provide better starting vector for iteration
I Context-dependent extrapolation:

JfODE =

(
fODE(x + hei)− fODE(x)

h

)
i=1...n

I OR: Generate symbolic Jacobians for all relevant cases

9 / 21

Homotopy Method
Status and Outlook

Problems in current implementation (To-Do-List):

Determination of starting direction
I For Newton-Homotopy try both directions
I For Fixpoint-Homotopy only positive direction

Improve scaling of iteration variables and equations
I Problems with differentiated variables

Utilize Homotopy method for initialization
I Proper symbolic preparation of the operator

homotopy(f(x),g(x))=0 necessary.

Provide better starting vector for iteration
I Context-dependent extrapolation:

JfODE =

(
fODE(x + hei)− fODE(x)

h

)
i=1...n

I OR: Generate symbolic Jacobians for all relevant cases

9 / 21

Homotopy Method
Status and Outlook

Problems in current implementation (To-Do-List):

Determination of starting direction
I For Newton-Homotopy try both directions
I For Fixpoint-Homotopy only positive direction

Improve scaling of iteration variables and equations
I Problems with differentiated variables

Utilize Homotopy method for initialization
I Proper symbolic preparation of the operator

homotopy(f(x),g(x))=0 necessary.

Provide better starting vector for iteration
I Context-dependent extrapolation:

JfODE =

(
fODE(x + hei)− fODE(x)

h

)
i=1...n

I OR: Generate symbolic Jacobians for all relevant cases

9 / 21

Homotopy Method
Status and Outlook

Problems in current implementation (To-Do-List):

Determination of starting direction
I For Newton-Homotopy try both directions
I For Fixpoint-Homotopy only positive direction

Improve scaling of iteration variables and equations
I Problems with differentiated variables

Utilize Homotopy method for initialization
I Proper symbolic preparation of the operator

homotopy(f(x),g(x))=0 necessary.

Provide better starting vector for iteration
I Context-dependent extrapolation:

JfODE =

(
fODE(x + hei)− fODE(x)

h

)
i=1...n

I OR: Generate symbolic Jacobians for all relevant cases

9 / 21

Homotopy Method
Status and Outlook

Problems in current implementation (To-Do-List):

Determination of starting direction
I For Newton-Homotopy try both directions
I For Fixpoint-Homotopy only positive direction

Improve scaling of iteration variables and equations
I Problems with differentiated variables

Utilize Homotopy method for initialization
I Proper symbolic preparation of the operator

homotopy(f(x),g(x))=0 necessary.

Provide better starting vector for iteration
I Context-dependent extrapolation:

JfODE =

(
fODE(x + hei)− fODE(x)

h

)
i=1...n

I OR: Generate symbolic Jacobians for all relevant cases

9 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

Already available for most of known functions:
I quadratic functions: ax2 + bx + c,
I monomial functions: xn ,
I sin(x),
I cos(x),
I tan(x),
I log(x),
I exp(x),
I tanh(x),
I cosh(x),
I . . .

Complex compositions are possible:
I

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

I . . .

10 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

Already available for most of known functions:
I quadratic functions: ax2 + bx + c,
I monomial functions: xn ,
I sin(x),
I cos(x),
I tan(x),
I log(x),
I exp(x),
I tanh(x),
I cosh(x),
I . . .

Complex compositions are possible:
I

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

I . . .

10 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

Already available for most of known functions:
I quadratic functions: ax2 + bx + c,
I monomial functions: xn ,
I sin(x),
I cos(x),
I tan(x),
I log(x),
I exp(x),
I tanh(x),
I cosh(x),
I . . .

Complex compositions are possible:
I

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

I . . .

10 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

Already available for most of known functions:
I quadratic functions: ax2 + bx + c,
I monomial functions: xn ,
I sin(x),
I cos(x),
I tan(x),
I log(x),
I exp(x),
I tanh(x),
I cosh(x),
I . . .

Complex compositions are possible:
I

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

I . . .

10 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

Already available for most of known functions:
I quadratic functions: ax2 + bx + c,
I monomial functions: xn ,
I sin(x),
I cos(x),
I tan(x),
I log(x),
I exp(x),
I tanh(x),
I cosh(x),
I . . .

Complex compositions are possible:
I

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

I . . .

10 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

Already available for most of known functions:
I quadratic functions: ax2 + bx + c,
I monomial functions: xn ,
I sin(x),
I cos(x),
I tan(x),
I log(x),
I exp(x),
I tanh(x),
I cosh(x),
I . . .

