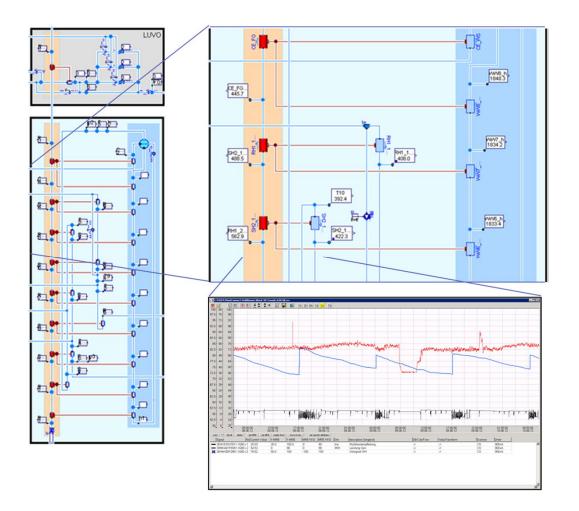
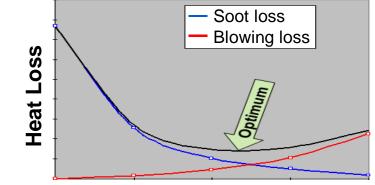


R. Franke, PSP-A24, 02.02.2015

OpenModelica Annual Workshop 2015 Mathematical Optimization of Dynamic Systems with OpenModelica



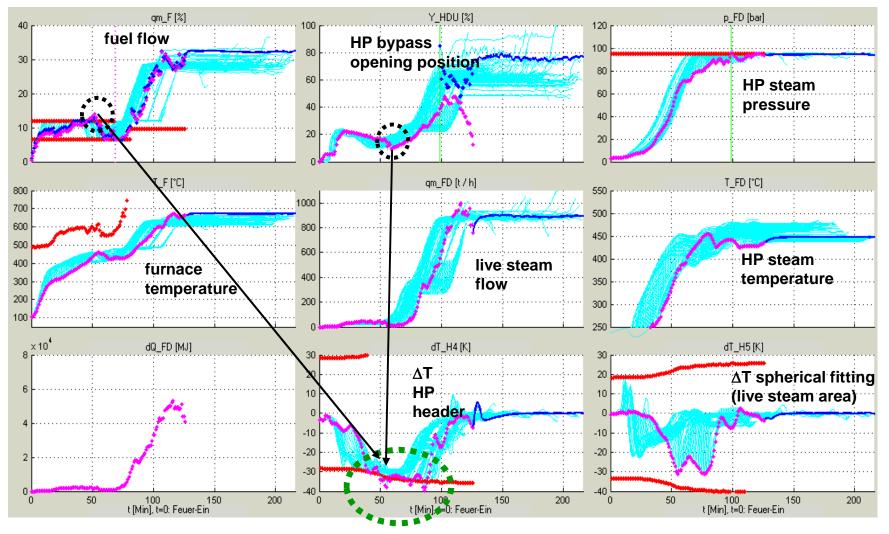

Overview

- Introduction to ABB OPTIMAX
- DrumBoiler example
 - 1. Setpoint optimization
 - 2. Startup optimization
- Formulation of optimization programs in Modelica
- FMI
- Industrial applications
 - Industrial power plant exploiting FMI 2.0
 - Large-scale virtual power plant exploiting OpenModelica with FMI 2.0

OPTIMAX[®] SootBlowMax Sootblowing optimization boiler

Task

Soot Blowing per Day


 Decide on optimal sootblowing sequences maximizing efficiency

Solution

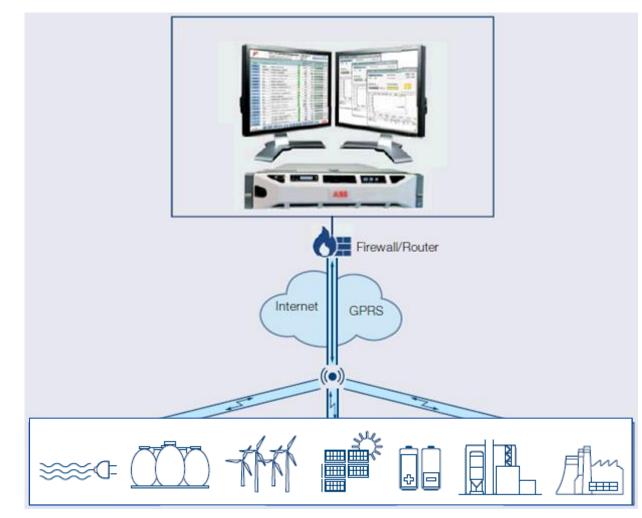
- Model of complete boiler (basing on Modelica.Fluid)
- Exploit overall mass and energy balance to replace missing measurements on flue gas side
- Online calculation of heat transfer coefficients between flue gas side and water/steam side

OPTIMAX[®] BoilerMax Startup optimization boiler

Task

 Minimize fuel costs and startup time subject to thermal stress constraints

Solution


NMPC for boiler startup

Graphics:

