

Vitalij Ruge, Bernhard Bachmann, Lennart Ochel, Willi Braun Mathematics and Engineering University of Applied Sciences Bielefeld

OUTLINE

- Modelica and Optimization
- Theoretical Background
 - multiple shooting method
 - total collocation
 - handling
- Current status & Outlook

MODELICA AND OPTIMIZATION



EXAMPLE CHEMICAL BATCH REACTOR

model

$$\dot{x}_1(t) = -\left(u(t) + \frac{u^2(t)}{2}\right) \cdot x_1(t)$$
$$\dot{x}_2(t) = u(t) \cdot x_1(t)$$

• goal \rightarrow Maximize the yield of x_2 after one hour of operation $\min_{u(t)} - x_2(1)$

constraints

$$0 \le x_1(t), x_2(t) \le 1$$
$$0 \le u(t) \le 5$$

• free input \rightarrow the reaction temperature $\rightarrow u(t)$

OPTIMICA LANGUAGE EXTENSION

- Objective function
 - Mayer term
 - Lagrange term
- Path constrains

• • • •

New attribute free

• A part of the MODRIO-Project

OPTIMICA LANGUAGE EXTENSION

optimization modelName(
objective=...,
objectiveIntegrand=...)

-> Modelica model;

constraints

. . .

end modelName

THEORETICAL BACKGROUND

objective function

$$\min_{u(t)} \underbrace{M\left(x(t_f)\right)}_{\text{Mayer term}} + \underbrace{\int_{t_0}^{t_f} L(x(t), u(t), t) dt}_{\text{Lagrange term}}$$