Complex compositions are possible:
I

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

I . . .

10 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

Already available for most of known functions:
I quadratic functions: ax2 + bx + c,
I monomial functions: xn ,
I sin(x),
I cos(x),
I tan(x),
I log(x),
I exp(x),
I tanh(x),
I cosh(x),
I . . .

Complex compositions are possible:
I

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

I . . .

10 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

Already available for most of known functions:
I quadratic functions: ax2 + bx + c,
I monomial functions: xn ,
I sin(x),
I cos(x),
I tan(x),
I log(x),
I exp(x),
I tanh(x),
I cosh(x),
I . . .

Complex compositions are possible:
I

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

I . . .

10 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

Already available for most of known functions:
I quadratic functions: ax2 + bx + c,
I monomial functions: xn ,
I sin(x),
I cos(x),
I tan(x),
I log(x),
I exp(x),
I tanh(x),
I cosh(x),
I . . .

Complex compositions are possible:
I

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

I . . .

10 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

Already available for most of known functions:
I quadratic functions: ax2 + bx + c,
I monomial functions: xn ,
I sin(x),
I cos(x),
I tan(x),
I log(x),
I exp(x),
I tanh(x),
I cosh(x),
I . . .

Complex compositions are possible:
I

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

I . . .

10 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

Already available for most of known functions:
I quadratic functions: ax2 + bx + c,
I monomial functions: xn ,
I sin(x),
I cos(x),
I tan(x),
I log(x),
I exp(x),
I tanh(x),
I cosh(x),
I . . .

Complex compositions are possible:
I

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

I . . .

10 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

Already available for most of known functions:
I quadratic functions: ax2 + bx + c,
I monomial functions: xn ,
I sin(x),
I cos(x),
I tan(x),
I log(x),
I exp(x),
I tanh(x),
I cosh(x),
I . . .

Complex compositions are possible:
I

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

I . . .

10 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

Already available for most of known functions:
I quadratic functions: ax2 + bx + c,
I monomial functions: xn ,
I sin(x),
I cos(x),
I tan(x),
I log(x),
I exp(x),
I tanh(x),
I cosh(x),
I . . .

Complex compositions are possible:
I

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

I . . .

10 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

Already available for most of known functions:
I quadratic functions: ax2 + bx + c,
I monomial functions: xn ,
I sin(x),
I cos(x),
I tan(x),
I log(x),
I exp(x),
I tanh(x),
I cosh(x),
I . . .

Complex compositions are possible:
I

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

I . . .

10 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Quadratic equation

f (x) = a · x2 + b · x + c = 0

Solution

x = min
x∗

{∣∣x∗ − xold
∣∣ ∣∣∣ x∗ ∈ {x1, x2}}

11 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Quadratic equation

f (x) = a · x2 + b · x + c = 0

Well-known solution formula

x1,2 =


− b ±

√
b2 − 4 · a · c
2 · a

if a 6= 0

− c

b
if a = 0

Solution

x = min
x∗

{∣∣x∗ − xold
∣∣ ∣∣∣ x∗ ∈ {x1, x2}}

11 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Quadratic equation

f (x) = a · x2 + b · x + c = 0

Numerically stable solution formula (Vieta)

x1 = −

(
b + sign(b) ·

√
b2 − 4 · a · c

2 · a

)
x2 =

c

a · x1

Solution

x = min
x∗

{∣∣x∗ − xold
∣∣ ∣∣∣ x∗ ∈ {x1, x2}}

11 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Quadratic equation

f (x) = a · x2 + b · x + c = 0

Numerically stable solution formula (Vieta)

x1 = −

(
b + sign(b) ·

√
b2 − 4 · a · c

2 · a

)
x2 =

c

a · x1

Solution

x = min
x∗

{∣∣x∗ − xold
∣∣ ∣∣∣ x∗ ∈ {x1, x2}}

11 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Generalization using substitution

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

Example

sin (t) · log (x)2·n + cos (t) · log (x)n + exp (t) = 0

substitution:
sin (t) · z 2 + cos (t) · z + exp (t) = 0

where z = log (x)
n
= solveQE(.).

→ x = exp
(
sign(zold) ·

∣∣∣solveQE(.)
1
n

∣∣∣)

12 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Generalization using substitution

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

Example

sin (t) · log (x)2·n + cos (t) · log (x)n + exp (t) = 0

substitution:
sin (t) · z 2 + cos (t) · z + exp (t) = 0

where z = log (x)
n
= solveQE(.).