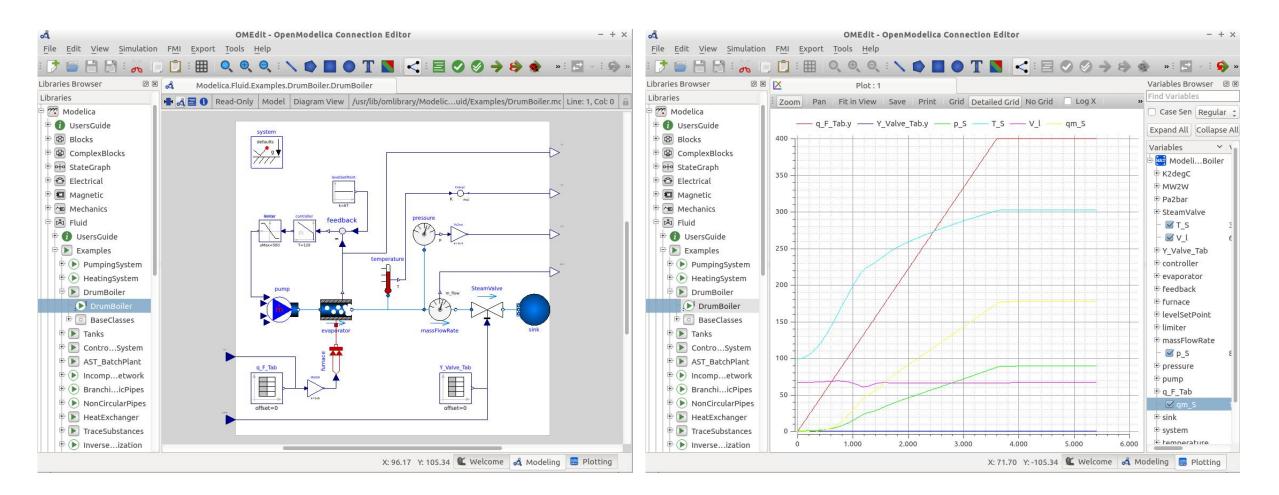
- Blue lines: optimized predictions, updated every minute
- Magenta points: actual operating points

OPTIMAX[®] PowerFit Optimizing control of Virtual Power Plants and MicroGrids

Task

- Aggregate many small production units and treat them like one big power plant
- Exploit multiple forms of energy (e.g. el and heat) and storages

Solution


- Build overall plant model (exploiting Modelica multi-physics)
- Formulate optimizing control task as mathematical program
- Online optimization of set points and plant schedules

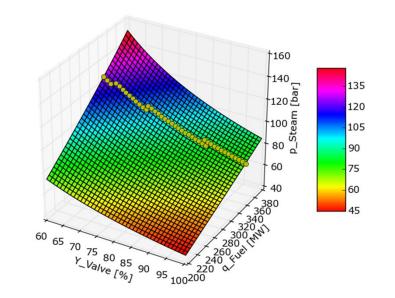
Overview

- Introduction to ABB OPTIMAX
- DrumBoiler example
 - 1. Setpoint optimization
 - 2. Startup optimization
- Formulation of optimization programs in Modelica
- FMI
- Industrial applications
 - Industrial power plant exploiting FMI 2.0
 - Large-scale virtual power plant exploiting OpenModelica with FMI 2.0

DrumBoiler Example Open in OMEdit (left) and simulte until steady-state reached (right)

See: R. Franke, M. Rode, K. Krüger: On-line Optimization of Drum Boiler Startup, Modelica 2003, https://www.modelica.org/events/Conference2003/papers/h29_Franke.pdf




DrumBoiler setpoint optimization example Simulation studies

Task: find steady-state operating point minimizing fuel q_F such that: $qm_{Steam} = 150 \text{ kg/s}, 100 \text{ bar} \le p_{Steam} \le 120 \text{ bar}$

Simulation aproach:

- obtain steady-state for inputs: $60 \le Y_{Valve} \le 100$, $200 \le q_F \le 380$
- plots show of 41 x 37 = 1517 steady-state values
- select best point

Nonlinear programming (NLP)

Nonlinear Programming (NLP)

Minimize optimization objective *J* subject to equality constraints *h* and inequality constraints *g*:

$$J(v) \underset{v}{\rightarrow} \min \qquad J: \mathbb{R}^{n} \to \mathbb{R}^{1}$$
$$h(v) = \mathbf{0} \qquad h: \mathbb{R}^{n} \to \mathbb{R}^{m_{e}}$$
$$g(v) \ge 0 \qquad g: \mathbb{R}^{n} \to \mathbb{R}^{m}$$