- subject to
 - model equations
 - path constraints

Mayer term

 $M\left(x(t_f)\right)$

- requirements for the endpoint \rightarrow boundary value problem

Mayer term

 $M\left(x(t_f)\right)$

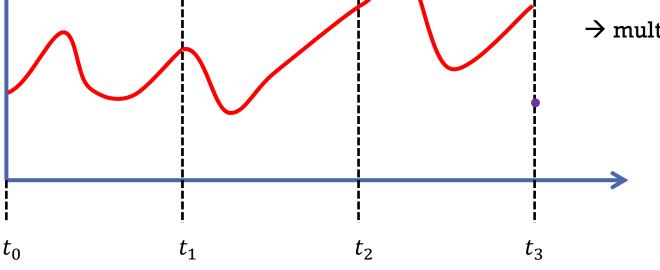
FH Biele Universit Applied S

• requirements for the endpoint \rightarrow boundary value problem

Mayer term

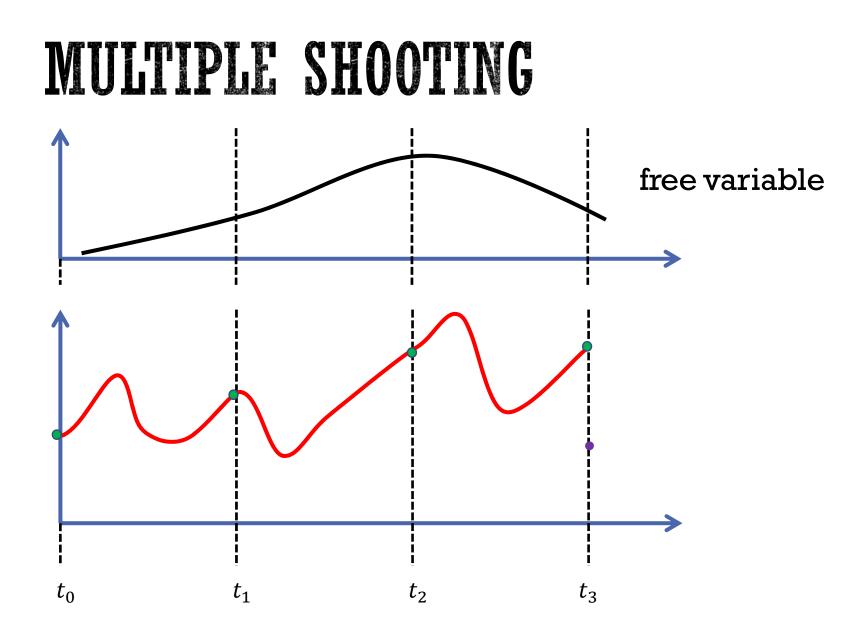
 $M\left(x(t_f)\right)$

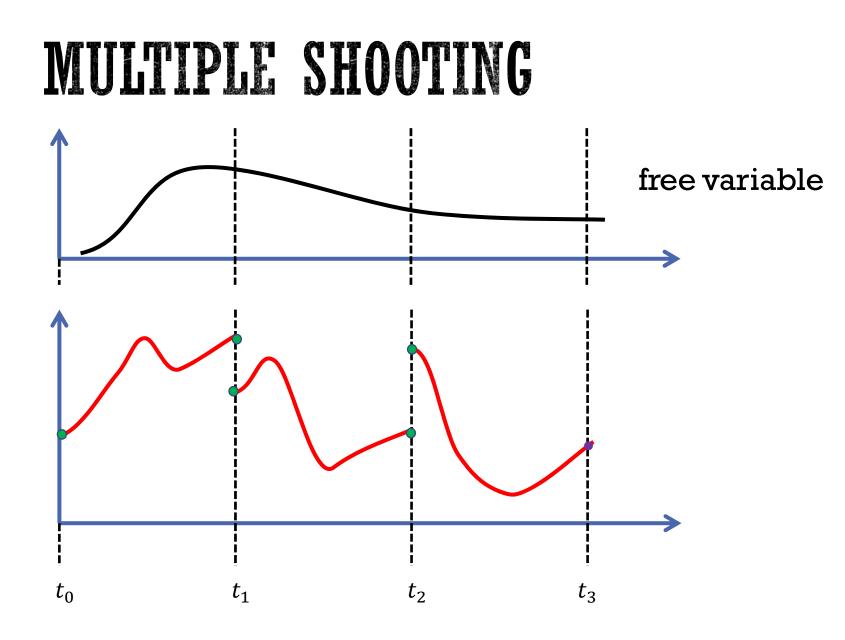
• requirements for the endpoint \rightarrow boundary value problem



 \rightarrow multiple shooting method principle

FH Biele Universit Applied S

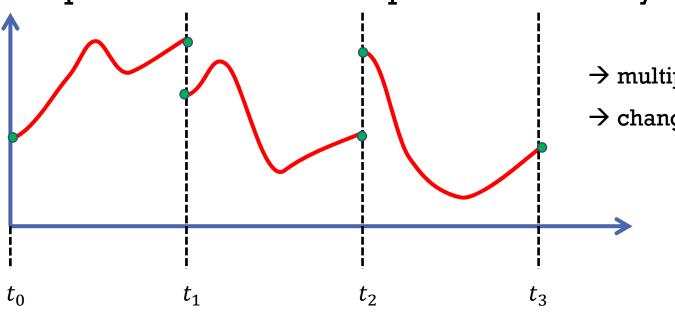




Mayer term

 $M\left(x(t_f)\right)$

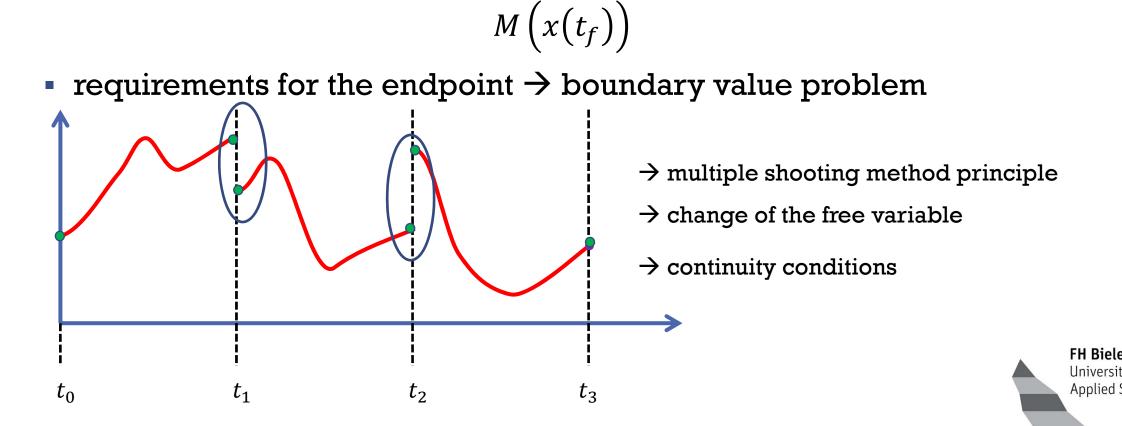
• requirements for the endpoint \rightarrow boundary value problem