→ x = exp
(
sign(zold) ·

∣∣∣solveQE(.)
1
n

∣∣∣)

12 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Generalization using substitution

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

Example

sin (t) · log (x)2·n + cos (t) · log (x)n + exp (t) = 0

substitution:
sin (t) · z 2 + cos (t) · z + exp (t) = 0

where z = log (x)
n
= solveQE(.).

→ x = exp
(
sign(zold) ·

∣∣∣solveQE(.)
1
n

∣∣∣)

12 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Generalization using substitution

a(t) · f (x)y(t) + b(t) · f (x)
y(t)
2 + c(t) = 0

Example

sin (t) · log (x)2·n + cos (t) · log (x)n + exp (t) = 0

substitution:
sin (t) · z 2 + cos (t) · z + exp (t) = 0

where z = log (x)
n
= solveQE(.).

→ x = exp
(
sign(zold) ·

∣∣∣solveQE(.)
1
n

∣∣∣)

12 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Inversion of sine function

sin (x) = y

Solution

x = min
x∗

{∣∣x∗ − xold
∣∣ ∣∣∣ x∗ ∈ {x1, x2}}

13 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Solution process

sin (x) = y

x = asin(y) + 2 · k · π, k ∈ Z
x = − asin(y) + (2 · k + 1) · π, k ∈ Z

Solution

x = min
x∗

{∣∣x∗ − xold
∣∣ ∣∣∣ x∗ ∈ {x1, x2}}

13 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Solution process

sin (x) = y

x1 = asin(y) + 2 · k1 · π, k1 ∈ Z
x2 = − asin(y) + (2 · k2 + 1) · π, k2 ∈ Z

k1 = round

(
xold − asin (y)

2 · π

)
k2 = round

(
xold + asin (y)

2 · π
−

1

2

)

Solution

x = min
x∗

{∣∣x∗ − xold
∣∣ ∣∣∣ x∗ ∈ {x1, x2}}

13 / 21

New Features in Module: ExpressionSolve
Methods for Solving Non-Linear Single Equations

Solution process

sin (x) = y

x1 = asin(y) + 2 · k1 · π, k1 ∈ Z
x2 = − asin(y) + (2 · k2 + 1) · π, k2 ∈ Z

k1 = round

(
xold − asin (y)

2 · π

)
k2 = round

(
xold + asin (y)

2 · π
−

1

2

)

Solution

x = min
x∗

{∣∣x∗ − xold
∣∣ ∣∣∣ x∗ ∈ {x1, x2}}

13 / 21

Status and Plans with Respect to Tearing
Introduction to Cellier Tearing

Strong component

f1(x3, x4) : 5x3 + x4 = 0

f2(x1, x2) : x1 + x2 + time = 0

f3(x1, x4) : sin(x1)− x4 = 0

f4(x2, x3) : 2x2 + x3 = 0

Tearing idea:
I Select a set of tearing variables and treat them as known variables in the following
I Transform the system to a sequentially evaluable one

14 / 21

Status and Plans with Respect to Tearing
Introduction to Cellier Tearing

Strong component

f1(x3, x4) : 5x3 + x4 = 0

f2(x1, x2) : x1 + x2 + time = 0

f3(x1, x4) : sin(x1)− x4 = 0

f4(x2, x3) : 2x2 + x3 = 0

Tearing idea:
I Select a set of tearing variables and treat them as known variables in the following
I Transform the system to a sequentially evaluable one

14 / 21

Status and Plans with Respect to Tearing
Introduction to Cellier Tearing

Teared component

f1(x3, x4) : 5x3 + x4 = 0

f2(x1, x2) : x1 + x2 + time = 0

f3(x1, x4) : sin(x1)− x4 = 0

f4(x2, x3) : 2x2 + x3 = 0

Tearing idea:
I Select a set of tearing variables and treat them as known variables in the following
I Transform the system to a sequentially evaluable one

14 / 21

Status and Plans with Respect to Tearing
Introduction to Cellier Tearing

Causalised component

f2 : x2 := −x1 − time

f4 : x3 := −2x2
f1 : x4 := −5x3

f3 : sin(x1)− x4
!
= 0 (res)

Tearing idea:
I Select a set of tearing variables and treat them as known variables in the following
I Transform the system to a sequentially evaluable one