Setpoint optimization example

$$v = \begin{pmatrix} x \\ u \end{pmatrix}$$

$$x = (x_{PI}, p_{Steam}, V_{Liquid})$$

$$u = (q_F, Y_{Valve})$$

$$J(v) = q_F \underset{x,u}{\longrightarrow} \min \qquad J: R^5 \to R^1$$
$$h(v) = \begin{pmatrix} f(x, u) \\ qm_S - 150 \end{pmatrix} = 0 \qquad h: R^5 \to R^4$$
$$g(v) = \begin{pmatrix} 120 - p_S \\ p_S - 100 \\ 500 - q_F \\ q_F \\ 1 - Y_{Valve} \\ Y_{Valve} \end{pmatrix} \ge 0 \qquad g: R^5 \to R^6$$

Treatment of nonlinear programs (NLP) Lagrangian, KKT conditions, Newton method

Lagrange function

$$L(\nu, \lambda, \mu) = J(\nu) - \lambda^T h(\nu) - \mu^T \mathbf{g}(\nu)$$
$$L: R^n \times R^{m_e} \times R^m \to R^1$$

Karush Kuhn Tucker conditions

Stationarity

$$\nabla_{v}L(v,\lambda,\mu) = \nabla J(v) - \nabla h(v)^{T}\lambda - \nabla g(v)^{T}\mu = \mathbf{0}$$

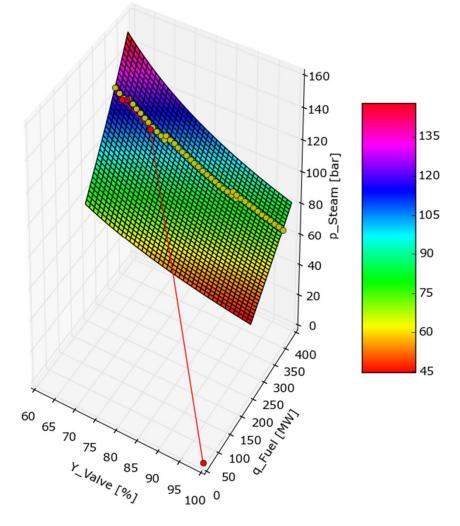
Feasibility

$$\nabla_{\lambda}L(v,\lambda,\mu) = -h(v) = \mathbf{0}$$
$$g(v) \ge \mathbf{0}$$
$$\mu \ge \mathbf{0}$$

Complementarity

$$g(v)^T \mu = \mathbf{0}$$

Lagrange Newton iteration (*m=0*)


$$\nabla^{2}L(v,\lambda)\begin{pmatrix}\Delta v\\\Delta\lambda\end{pmatrix} = -\nabla L(v,\lambda)$$
$$\begin{pmatrix}v^{+}\\\lambda^{+}\end{pmatrix} \coloneqq \begin{pmatrix}v+\Delta v\\\lambda+\Delta\lambda\end{pmatrix}$$

Specific Lagrange Newton methods

- Active Set Method: convert to equality constrained problems
- Interior Point Method: augment Lagrange function for inequalities
- Sequential Quadratic Programming (SQP) fully solve constraints in each iteration
- Quasi Newton Method: numerical update/approximation of Hessian

DrumBoiler setpoint optimization Application of mathematical programming

Starting point:

- $q_F = 0 MW$
- $Y_{Valve} = 100\%$
- x = (0, 1 bar, 65 m3)

Solution after 5 iterations:

• $q_F = 328 \, MW$

• *x* = (15, 120 bar, 67 m3)

See red solution path in figure left

Dynamic Optimization Numerical treatment

$$J = f_0(x^{K}) + \sum_{k=0}^{K-1} f_0(x^{k}, u^{k}) \longrightarrow \min_{x^0, u^{k}}$$

s.*t*.

$$c^{k}(x^{k}, u^{k}) \ge 0, \quad k = 0, ..., K - 1$$

 $c^{K}(x^{K}) \ge 0$

$$0 = \begin{cases} \text{Collocation:} \\ f^{k}(x^{k}, u^{k}, x^{k+1}) \\ \text{Multistage/shooting:} \\ f^{k}(x^{k}, u^{k}) - x^{k+1} \end{cases}, \quad k = 0, \dots, K - 1$$

- Optimize over time horizon $t \in [t_0, t_f]$
- Degrees of freedom: optimal control u(t) and possibly initial states x(t₀)
- Numerical treatment:
 - parameterize control trajectories:
 u(t) = u(u^k), k=0,1,...,K-1
 - Treat constraints and state equations
 in discrete time
 - Collocation: implicit state equations
 - Multistage: explicit state equations
 - Collect all discrete-time control and state variables in one large vector of optimization variables

 $v = (x^0, u^0, x^1, u^1, \dots, x^{K-1}, u^{K-1}, x^K)$

• Alt. simple treatment: $\breve{v} = (u^0, u^1, \dots, u^{K-1})$

DrumBoiler startup optimization

Minimize

quadratic deviation from set point

subject to

- control bounds
- rate of change bounds
- state/output constraints (thermal and membrane stress)

$$J = \int_{t=t_0}^{t_f} w^T \begin{cases} \left[p_S(t) - p_{ref} \right]^2 \\ \left[q_{m,S}(t) - q_{m,ref} \right]^2 \\ \left[\frac{dq_F(t)}{dt} \right]^2 \end{cases} dt \xrightarrow{u(t)} min$$

