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Introduction and problem definition

� What is a hybrid system ?

� What are the type of events ?
� predictable events
� unpredictable events

� What are the types of model modifications after an event ?
� change of initial conditions
� change of equations
� change of the state vector
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Benchmark : The Bouncing Ball

Dynamic Equations of the boucing ball with air resistance

Air resistance : Fdrag = − 1
2 Cxρair S||v||v



m
d
dt

vx = −1
2

Cxρair S||v||vx

m
d
dt

vy = −m g −1
2

Cxρair S||v||vy

dx
dt

= vx

dy
dt

= vy

Initial conditions
vx(t = 0) = vx0 vy (t = 0) = vy0

x(t = 0) = x0 y(t = 0) = y0
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About the numerical scheme

Numerical scheme : Backward Differentiation Formula of high order
→ good stability

After each event : Implicit Runge-Kutta scheme
→ A-stable, allows to adapt the time step at each restart of

the solver
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Comparison with and without air resistance

This small difference before the first bounce will be bigger and bigger
after many bounces.
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The constraint vector

� Hybrid dynamic systems have several constraints. All these constraints are the
component of a vector k.

� The sign change of a constraint triggers the occuring of an event.

� In our example k is a scalar and k = y − yground ≥ 0

m d
dt vx = −1

2Cxρair S||v||vx

m d
dt vy = −m g − 1

2CxρS||v||vy

dx
dt = vx

dy
dt = vy

k = y − yground ≥ 0

Initial conditions

vx(t = 0) = vx0 vy (t = 0) = vy0

x(t = 0) = x0 y(t = 0) = y0
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Computation of the event time t*

Difficulties

� The numerical integrator is discretized in time
→ we have the solution of the problem only at the points of the integration.

� The challenge is to compute the instant when the ball hits the ground
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Computation of the event time t*

Interpolation

� The idea is to interpolate a second degree time polynomial at yn+1, yn, yn−1

� Compute analytically the roots and choose the appropriate one.

� We get the time t* when the sign of the constraint changes.
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Computation of the solution at time t*

Interpolation

� Now we have t* we need to compute the solution at this time.

� If the ODE system is rewritten as Ẋ = f (X ) and by considering X the state vector

X =

vx

vy

x
y

. The solver gives the solution Xn at a given time tn and Xn =

vxn

vyn

xn

yn


The idea is to interpolate a third degree time polynomial for each component of
the state vector by considering Xn,Xn+1, f (Xn), f (Xn+1)
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Computation of the solution at time t*

Interpolation

� Evaluate this polynomial at t* to get X ∗ = X (t∗).

� X* is used afterwards as an initial condition .
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Solving the system after an event

� In hard spheres context after each event (contact with the ground) the equations
do not change .

� Only the initial conditions of the vertical speed component are modified and have
the opposite value at t* multiplied by a damping factor 1− ε

� Then we get the following system after the ball hits the ground :

m
d
dt

vx = −1
2

Cxρair S||v||vx

m
d
dt

vy = −m g − 1
2

Cxρair S||v||vy

dx
dt

= vx
dy
dt

= vy

c = y > 0

New initial conditions

vx(t = t∗) = vx∗ vy (t = t∗) = −vy∗(1− ε)
x(t = t∗) = x∗ y(t = t∗) = y∗
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Results on a flat and sinusoidal ground
On a flat ground :
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Comparison with DASSL
The bouncing ball model is implemented in Modelica code :
model BouncingBall

Real vx(start = 1);
Real vy(start = 5);
Real x(start = 0);
Real y(start = 2);
parameter Real m = 1.1;
parameter Real Cx = 0.5;
parameter Real rho = 1.293;
parameter Real S = 3.14 * 0.1 * 0.1;
constant Real g = 9.81;

equation
m * der(vx) = -0.5 *Cx * rho * S *

sqrt(vx ^ 2 + vy ^ 2) * vx;
m * der(vy) = -m * g - 0.5 * Cx * rho * S *

sqrt(vx ^ 2 + vy ^ 2) * vy;
der(x) = vx;
der(y) = vy;
when y <= 0 then

reinit(vy, -0.9 * pre(vy));
end when;

end BouncingBall;
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Speed comparison

Comparison of the CPU time for the simulation of the bouncing ball
during 20 seconds with DASSL and our own solver.
relative tolerance : 10−6

coefficient of air friction : CxρS = 0.0203 kg/m.