14 / 21

Status and Plans with Respect to Tearing
Introduction to Cellier Tearing

Example

f1 : x1 + x2 · time = 0

f2 : x1 − x3 · cos(time) = 0

f3 : x1 + x2 + x3 + 2x4 + 4 = 0

f4 : x3 + x4 + 2x5 + 2 = 0

f5 : x4 − x5 · time − 2 · time = 0

→ Division by zero ⇒ Simulation failure

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

x1#1

#2

#3

#4

f5

15 / 21

Status and Plans with Respect to Tearing
Introduction to Cellier Tearing

Example

f1 : x1 + x2 · time = 0

f2 : x1 − x3 · cos(time) = 0

f3 : x1 + x2 + x3 + 2x4 + 4 = 0

f4 : x3 + x4 + 2x5 + 2 = 0

f5 : x4 − x5 · time − 2 · time = 0

→ Division by zero ⇒ Simulation failure

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1x1

#1

#2

#3

#4

f5

15 / 21

Status and Plans with Respect to Tearing
Introduction to Cellier Tearing

Example

f1 : x1 + x2 · time = 0

f2 : x1 − x3 · cos(time) = 0

f3 : x1 + x2 + x3 + 2x4 + 4 = 0

f4 : x3 + x4 + 2x5 + 2 = 0

f5 : x4 − x5 · time − 2 · time = 0

→ Division by zero ⇒ Simulation failure

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1x1#1

#2

#3

#4

f5

15 / 21

Status and Plans with Respect to Tearing
Introduction to Cellier Tearing

Example

f1 : x1 + x2 · time = 0

f2 : x1 − x3 · cos(time) = 0

f3 : x1 + x2 + x3 + 2x4 + 4 = 0

f4 : x3 + x4 + 2x5 + 2 = 0

f5 : x4 − x5 · time − 2 · time = 0

→ Division by zero ⇒ Simulation failure

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1x1#1

#2

#3

#4

f5

15 / 21

Status and Plans with Respect to Tearing
Introduction to Cellier Tearing

Example

f1 : x1 + x2 · time = 0

f2 : x1 − x3 · cos(time) = 0

f3 : x1 + x2 + x3 + 2x4 + 4 = 0

f4 : x3 + x4 + 2x5 + 2 = 0

f5 : x4 − x5 · time − 2 · time = 0

→ Division by zero ⇒ Simulation failure

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1x1#1

#2

#3

#4

f5

15 / 21

Status and Plans with Respect to Tearing
Introduction to Cellier Tearing

Example

f1 : x1 + x2 · time = 0

f2 : x1 − x3 · cos(time) = 0

f3 : x1 + x2 + x3 + 2x4 + 4 = 0

f4 : x3 + x4 + 2x5 + 2 = 0

f5 : x4 − x5 · time − 2 · time = 0

→ Division by zero ⇒ Simulation failure

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1x1#1

#2

#3

#4

f5

15 / 21

Status and Plans with Respect to Tearing
Introduction to Cellier Tearing

Example

f1 : x1 + x2 · time = 0

f2 : x1 − x3 · cos(time) = 0

f3 : x1 + x2 + x3 + 2x4 + 4 = 0

f4 : x3 + x4 + 2x5 + 2 = 0

f5 : x4 − x5 · time − 2 · time = 0

→ Division by zero ⇒ Simulation failure

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1x1#1

#2

#3

#4

f5

15 / 21

Status and Plans with Respect to Tearing
Introduction to Cellier Tearing

Example

f1 : x1 + x2 · time = 0

f2 : x1 − x3 · cos(time) = 0

f3 : x1 + x2 + x3 + 2x4 + 4 = 0

f4 : x3 + x4 + 2x5 + 2 = 0

f5 : x4 − x5 · time − 2 · time = 0

→ Division by zero ⇒ Simulation failure

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1x1#1

#2

#3

#4

f5

15 / 21

Status and Plans with Respect to Tearing
Introduction to Cellier Tearing

Causalised system

f1 : x2 :=
−x1
time

f2 : x3 :=
x1

cos(time)

f3 : x4 :=
−x1 − x2 − x3 − 4

2

f4 : x5 :=
−x3 − x4 − 2

2

f5 : x4 − x5 · time − 2 · time
!
= 0 (res)