 $\begin{array}{l} 0 \leq q_F \leq \textbf{500} \ MW \\ 0 \leq Y_{Valve} \leq 1 \end{array}$

$$-24 MW/min \leq \frac{dq_F}{dt} \leq 24 MW/min$$

$$-150 \frac{N}{mm^2} \le \sigma_{Drum} \le 150 \frac{N}{mm^2}$$
$$\sigma_{Drum} = 10^{-3} \frac{dT_{Drum}}{dt} + 10^{-5} p_{Drum}$$

Overview

- Introduction to ABB OPTIMAX
- DrumBoiler example
 - 1. Setpoint optimization
 - 2. Startup optimization
- Formulation of optimization programs in Modelica
- FMI
- Industrial applications
 - Industrial power plant exploiting FMI 2.0
 - Large-scale virtual power plant exploiting OpenModelica with FMI 2.0

Formulation in Optimica – see JModelica.org Extending Modelica syntax (see red text)

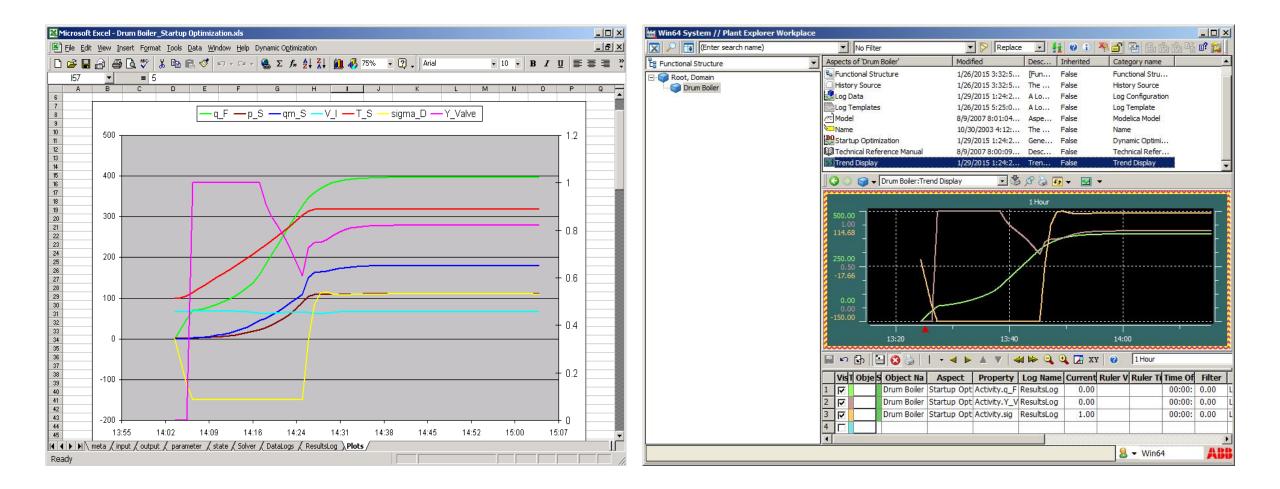
```
optimization DrumBoilerStartup(
  objective = 1e-7 * (p S - 110)^2 + 1e-8 * (qm S - 180)^2 + 1e-4 * dq F^2,
  startTime = 0,
  finalTime = 3600)
  extends DrumBoiler(
                     q_F = integrated_q_F,
                     Y_Valve(free = true, initialGuess = 1),
                     use_inputs = true
                     );
  Real sigma D = (-1.0e3 * der(evaporator.T D)) + 1.0e-05 * evaporator.p;
  input Real dq_F(free = true, initialGuess = 400/3600);
  Real integrated q F;
equation
  der(integrated_q_F) = dq_F;
constraint
  0 <= q_F; q_F <= 500;
  -24/60 <= dq_F; dq_F <= 24/60;
  0 <= Y_Valve; Y_Valve <= 1;</pre>
  -150 <= sigma_D; sigma_D <= 150;
end DrumBoilerStartup;
```


Formulation in OpenModelica (provided by Vitalij Ruge) Inside Modelica model using standard attributes and new annotations

```
model optDrumBoiler
  extends DrumBoiler(use_inputs = true,
                     Y_Valve(min = 0, max = 1, nominal = 1, start = 0.5),
                     q_F(min = 0, max = 500, start = 0, fixed = true, nominal = 400),
                     controller.x(nominal = 10));
  Real cost_p_S(nominal = 1e7) annotation(isLagrange = true);
  Real cost_qm_S(nominal = 1e8) annotation(isLagrange = true);
  Real cost_dq_F(nominal = 1e4) annotation(isLagrange = true);
  Real sigma_D(min = -150, max = 300) = (-1.0e3 * der(evaporator.T_D)) + 1.0e-05 * evaporator.p;
  Real conSigma(min = -150, max = 150) annotation(isConstraint = true);
  input Real dg F(min = -24/60, max = 24/60, start = 400/3600);
equation
  cost_p_S = (p_S - 110)^2;
  cost_qm_S = (qm_S - 180)^2;
  cost dq F = dq F^2;
  conSigma = sigma_D;
  der(q F) = dq F;
end optDrumBoiler;
```