 \rightarrow multiple shooting method principle

 \rightarrow change of the free variable

Mayer term



Mayer term

• requirements for the endpoint \rightarrow boundary value problem

 $M(x(t_f))$

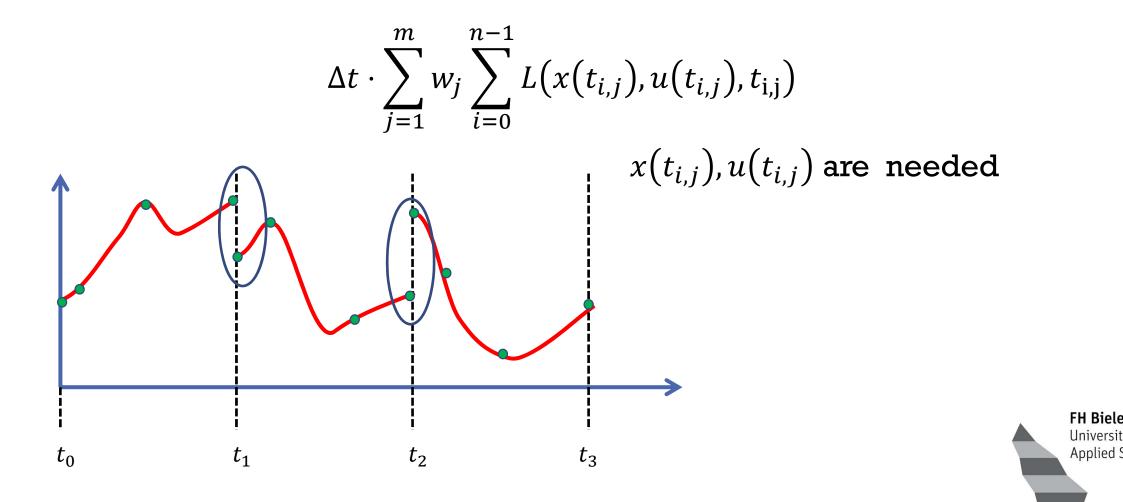
- \rightarrow multiple shooting method principle
- \rightarrow change of the free variable
- \rightarrow continuity conditions

Lagrange term

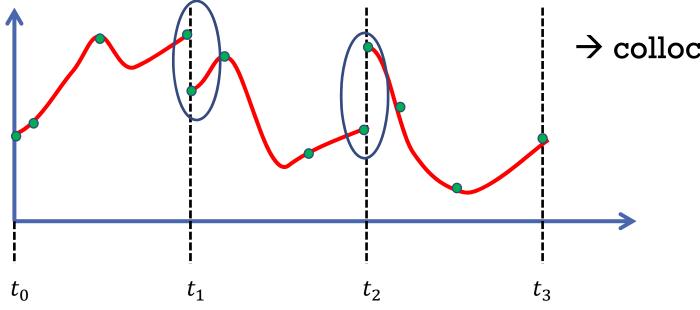
$$\int_{t_0}^{t_f} L(x(t), u(t), t) dt \approx \Delta t \cdot \sum_{j=1}^m w_j \sum_{i=0}^{n-1} L(x(t_{i,j}), u(t_{i,j}), t_{i,j})$$

• quadrature formula with m abscissas

- Legendre
- Radau
- Lobatto
- w_j , $t_{i,j}$ is given by the quadrature formula



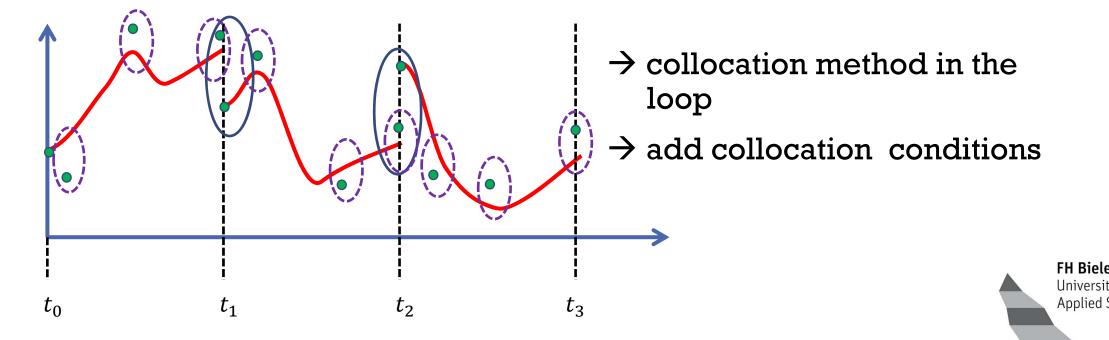
$$\Delta t \cdot \sum_{j=1}^{m} w_j \sum_{i=0}^{n-1} L(x(t_{i,j}), u(t_{i,j}), t_{i,j})$$