→ Division by zero ⇒ Simulation failure

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1x1#1

#2

#3

#4

f5

15 / 21

Status and Plans with Respect to Tearing
Introduction to Cellier Tearing

Causalised system

f1 : x2 :=
−x1
time

f2 : x3 :=
x1

cos(time)

f3 : x4 :=
−x1 − x2 − x3 − 4

2

f4 : x5 :=
−x3 − x4 − 2

2

f5 : x4 − x5 · time − 2 · time
!
= 0 (res)

→ Division by zero ⇒ Simulation failure

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1x1#1

#2

#3

#4

f5

15 / 21

Status and Plans with Respect to Tearing
Consideration of Solvability

Example

f1 : x1 + x2 · time = 0

f2 : x1 − x3 · cos(time) = 0

f3 : x1 + x2 + x3 + 2x4 + 4 = 0

f4 : x3 + x4 + 2x5 + 2 = 0

f5 : x4 − x5 · time − 2 · time = 0

With constraints for assignments:

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

#2

#3

16 / 21

Status and Plans with Respect to Tearing
Consideration of Solvability

Example

f1 : x1 + x2 · time = 0

f2 : x1 − x3 · cos(time) = 0

f3 : x1 + x2 + x3 + 2x4 + 4 = 0

f4 : x3 + x4 + 2x5 + 2 = 0

f5 : x4 − x5 · time − 2 · time = 0

With constraints for assignments:

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

#2

#3

16 / 21

Status and Plans with Respect to Tearing
Consideration of Solvability

Example

f1 : x1 + x2 · time = 0

f2 : x1 − x3 · cos(time) = 0

f3 : x1 + x2 + x3 + 2x4 + 4 = 0

f4 : x3 + x4 + 2x5 + 2 = 0

f5 : x4 − x5 · time − 2 · time = 0

With constraints for assignments:

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

#2

#3

16 / 21

Status and Plans with Respect to Tearing
Consideration of Solvability

Example

f1 : x1 + x2 · time = 0

f2 : x1 − x3 · cos(time) = 0

f3 : x1 + x2 + x3 + 2x4 + 4 = 0

f4 : x3 + x4 + 2x5 + 2 = 0

f5 : x4 − x5 · time − 2 · time = 0

With constraints for assignments:

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

#2

#3

16 / 21

Status and Plans with Respect to Tearing
Consideration of Solvability

Example

f2 : x1 = x3 · cos(time)

f3 : x2 = −x1 − x3 − 2x4 − 4

f4 : x5 = −x3
2
− x4

2
− 1

f1 : x1 + x2 · time
!
= 0 (res1)

f5 : x4 − x5 · time − 2 · time
!
= 0 (res2)

In general: Bigger number of tearing
variables with due regard to the solvability

In this case: x5 would have causalised the
whole system

→ Heuristic does not find the smallest
possible tearing set necessarily

With constraints for assignments:

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

#2

#3

16 / 21

Status and Plans with Respect to Tearing
Consideration of Solvability

Problems in current implementation (To-Do-List):

Improve performance for systems with
dimensions greater than 200

I More sophistical implementation (e.g. array
hash-tables)

I Investigate parallelization of algorithm

Advanced solvability check
I Make use of expressionSolve module

Introduce dynamic tearing techniques
I E.g. change tearing set during simulation
I Check on division by zero during simulation
I Investigate proper and robust switching

criteria

With constraints for assignments:

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

#2

#3

17 / 21

Status and Plans with Respect to Tearing
Consideration of Solvability

Problems in current implementation (To-Do-List):

Improve performance for systems with
dimensions greater than 200

I More sophistical implementation (e.g. array
hash-tables)

I Investigate parallelization of algorithm

Advanced solvability check
I Make use of expressionSolve module

Introduce dynamic tearing techniques
I E.g. change tearing set during simulation
I Check on division by zero during simulation
I Investigate proper and robust switching

criteria

With constraints for assignments:

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

#2

#3

17 / 21

Status and Plans with Respect to Tearing
Consideration of Solvability

Problems in current implementation (To-Do-List):

Improve performance for systems with
dimensions greater than 200

I More sophistical implementation (e.g. array
hash-tables)

I Investigate parallelization of algorithm

Advanced solvability check
I Make use of expressionSolve module

Introduce dynamic tearing techniques
I E.g. change tearing set during simulation
I Check on division by zero during simulation
I Investigate proper and robust switching

criteria

With constraints for assignments:

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

#2

#3

17 / 21

Status and Plans with Respect to Tearing
Consideration of Solvability

Problems in current implementation (To-Do-List):

