
© Copyright Malina Software

Model- Based Engineering of 
Real- Time and Embedded 

Systems
Bran Seliļ

Malina Software Corp.
Zeligsoft (2009) Ltd.

Simula Research Labs, Norway
Univ. of Toronto, 

Carleton U.

selic@acm.org



© Copyright Malina Software2

Example System: Aircraft Simulator

È Typical embedded system

Á Combines various types of 
inputs/outputs

Real-Time Computer

System

A/D converter D/A converter

Instructor Station

Time-driven

Event-driven

(control)



© Copyright Malina Software3

The Logical Structure of the Software*

*(simplified representation)

«block»

:Instructor Station

«block» 

:Airframe

«block»

:Ground 

Model

«block»

:Atmosphere

Model

«block»

:Engine

«block»

:Control

Surfaces

«block»

:Pilot 

Controls



© Copyright Malina Software4

Behaviour as Specified

Control behaviour
(event driven)

S1

S3

S4

S2

t2

t4

t5

t1

S5

t6

HS1

Physical simulation

(time driven)

vx(t) = vx(t - 1) + Dvx(t)
vy(t) = vy(t - 1) + Dvy(t)
vz(t) = vz(t - 1) + Dvz(t)
Dvx(t) = (x(t) - x(t - 1)) / Dt
Dvy(t) = (y(t) - y(t - 1)) / Dt
Dvz(t) = (z(t) - z(t - 1)) / Dt
... 

But, t he implementation 
code corresponding to 
the behaviour and 
structure looks very 
different



© Copyright Malina Software5

Simulator Software: As Implemented

È Behaviour sliced according to rate of change

È Structural relationships represented by references in code

The semantic gap between the way we think about the 
problem/solution and its realization in software adds significant 
complexity and poses major impediments to design analysis and 
software maintenance

A B A AB B A BA B C AD B C DA B C ED F G H

= 50 msec band

= 100 msec band (2 parts: A and B)

= 200 msec band (4 parts: A, B, C, D)

= 400 msec band (8 parts: A, B, C, D, E, F, G, H)

50msec

«block»

Engine



© Copyright Malina Software6

On Types of Complexity

ÈEssential complexity

Á Immanent to the problem 

Ý Cannot be eliminated by technology or technique

Á e.g., solving the òtraveling salesmanó problem

ÈAccidental complexity

Á Due to technology or methods chosen to solve the problem

Á e.g., building a skyscraper using only hand tools

Ý Complex problems require correspondingly powerful tool

The most we can do is to try and minimize accidental complexity!



© Copyright Malina Software7

The RTE Design Challenge

ÈReal- time and embedded (RTE) systems abound in 
essential complexity

Á Stems from the essential complexity of the real world

ÈUnfortunately, traditional methods of developing 
RTE software also abound in accidental complexity

Á Technological limitations (inadequate languages, operating 
systems, tools, etc.)

Á Methodological limitations (outdated approaches)

Á Cultural limitations



© Copyright Malina Software8

Overview

ÈThe Essential Complexities of Real - Time Systems

ÈThe Idea of Model - Based Engineering

ÈMBE for Real - Time Systems

Á Core Concepts

Á Domain- Specific Modeling Languages for RTE Systems



© Copyright Malina Software9

Interactive (Software) Systems

ÈSystems that maintain a continuous collaboration 
with their (real - world) environment by reacting to 
stimuli generated by the environment

ENVIRONMENT

INTERACTIVE SYSTEM

Status

Data

Stimuli
Control

Inputs

Typical requirements:

ÅTimeliness
ÅRobustness
ÅAvailability
ÅSafety
Åetc.

What impact do the 
characteristics of the 
environment have on 
system design?



© Copyright Malina Software10

Definitions: Real - Time Software

ÈReal- time software : Interactive software that 
implements functionality required to induce some 
desired behaviour or state in the physical world in a 
timely fashion

Á A broad definition beyond the classical one that focuses 
mostly on deadlines 

Á òSoftware where physics mattersó

ÈEmbedded software : real - time software that is an 
integral part of some greater technical system

Q: How is real - time software design different from 
other types of engineering design?