CPU time DASSL CPU time our solver
0.068s 0.032s
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Precision comparison
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Comparison of DASSL and our solver with the analytical solution :

Table: Comparison of the time of the first event.

number relative analytical DASSL error our solver error
of bounce tolerance solution DASSL our solver

1st 10−6 0.640714 0.640715 1.56 10−6 0.640714 0
10−3 0.640714 0.641162 7 10−4 0.640730 2.50 10−5

2nd 10−6 1.769519 1.769523 2.26 10−6 1.769515 2.26 10−6

10−3 1.769519 1.769915 2.23 10−4 1.769562 2.43 10−5
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Results on a flat and sinusoidal ground

On a sinusoidal ground :

With a small amplitude With a big amplitude
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Results in soft spheres context

Constraint vector

Now the ball is supposed to be deformed during the contact as :

As the ball is now soft we have to consider now its radius, and so the constraint vector
becomes :

c = [y(t)− R]
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System of equations during the contact

During the contact the equations of the model change.
We consider now the elastic force : Felas = 2π E

√
2R|R − y |

3
2 uy

and the dissipative force : Fdiss = −µv.
So after determining t* et X* we have the following system :

m
d
dt

vx = −µvx

m
d
dt

vy = −m g + 2π E
√

2R |R − y |
3
2 − µvy

dx
dt

= vx
dy
dt

= vy

c = y − R

Initial conditions

vx(t = t∗) = vx∗ vy (t = t∗) = vy∗

x(t = t∗) = x∗ y(t = t∗) = y∗
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Results for soft spheres

After the event "the ball hits the ground" we switch to another model described by the
previous system. When the ball does not touch the ground anymore there is another
event and we go back to the original model.
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Modelica code for the soft spheres.
model SoftBouncingBall

Real v_x(start = 1);
Real v_y(start = 5);
Real x(start = 0);
Real y(start = 2);
parameter Real Cx = 0.5;
parameter Real rho = 1.293;
parameter Real pi = 3.141592653;
parameter Real S = pi * 0.1 * 0.1;
parameter Real R = 0.1.
parameter Real E=0.1*10^9;
parameter Real density=500;
parameter Real m = (4/3)*pi*R^3*density;
constant Real g = 9.81;

equation
if y > R then

m * der(v_x) = -0.5 * Cx * rho * S * sqrt(v_x ^ 2 + v_y ^ 2) * v_x;
m * der(v_y) = -m * g - 0.5 * Cx * rho * S * sqrt(v_x ^ 2 + v_y ^ 2) * v_y;
der(x) = v_x;
der(y) = v_y;

else
m*der(v_x) = 0;
m*der(v_y) = -m*g+2*3.14*E*sqrt(2*R)*abs(R-y)^(3/2);
der(x) = v_x;
der(y) = v_y;

end if;
end SoftBouncingBall;
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Speed comparison

Let us compare the CPU time for the simulation of the soft bouncing
ball during 10 seconds with DASSL and our own solver.
relative tolerance : 10−6

CPU time DASSL CPU time our solver
0.061s 0.045s
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Precision comparison

Let us look both results for the tenth bounce around 7.51 s
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Now we plot the absolute difference of the event times between DASSL
and our own solver for the first 10 bounces
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Conclusion

� Objectives realized :

� Build an example of model with different types of events
→ change of only initial conditions : hard spheres
→ change of model : soft spheres

� Propose a new method of event handling
→ computation of event time t*
→ computation of the solution X* at t*

� Perspectives

� Consider many balls to get a multi-events model which needs to add
a new model of collision between balls

� Consider the rotation of the ball on itself and the Magnus effect

� Add this benchmark to the standard library of OpenModelica in
order to share it with the community
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