Improve performance for systems with
dimensions greater than 200

I More sophistical implementation (e.g. array
hash-tables)

I Investigate parallelization of algorithm

Advanced solvability check
I Make use of expressionSolve module

Introduce dynamic tearing techniques
I E.g. change tearing set during simulation
I Check on division by zero during simulation
I Investigate proper and robust switching

criteria

With constraints for assignments:

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

#2

#3

17 / 21

Status and Plans with Respect to Tearing
Consideration of Solvability

Problems in current implementation (To-Do-List):

Improve performance for systems with
dimensions greater than 200

I More sophistical implementation (e.g. array
hash-tables)

I Investigate parallelization of algorithm

Advanced solvability check
I Make use of expressionSolve module

Introduce dynamic tearing techniques
I E.g. change tearing set during simulation
I Check on division by zero during simulation
I Investigate proper and robust switching

criteria

With constraints for assignments:

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

#2

#3

17 / 21

Status and Plans with Respect to Tearing
Consideration of Solvability

Problems in current implementation (To-Do-List):

Improve performance for systems with
dimensions greater than 200

I More sophistical implementation (e.g. array
hash-tables)

I Investigate parallelization of algorithm

Advanced solvability check
I Make use of expressionSolve module

Introduce dynamic tearing techniques
I E.g. change tearing set during simulation
I Check on division by zero during simulation
I Investigate proper and robust switching

criteria

With constraints for assignments:

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

#2

#3

17 / 21

Status and Plans with Respect to Tearing
Consideration of Solvability

Problems in current implementation (To-Do-List):

Improve performance for systems with
dimensions greater than 200

I More sophistical implementation (e.g. array
hash-tables)

I Investigate parallelization of algorithm

Advanced solvability check
I Make use of expressionSolve module

Introduce dynamic tearing techniques
I E.g. change tearing set during simulation
I Check on division by zero during simulation
I Investigate proper and robust switching

criteria

With constraints for assignments:

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

#2

#3

17 / 21

Status and Plans with Respect to Tearing
Consideration of Solvability

Problems in current implementation (To-Do-List):

Improve performance for systems with
dimensions greater than 200

I More sophistical implementation (e.g. array
hash-tables)

I Investigate parallelization of algorithm

Advanced solvability check
I Make use of expressionSolve module

Introduce dynamic tearing techniques
I E.g. change tearing set during simulation
I Check on division by zero during simulation
I Investigate proper and robust switching

criteria

With constraints for assignments:

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

#2

#3

17 / 21

Status and Plans with Respect to Tearing
Consideration of Solvability

Problems in current implementation (To-Do-List):

Improve performance for systems with
dimensions greater than 200

I More sophistical implementation (e.g. array
hash-tables)

I Investigate parallelization of algorithm

Advanced solvability check
I Make use of expressionSolve module

Introduce dynamic tearing techniques
I E.g. change tearing set during simulation
I Check on division by zero during simulation
I Investigate proper and robust switching

criteria

With constraints for assignments:

f5

f4

f3

f2

f1

x5

x4

x3

x2

x1

#1

#2

#3

17 / 21

Effects of Common Subexpression Elimination
Current Status and Plans

First investigations with a prototype CSE module

Preliminary functionality in OpenModelica 1.9.2beta
I Already efficient implementation using hash-tables,
I Option -cseBinary: collects all binary common subexpression,
I Option -cseCall: collects all multiple function calls,
I Option -cseEachCall: extracts all function calls,
I Works only for models with real subexpressions,
I Handles complex function calls involving return types like tuples,

arrays, etc.,
I Enormous performance increase detected (e.g. Modelica.Fluid)

Expected effects on non-linear equation systems
I Structural change of algebraic loops
I Less computing effort due to code motion

18 / 21

Effects of Common Subexpression Elimination
Current Status and Plans

First investigations with a prototype CSE module

Preliminary functionality in OpenModelica 1.9.2beta
I Already efficient implementation using hash-tables,
I Option -cseBinary: collects all binary common subexpression,
I Option -cseCall: collects all multiple function calls,
I Option -cseEachCall: extracts all function calls,
I Works only for models with real subexpressions,
I Handles complex function calls involving return types like tuples,

arrays, etc.,
I Enormous performance increase detected (e.g. Modelica.Fluid)

Expected effects on non-linear equation systems
I Structural change of algebraic loops
I Less computing effort due to code motion