© Copyright Malina Software11

Two Contrasting Opinions

éand a Very Modern One:
òBecause [programs] are put together in the context of a set 
of information requirements, they observe no natural limits
other than those imposed by those requirements. Unlike the 
world of engineering, there are no immutable laws to violate.ó

- Wei - Lung Wang
Comm. of the ACM (45, 5)

May 2002

A Very Ancient View

òAll machinery is derived from nature, and is founded on the 
teaching and instruction of the revolution of the firmament.ó

- Vitruvius
On Architecture, Book X

1st Century BC



© Copyright Malina Software13

A Platonic View of Software

ÈòI see no meaningful difference between programming 
methodology and mathematical methodology ó(EWD 
1209 )

EdsgarWybeDijkstra(1930 ð2002)



© Copyright Malina Software14

A Classical Engineerõs View of Design
Construction
Materials Qualtitative

(non-functional)
RequirementsFunctional

Requirements

X = cos (h + p/2)
+ x*5

X = cos (h + p/2)
+ x*5

Design

How relevant 
are these in 
software 
design?



© Copyright Malina Software15

A Quick Quiz

(a) MITS Altair 8800

(8080 CPU) 4KB

(c) Lenovo ThinkPad X61

(IntelÑCoreÓ2 Duo CPU)

1MB

(b) Sinclair ZX81

(Z80 CPU) 8KB

Q:Which of these 
Computing platforms 
can support Vista Ó?

A:None of them



© Copyright Malina Software16

The Impact of Construction Materials in Engineering

Grass hut

Early 20th century skyscraper

Construction materials (and tools) can 
have a fundamental impact on design
in traditional engineering



© Copyright Malina Software17

How Things are Typically Done in Software

Functional
Requirements

¬OK

Qualtitative
Requirements

OK

¬OK

Construction
Materials

The concerns are 
serialized with 
the functional 
ones given 
significantly
greater priority

Considerations of 
potential impact of 
technological 
characteristics on 
design are often 
ignored and even 
actively discouraged



© Copyright Malina Software18

What is Software Made of?



© Copyright Malina Software19

London Hong Kong

observer
on offoffon

State?

ñonò

ñonò

The Impact of Transmission Delays

ÈOut of date status information



© Copyright Malina Software20

clientA notifier1 notifier2 clientB

on

on

off

off

time

Physically Distributed Platforms (2)

È Inconsistent views of system state:

Á different observers see different event orderings due to 
variable transmission delays in the underlying network

(Physical) quantity changes the (logical) quality



© Copyright Malina Software21

Not Just a Matter of Numbers

It is not possible to guarantee that agreement can 
be reached in finite time over an asynchronous 
communication medium, if the medium is lossy or one 
of the distributed sites can fail

Á Fischer, M., N. Lynch, and M. Paterson, òImpossibility of 
Distributed Consensus with One Faulty Processó Journal of 
the ACM, (32, 2) April 1985.

Å In many practical systems, the physical platform imposes an 
unyielding design constraint 

Computer system = software + hardware

Å Yet, many practitioners still believe that òplatform concernsó are 
second- order issues 



© Copyright Malina Software22

A Short Digression on Terminology

ÈòNon- functionaló (vs òfunctionaló) requirements?

Á This term tells us what something is not

Á Implies and is typically interpreted as being of second - order 
significance

Á Widely - accepted view: òNon- functionaló concerns should be 
addressed only after òfunctionaló ones have been resolved 

È But, for the vast majority of real - time systems, these 
are not always separable concerns

Á E.g., òCompute the optimal route for a data packet ó and 
òCompute the optimal route for a data packet in 4 msecó can 
be two very different requirements

ÅThe latter may force a concurrent realization

Á It can sometimes be dangerous to separate the òwható from 
the òhow welló



© Copyright Malina Software23

The Impact of Platforms on Software

ÈPlatforms are the mediators through which real -
time software and the physical world interact

Á Its properties can have a fundamental impact on design

Á ... just like in other engineering disciplines

Software System

External
Actor
External
Actor
External
Actor

Computing 
Platform (Actor)

The Environment



© Copyright Malina Software24

Platform

What Software is Made Of

ÈPlatform:

the full complement of software and hardware required 
for an application program to execute correctly

Software Application/Component

Operating System

Hardware

NB: Software 
engineering is very 
weak on methods for 
specifying platform 
requirements of 
software applications

Physical World