Formulation with parameter records and custom annotations Generic approach that nicely applies to optimization

```
import DO = DynamicOptimization.Types; // parameter records for custom annotations
model DrumBoiler_StartupOptimization
  extends DrumBoiler(
    use_inputs = true,
    q_F
      annotation(DO.Input(u active = true, u start = 0, der u start = 400/3600,
        u0_{max} = 0, u_{min} = 0, u_{max} = 500,
        der u min = -24/60, der u max = 24/60, der u weight2 = 1e-4)),
    Y Valve
      annotation(DO.Input(u_active = true, u_start = 1,
        u0 max = 0, u min = 0, u max = 1)),
    рS
      annotation(D0.Output(y_ref = 110, y_nominal = 100, y_weight2 = 1e-3)),
    qm S
      annotation(DO.Output(y_ref = 180, y_nominal = 100, y_weight2 = 1e-4)));
  output Real sigma_D = -1e3 * der(evaporator.T_D) + 1e-5 * evaporator.p
    annotation(DO.Output(y_min = -150, y_max = 150));
end DrumBoiler StartupOptimization;
```



ABB Dynamic Optimization Use Excel GUI automating import of model and upload to runtime

Microsoft Excel - Drum Boiler_Startup Optimization.xls																					
	📳 File Edit View Insert Format Iools Data Window Help Dynamic Optimization 💶 🗗 🗙																				
] 🗅 😅 🖬 🔒 🖶 🛤 💼 🗠 - 🍓 Σ 🏂 🛃 🛍 100% - 😰 🐥 10 - 🐥																					
C7 = DrumBoiler																					
		A		В	С	D	_														
1	1																				
	Object			String	Drum Boiler			Mir Mir	rosoft Ev	cel - Drum	Boiler	Startu	n Antimiz	ation vl	5						
				String	Startup Optimiz	ation															
	4																				
5				T	Nelsee				i 🖓 🎜	3 🖨 🖪	ABC	X 🖻	R 💅	K) + (ा 👻 🤮	,Σ 1	÷ 2↓ 2↓	1	100%	- 🛛 -	10 - »
				T ype String	Value DrumBoiler		_		A1	-	= 5	SOH									
	SolverNa			String	HQP				A	B		С		D	E		F		G	Н	
_	SolverVe			String	1.9.8			1 5	юн	varname	y		y_no	minal	y_ref	y_	min	y_ma	ax	y_weight1	y_weight2
_	SolverSt			String	Ready			2 T	ype	String	F	leal	Real		Real	Re		Real		Real	Real
	1 Solverite			Integer	rioudj	0		3		T_S			0	100							
	2 SolverM			String				4		p_S			0	100		110					1.00E-03
	3 Service.			Boolean	FALSE			5		qm_S			0	100		180					1.00E-04
14	4 Service."	Trigger		Integer		0		6		sigma_D			0	100			-15	0	150		
15				Integer		0		7		V_I			0	100							
			String				I I I I I I I I I I I I I I I I I I I														
17	17 Data.StartTime				teTime +00:00:00				Ready												
			DateTime +01:00:00					•													
19 Data.SampleTime			TimeSpan 0:01:00																		
20 Results.LogName			String	ResultsLog																	
	Microsoft E	xcel - Drum Boi	ler_Startup	Optimizati	ion.xls																
	Eile Edit	<u>V</u> iew <u>I</u> nsert F <u>o</u>	rmat <u>T</u> ools	<u>D</u> ata <u>W</u> ind	ow <u>H</u> elp Dynamic	: Optimization															_ 8 ×
) 🚅 🔲 🖁	8 8 4 🕫	1 🖁 🖞	R 🝼 🖌) + ca + 🍓 🗴	Σ f _* Al Zl	🛍 🛷	100%	- 🛛 .	Arial		•	10 🗸	BI	<u>u</u> ≡	= =	E 🔤 🖇	8 %). 0.+ + 00. g	8 💷 🔤	• 🕭 • <u>A</u> • 💥
Ĺ	A1 = SOH								13												
	A	B	С	D) E	F	G		Н			J		К		L	1	M	N	1	0
1	SOH	varname	u	u_star	t u_order	u_active	u0_min	u	D_max	u_min		u_max	der	_u	der_u	ı_start	der_u	_min	der_u_	max der	_u_weight2 🚞
2		String	Real	Real	Integer	Boolean	Real	R	eal	Real		Real	Rea	al	Real		Real		Real	Rea	
3		q_F		0	0 1	TRUE		0		0	0		500		0	1.11E-	01	-0.4		0.4	1.00E-04
4 Y_Valve			0 1 1 TRUE						1	0		1								_	
I I I I I I I I I I I I I I I I I I I																					
Ready																					

Slide 18

ABB Dynamic Optimization Offline engineering in Excel / Online optimization in control system