18 / 21

Effects of Common Subexpression Elimination
Current Status and Plans

First investigations with a prototype CSE module

Preliminary functionality in OpenModelica 1.9.2beta
I Already efficient implementation using hash-tables,
I Option -cseBinary: collects all binary common subexpression,
I Option -cseCall: collects all multiple function calls,
I Option -cseEachCall: extracts all function calls,
I Works only for models with real subexpressions,
I Handles complex function calls involving return types like tuples,

arrays, etc.,
I Enormous performance increase detected (e.g. Modelica.Fluid)

Expected effects on non-linear equation systems
I Structural change of algebraic loops
I Less computing effort due to code motion

18 / 21

Effects of Common Subexpression Elimination
Current Status and Plans

First investigations with a prototype CSE module

Preliminary functionality in OpenModelica 1.9.2beta
I Already efficient implementation using hash-tables,
I Option -cseBinary: collects all binary common subexpression,
I Option -cseCall: collects all multiple function calls,
I Option -cseEachCall: extracts all function calls,
I Works only for models with real subexpressions,
I Handles complex function calls involving return types like tuples,

arrays, etc.,
I Enormous performance increase detected (e.g. Modelica.Fluid)

Expected effects on non-linear equation systems
I Structural change of algebraic loops
I Less computing effort due to code motion

18 / 21

Effects of Common Subexpression Elimination
Current Status and Plans

First investigations with a prototype CSE module

Preliminary functionality in OpenModelica 1.9.2beta
I Already efficient implementation using hash-tables,
I Option -cseBinary: collects all binary common subexpression,
I Option -cseCall: collects all multiple function calls,
I Option -cseEachCall: extracts all function calls,
I Works only for models with real subexpressions,
I Handles complex function calls involving return types like tuples,

arrays, etc.,
I Enormous performance increase detected (e.g. Modelica.Fluid)

Expected effects on non-linear equation systems
I Structural change of algebraic loops
I Less computing effort due to code motion

18 / 21

Effects of Common Subexpression Elimination
Current Status and Plans

First investigations with a prototype CSE module

Preliminary functionality in OpenModelica 1.9.2beta
I Already efficient implementation using hash-tables,
I Option -cseBinary: collects all binary common subexpression,
I Option -cseCall: collects all multiple function calls,
I Option -cseEachCall: extracts all function calls,
I Works only for models with real subexpressions,
I Handles complex function calls involving return types like tuples,

arrays, etc.,
I Enormous performance increase detected (e.g. Modelica.Fluid)

Expected effects on non-linear equation systems
I Structural change of algebraic loops
I Less computing effort due to code motion

18 / 21

Effects of Common Subexpression Elimination
Current Status and Plans

First investigations with a prototype CSE module

Preliminary functionality in OpenModelica 1.9.2beta
I Already efficient implementation using hash-tables,
I Option -cseBinary: collects all binary common subexpression,
I Option -cseCall: collects all multiple function calls,
I Option -cseEachCall: extracts all function calls,
I Works only for models with real subexpressions,
I Handles complex function calls involving return types like tuples,

arrays, etc.,
I Enormous performance increase detected (e.g. Modelica.Fluid)

Expected effects on non-linear equation systems
I Structural change of algebraic loops
I Less computing effort due to code motion

18 / 21

Effects of Common Subexpression Elimination
Current Status and Plans

First investigations with a prototype CSE module

Preliminary functionality in OpenModelica 1.9.2beta
I Already efficient implementation using hash-tables,
I Option -cseBinary: collects all binary common subexpression,
I Option -cseCall: collects all multiple function calls,
I Option -cseEachCall: extracts all function calls,
I Works only for models with real subexpressions,
I Handles complex function calls involving return types like tuples,

arrays, etc.,
I Enormous performance increase detected (e.g. Modelica.Fluid)

Expected effects on non-linear equation systems
I Structural change of algebraic loops
I Less computing effort due to code motion

18 / 21

Effects of Common Subexpression Elimination
Current Status and Plans

First investigations with a prototype CSE module

Preliminary functionality in OpenModelica 1.9.2beta
I Already efficient implementation using hash-tables,
I Option -cseBinary: collects all binary common subexpression,
I Option -cseCall: collects all multiple function calls,
I Option -cseEachCall: extracts all function calls,
I Works only for models with real subexpressions,
I Handles complex function calls involving return types like tuples,

arrays, etc.,
I Enormous performance increase detected (e.g. Modelica.Fluid)