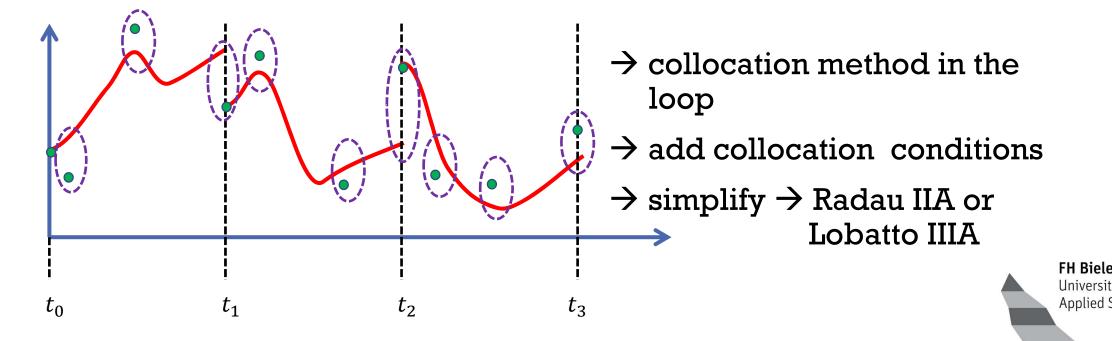
 \rightarrow collocation method

FH Biele Universit Applied S

$$\Delta t \cdot \sum_{j=1}^{m} w_j \sum_{i=0}^{n-1} L(x(t_{i,j}), u(t_{i,j}), t_{i,j})$$



$$\Delta t \cdot \sum_{j=1}^{m} w_j \sum_{i=0}^{n-1} L(x(t_{i,j}), u(t_{i,j}), t_{i,j})$$



- Collocation method and Jacobian structure $x_0 + \Delta t \cdot A \cdot f = x$
- Example

$$res \coloneqq \begin{pmatrix} x_0 \\ x_0 \\ x_0 \end{pmatrix} + \Delta t \cdot \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} f(x_1, u_1) \\ f(x_2, u_2) \\ f(x_3, u_3) \end{pmatrix} - \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \stackrel{!}{=} 0$$

$$\frac{\partial res}{\partial \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}} = \Delta t \cdot \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix} = \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}$$

- Collocation method and Jacobian structure $x_0 + \Delta t \cdot A \cdot f = x \rightarrow \Delta t \cdot f = A^{-1} \cdot (x - x_0)$
- Example

$$res \coloneqq \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}^{-1} \cdot \left(\begin{pmatrix} x_0 \\ x_0 \\ x_0 \end{pmatrix} - \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right) + \Delta t \cdot \begin{pmatrix} f(x_1, u_1) \\ f(x_2, u_2) \\ f(x_3, u_3) \end{pmatrix} \stackrel{!}{=} 0$$

$$\frac{\partial res}{\partial \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}} = \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix}$$

Lagrange-term

Example Radau quadrature

$$\frac{3}{4} \cdot L\left(x\left(t_{i}+\frac{1}{3}\Delta t\right), u\left(t_{i}+\frac{1}{3}\Delta t\right), t_{i}+\frac{1}{3}\Delta t\right) + \frac{1}{4} \cdot L(x(t_{i}+1\cdot\Delta t), u(t_{i}+1\cdot\Delta t), t_{i}+1\cdot\Delta t))$$

- $u(t_0)$ not included in the objective function!
- Lobatto IIIA for the first subinterval

- Differences between Radau IIA and Lobatto IIIA
 - Radau IIA
 - more sparse structure
 - a high stability
 - Lobatto IIIA
 - continuously differentiable continuation

- Differences between multiple shooting and total collocation
 - multiple shooting
 - more sparse structure
 - reduced search space
 - total collocation
 - no need to solve nonlinear system in optimization step
 - easier to generate Jacobian, gradient,... for optimizer

THEORETICAL BACKGROUND

- path constraints
 - evaluate on the collocation points
 - evaluate on the multiple shooting points

CURRENT STATE & OUTLOOK

Current Status

- Optimica+Modelica parser and AST building already works
- C-Code generation for Lagrange- ,Mayer term and path constraints exist
- numerical differentiation partially automated for the problem

Outlook

- generate the equations in Compilier
 - symbolic preprocessing
 - symbolic differentiation

THANK YOU QUESTIONS?