Overview

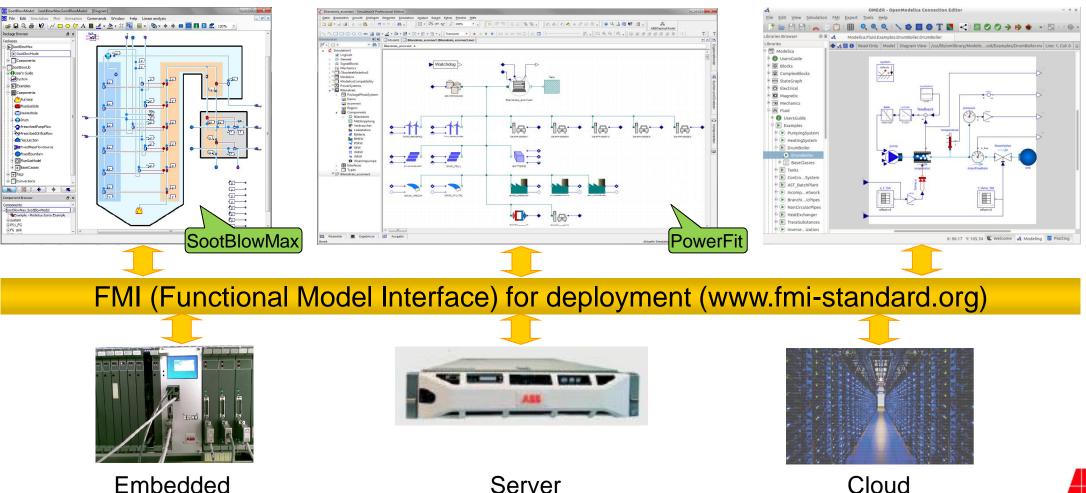
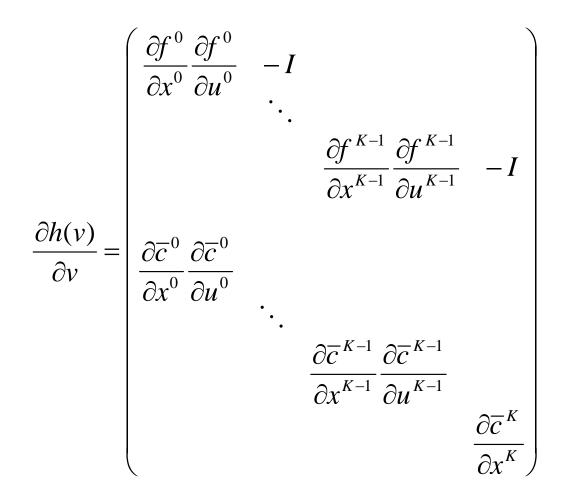

- Introduction to ABB OPTIMAX
- DrumBoiler example
 - 1. Setpoint optimization
 - 2. Startup optimization
- Formulation of optimization programs in Modelica
- FMI
- Industrial applications
 - Industrial power plant exploiting FMI 2.0
 - Large-scale virtual power plant exploiting OpenModelica with FMI 2.0

ABB Dynamic Optimization Standardized engineering and deployment of control&optimization apps

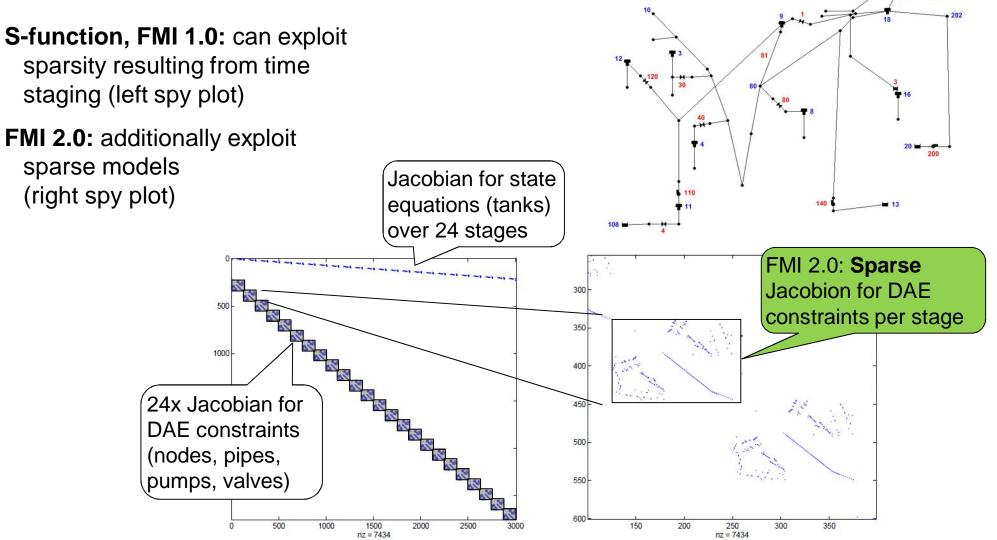
Modelica for application engineering (www.modelica.org)