Expected effects on non-linear equation systems
I Structural change of algebraic loops
I Less computing effort due to code motion

18 / 21

Effects of Common Subexpression Elimination
Current Status and Plans

First investigations with a prototype CSE module

Preliminary functionality in OpenModelica 1.9.2beta
I Already efficient implementation using hash-tables,
I Option -cseBinary: collects all binary common subexpression,
I Option -cseCall: collects all multiple function calls,
I Option -cseEachCall: extracts all function calls,
I Works only for models with real subexpressions,
I Handles complex function calls involving return types like tuples,

arrays, etc.,
I Enormous performance increase detected (e.g. Modelica.Fluid)

Expected effects on non-linear equation systems
I Structural change of algebraic loops
I Less computing effort due to code motion

18 / 21

Effects of Common Subexpression Elimination
Current Status and Plans

First investigations with a prototype CSE module

Preliminary functionality in OpenModelica 1.9.2beta
I Already efficient implementation using hash-tables,
I Option -cseBinary: collects all binary common subexpression,
I Option -cseCall: collects all multiple function calls,
I Option -cseEachCall: extracts all function calls,
I Works only for models with real subexpressions,
I Handles complex function calls involving return types like tuples,

arrays, etc.,
I Enormous performance increase detected (e.g. Modelica.Fluid)

Expected effects on non-linear equation systems
I Structural change of algebraic loops
I Less computing effort due to code motion

18 / 21

Effects of Common Subexpression Elimination
Structural Changes of Strongly Connected Components

Original equations

−4 + v1 · f (v1) + v2 = source

2v1 · f (v1) + v2 + v4 − v3 = source

3v1 · f (v1)− 7v2 − 2v3 + 3v4 = 0

v1 · f (v1) + v2 − v3 − v4 = 0

Equations after tearing

19 / 21

Effects of Common Subexpression Elimination
Structural Changes of Strongly Connected Components

Original equations

−4 + v1 · f (v1) + v2 = source

2v1 · f (v1) + v2 + v4 − v3 = source

3v1 · f (v1)− 7v2 − 2v3 + 3v4 = 0

v1 · f (v1) + v2 − v3 − v4 = 0

Equations after tearing

19 / 21

Effects of Common Subexpression Elimination
Structural Changes of Strongly Connected Components

Original equations

−4 + v1 · f (v1) + v2 = source

2v1 · f (v1) + v2 + v4 − v3 = source

3v1 · f (v1)− 7v2 − 2v3 + 3v4 = 0

v1 · f (v1) + v2 − v3 − v4 = 0

Equations after tearing

Equations after common subexpression
elimination and tearing

19 / 21

Effects of Common Subexpression Elimination
Performance Improvements Due to Code Motion

Original equations

w = f3(x ,n)

f1(x ,n) · y + 1.1 · f2(x ,n) · sinh(z) = 2

f4(x ,n) · sinh(y) + 1.1 · f4(x ,n) · z = sinh(z)

der(x) = y · z

Equations after tearing

Equations after code motion and tearing

20 / 21

Effects of Common Subexpression Elimination
Performance Improvements Due to Code Motion

Original equations

w = f3(x ,n)

f1(x ,n) · y + 1.1 · f2(x ,n) · sinh(z) = 2

f4(x ,n) · sinh(y) + 1.1 · f4(x ,n) · z = sinh(z)

der(x) = y · z

Equations after tearing

Equations after code motion and tearing

20 / 21

Effects of Common Subexpression Elimination
Performance Improvements Due to Code Motion

Original equations

w = f3(x ,n)

f1(x ,n) · y + 1.1 · f2(x ,n) · sinh(z) = 2

f4(x ,n) · sinh(y) + 1.1 · f4(x ,n) · z = sinh(z)

der(x) = y · z

Equations after tearing

Equations after code motion and tearing

20 / 21

Outlook

Success consists of going from failure to failure
without loss of enthusiasm.

Winston Churchill *1874 †1965

21 / 21

	Introduction
	Homotopy Method
	General Approach
	Calculating Homotopy Path

	New Features in Module: ExpressionSolve
	Methods for Solving Non-Linear Single Equations

	Status and Plans with Respect to Tearing
	Introduction to Cellier Tearing
	Consideration of Solvability

	Effects of Common Subexpression Elimination
	Structural Changes of Strongly Connected Components
	Performance Improvements Due to Code Motion