MODELICA

Slide 21

Server

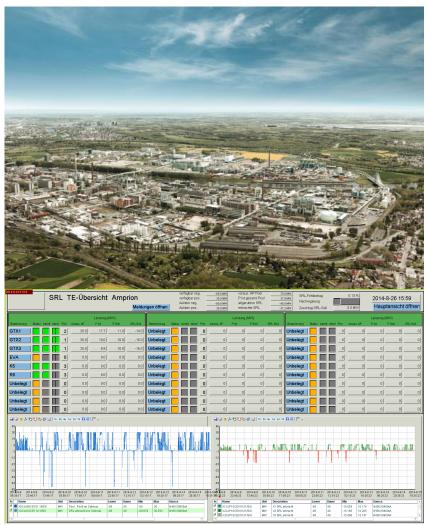
Exploitation of sparse structures with FMI 2.0 Jacobian for constraints (state equations and general constraints)


Note:

$$\left(\frac{\partial f^k}{\partial x^k}\frac{\partial f^k}{\partial u^k}\right), \quad k=0,\ldots,K-1$$

are the sensitivity matrices obtained for each stage by integrating sensitivity equations together with state equations

Exploitation of sparse structures Example: water distribution network



Overview

- Introduction to ABB OPTIMAX
- DrumBoiler example
 - 1. Setpoint optimization
 - 2. Startup optimization
- Formulation of optimization programs in Modelica
- FMI
- Industrial applications
 - Industrial power plant exploiting FMI 2.0
 - Large-scale virtual power plant exploiting OpenModelica with FMI 2.0

Reference OPTIMAX PowerFit Industrial power plant / active site

Site

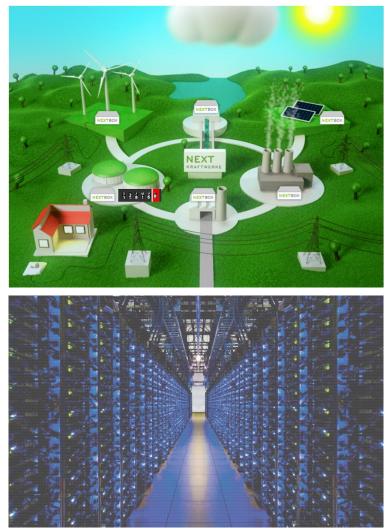
- 800 buildings, 120 production facilities
- 90 companies (chemical, pharmaceutical)
- 22.000 employees

OPTIMAX PowerFit

- Software extension of regular plant control system
- Providing secondary frequency control with 3 GTs and 2 E-Boilers
- To be extended
- Connect plant control to energy management

First industrial application of FMI 2.0

Running 7/24 since June 9, 2014 00:00:00



Thank's to Your support ... 26 tickets later ...

Search Results – OpenModelica - Mozilla Firefox – + ×	Search Results – OpenModelica - Mozilla Firefox – + ×										
Search Results – Op × +	Search Results – Op × +										
 ♦ A https://trac.openmodelica.org/OpenModelica/ ▼ C Q Search ☆ 自 ≫ = 	♦ A https://trac.openmodelica.org/OpenModelica/ ▼ C Q Search										
1 2 3 →	Results (11 - 20 of 26)										
#3067: defect: Memory leak in FMI 2.0 (20 MB/min) (new) Thanks to the solution of a couple of tickets during the last weeks the optimization basing on FMI is working quite well now! A remaining problem is a memory leak that can be seen in all examples to some extend. Here is an extreme case By rfranke – 01/09/15 09:30:53	$\leftarrow 1 2 3 \rightarrow$ #2840: defect: Segmentation fault if assertion fails in FMU (closed: fixed) The following model contains an assertion that fails during the simulation with a constant input u = -2 after 0.1 seconds. {{{ model DIC "Double Integrator Continuous-time" parameter Real p = 1 "gain for input"; parameter Real y1_s By franke - 09/25/14 20:57:45										
<pre>#3057: defect: Erronous FMI ModelStructure (closed: fixed) In many cases the ModelStructure generated for FMI 2 is wrong. The following example triggers some of the problems: {{{ model ModelStructureTest parameter Integer switch = 1; parameter Real p = 1; input Real u1; input Real u By rfranke - 01/05/15 09:59:46</pre>	Calculations_PumpEfficiencyMeter.fmu (Ticket #2776) the FMU 1.0 exported from Calculations.PumpEfficiencyMeter By rfranke@ — 08/11/14 08:15:53										
#3055: defect: Wrong initialization of parameters in FMI2 (closed: duplicate) Recently FMI version 2 sets parameters to their start values during `fmi2Enter/ExitInitializationMode`. This reverts possible custom values set beforehand by the calling environment. The problem was seen in r23881 and r23899; it was not th By franke - 12/30/14 09:11:08	Calculations.mo (Ticket #2776) By ffranke@ — 08/11/14 08:14:35										
#3053: defect: Unimplemented derivatives for built-in Modelica operators (assigned) Thank you for prompt fix to #3048. FMU export works now for my models that use max! Are there more unimplemented derivatives? 'translateModelFMU(Rem, version="2.0")' for the model: {{{ model Rem input Real x; input Real y; ou By franke - 12/23/14 08:17:25	<pre>#2776: defect: Process crashed: Simulation process exited with code 0 on FMU import (closed: fixed) {{{ [/tmp/OpenModelica_rfranke/OMEdit/Calculations_PumpEfficiencyMeter_me_FMU.mo:23:3-23:88] Warning: Parameter calculations_pumpefficiencymeter_me_fmu1.eta_o_D_deliver has no value, and is fixed during initialization (fixed=true), using available start value (st By rfranke@ 08/11/14 08:13:36</pre>										
#3051: defect: extends and modification of attributes (accepted) The following model is motivated by some Modelica. Media models, which seems to have some issue with modification of the attributes like min, max, nominal and start. The following script {{{ loadString(" package p package types By wbraun - 12/22/14 16:16:39	#2767: defect: fmi2GetDerivatives shifts value references by -1 when calling getReal of (closed: fixed) First of all: thank you for the fast processing of #2762! Now the exported FMU version 2.0 shall run in another environment (glitub.com/omuses/hgp). According to modelDescription.xml the FMU has the following variables: {{{										
#3049: defect: FMI export of attributes of variables (closed: fixed) OpenModelica r23881 does not include the attributes of model variables into modelDescription.xml, or it does it wrong. This is bad for numeric solvers that rely on appropriate nominal and start values for things like pressure in Pa. Her	valueRefer By rfranke@ — 08/02/14 22:03:01										
By franke - 12/22/14 11:10:38 #3048: defect: FMI2 fails with max of more than 2 elements (closed: fixed) The following model passes `translateModelFMU(Max2, version="2.0")`. The generated ModelStructure is correct, i.e. the output depends on both inputs. {{{ model Max2 constant Integer n=2; input Real[n] v; output Real max By franke - 12/22/14 10:37:17	<pre>#2765: defect: Export of FMU 2.0 fails if parameters are used as start values (assigned) Using the current nightly build 1.9.1+dev (r21649), the following model {{{ model DIC_start "Double Integrator Continuous-time" parameter Real p = 1 "gain for input"; parameter Real y1_start = 1 "start value for first state"; By rfranke@ 07/29/14 09:07:40</pre>										
#3038: defect: omnotebook.desktop leads to corrupted start menu under Lubuntu (closed: fixed) Installing OpenModelica under Lubuntu 14.10 with: {{{ sudo apt-get install openmodelica }} leads to a corrupted start menu in Ixpanel. After some trial&error and re-installations, finally a newline in the Comment of the desktop entry	<pre>#2764: defect: ModelStructure with wrong dependencies for states and without dependencies (accepted) Using the current nightly build 1.9.1+dev (r21649), the following model {{{ within ; model DIC "Double Integrator Continuous-time" parameter Real p = 1 "gain for input"; parameter Real y1_start = 1 "start value for first state"; By franke@ 07/29/14 08:53:58</pre>										
By rfranke – 12/17/14 12:28:20 Foo.mo (Ticket #3033) By rfranke – 12/15/14 20:31:50	#2763: enhancement: Propagation of start values for inputs to simulation (new) If the model below is opened and simulated with OMEdit (1.9.1+dev (r21649)), the simulation assigns zero to the input u. Couldn't the simulation use the start value of -2 instead? How could one otherwise define values for external in By rfranke@ 07/29/14 08:27:29										
#3033: defect: OMEdit does not seem to treat UTF-8 in its Text View (closed: fixed) Localization of models requires doc strings with non-ASCII characters, like: {{ model Foo Real mu = 1e-6 "Does OpenModelica treat UTF-8, like µ or ō in Linköping?"; end Foo; }} Encoded with UTF-8, OMEdit opens the model, but scra	#2762: defect: Process crashed Simulation process exited with code 0 (closed: fixed) The model listed below uses the same variables as outputs and states (like some models from the MSL, see Modelica.Blocks.Continuous.Integrator). Opened and simulated with OMEdit, the compilation raises a lot of warnings and										

Reference OPTIMAX PowerFit Large-scale Virtual Power Plant

Customer

- Fast growing start-up company
- Pooling more than 1000 renewable plants in all 4 German grid areas

OPTIMAX PowerFit

- Stand-alone supervisory control system
- Geographically redundant with multiple high-performance virtual servers
- Providing secondary frequency control with large-scale Virtual Power Plant

Benefit of FMI 2.0

 Exploit sparse model structures to reduce required server capacity by 50%

Conclusions

Modelica

- unique technology for the implementation of technical process knowledge
- Modelica models provide constraints for optimization programs
- Additional specifications, like bounds and weights, can be treated with custom annotations – exploiting parameter records and Modelica parameter GUIs

FMI

- offers a standard interface for the deployment of executable models
- unique features: XML declaration file, sparse model structures, ...
- missing in FMI 2.0: DAE constraints, clocked equations for optimization

OpenModelica

- unique open development process; great progress during the last years
- some pioneering features e.g. MetaModelica for library upgrades
- missing for commercial applications: encryption of Modelica libraries

Power and productivity for a better world[™]

