
© Copyright Malina Software

Model-Based Engineering of
Real-Time and Embedded

Systems
Bran Selić

Malina Software Corp.
Zeligsoft (2009) Ltd.

Simula Research Labs, Norway
Univ. of Toronto,

Carleton U.

selic@acm.org

© Copyright Malina Software2

Example System: Aircraft Simulator

 Typical embedded system

 Combines various types of
inputs/outputs

Real-Time Computer

System

A/D converter D/A converter

Instructor Station

Time-driven

Event-driven

(control)

© Copyright Malina Software3

The Logical Structure of the Software*

*(simplified representation)

«block»

:Instructor Station

«block»

:Airframe

«block»

:Ground

Model

«block»

:Atmosphere

Model

«block»

:Engine

«block»

:Control

Surfaces

«block»

:Pilot

Controls

© Copyright Malina Software4

Behaviour as Specified

Control behaviour
(event driven)

S1

S3

S4

S2

t2

t4

t5

t1

S5

t6

HS1

Physical simulation

(time driven)

vx(t) = vx(t-1) + vx(t)
vy(t) = vy(t-1) + vy(t)
vz(t) = vz(t-1) + vz(t)
vx(t) = (x(t) - x(t-1)) / t
vy(t) = (y(t) - y(t-1)) / t
vz(t) = (z(t) - z(t-1)) / t
...

But, the implementation
code corresponding to
the behaviour and
structure looks very
different

© Copyright Malina Software5

Simulator Software: As Implemented

 Behaviour sliced according to rate of change

 Structural relationships represented by references in code

The semantic gap between the way we think about the
problem/solution and its realization in software adds significant
complexity and poses major impediments to design analysis and
software maintenance

A B A AB B A BA B C AD B C DA B C ED F G H

= 50 msec band

= 100 msec band (2 parts: A and B)

= 200 msec band (4 parts: A, B, C, D)

= 400 msec band (8 parts: A, B, C, D, E, F, G, H)

50msec

«block»

Engine

© Copyright Malina Software6

On Types of Complexity

 Essential complexity

 Immanent to the problem

 Cannot be eliminated by technology or technique

 e.g., solving the ―traveling salesman‖ problem

 Accidental complexity

 Due to technology or methods chosen to solve the problem

 e.g., building a skyscraper using only hand tools

 Complex problems require correspondingly powerful tool

The most we can do is to try and minimize accidental complexity!

© Copyright Malina Software7

The RTE Design Challenge

 Real-time and embedded (RTE) systems abound in
essential complexity

 Stems from the essential complexity of the real world

 Unfortunately, traditional methods of developing
RTE software also abound in accidental complexity

 Technological limitations (inadequate languages, operating
systems, tools, etc.)

 Methodological limitations (outdated approaches)

 Cultural limitations

© Copyright Malina Software8

Overview

 The Essential Complexities of Real-Time Systems

 The Idea of Model-Based Engineering

 MBE for Real-Time Systems

 Core Concepts

 Domain-Specific Modeling Languages for RTE Systems

© Copyright Malina Software9

Interactive (Software) Systems

 Systems that maintain a continuous collaboration
with their (real-world) environment by reacting to
stimuli generated by the environment

ENVIRONMENT

INTERACTIVE SYSTEM

Status

Data

Stimuli
Control

Inputs

Typical requirements:

• Timeliness
• Robustness
• Availability
• Safety
• etc.

What impact do the
characteristics of the
environment have on
system design?

© Copyright Malina Software10

Definitions: Real-Time Software

 Real-time software: Interactive software that
implements functionality required to induce some
desired behaviour or state in the physical world in a
timely fashion

 A broad definition beyond the classical one that focuses
mostly on deadlines

 ―Software where physics matters‖

 Embedded software: real-time software that is an
integral part of some greater technical system

Q: How is real-time software design different from
other types of engineering design?

© Copyright Malina Software11

Two Contrasting Opinions

…and a Very Modern One:
―Because [programs] are put together in the context of a set
of information requirements, they observe no natural limits
other than those imposed by those requirements. Unlike the
world of engineering, there are no immutable laws to violate.‖

- Wei-Lung Wang
Comm. of the ACM (45, 5)

May 2002

A Very Ancient View

“All machinery is derived from nature, and is founded on the
teaching and instruction of the revolution of the firmament.‖

- Vitruvius
On Architecture, Book X

1st Century BC

© Copyright Malina Software13

A Platonic View of Software

 ―I see no meaningful difference between programming
methodology and mathematical methodology‖ (EWD
1209)

Edsgar Wybe Dijkstra (1930 – 2002)

© Copyright Malina Software14

A Classical Engineer‘s View of Design
Construction
Materials Qualtitative

(non-functional)
RequirementsFunctional

Requirements

X = cos (h + p/2)
+ x*5

X = cos (h + p/2)
+ x*5

Design

How relevant
are these in
software
design?

© Copyright Malina Software15

A Quick Quiz

(a) MITS Altair 8800

(8080 CPU) 4KB

(c) Lenovo ThinkPad X61

(Intel Core2 Duo CPU)

1MB

(b) Sinclair ZX81

(Z80 CPU) 8KB

Q:Which of these
Computing platforms
can support Vista?

A:None of them

© Copyright Malina Software16

The Impact of Construction Materials in Engineering

Grass hut

Early 20th century skyscraper

Construction materials (and tools) can
have a fundamental impact on design
in traditional engineering

© Copyright Malina Software17

How Things are Typically Done in Software

Functional
Requirements

¬OK

Qualtitative
Requirements

OK

¬OK

Construction
Materials

The concerns are
serialized with
the functional
ones given
significantly
greater priority

Considerations of
potential impact of
technological
characteristics on
design are often
ignored and even
actively discouraged

© Copyright Malina Software18

What is Software Made of?

© Copyright Malina Software19

London Hong Kong

observer
on offoffon

State?

“on”

“on”

The Impact of Transmission Delays

 Out of date status information

© Copyright Malina Software20

clientA notifier1 notifier2 clientB

on

on

off

off

time

Physically Distributed Platforms (2)

 Inconsistent views of system state:

 different observers see different event orderings due to
variable transmission delays in the underlying network

(Physical) quantity changes the (logical) quality

© Copyright Malina Software21

Not Just a Matter of Numbers

It is not possible to guarantee that agreement can
be reached in finite time over an asynchronous
communication medium, if the medium is lossy or one
of the distributed sites can fail

 Fischer, M., N. Lynch, and M. Paterson, ―Impossibility of
Distributed Consensus with One Faulty Process‖ Journal of
the ACM, (32, 2) April 1985.

• In many practical systems, the physical platform imposes an
unyielding design constraint

Computer system = software + hardware

• Yet, many practitioners still believe that ―platform concerns‖ are
second-order issues

© Copyright Malina Software22

A Short Digression on Terminology

 ―Non-functional‖ (vs ―functional‖) requirements?

 This term tells us what something is not

 Implies and is typically interpreted as being of second-order
significance

 Widely-accepted view: ―Non-functional‖ concerns should be
addressed only after ―functional‖ ones have been resolved

 But, for the vast majority of real-time systems, these
are not always separable concerns

 E.g., ―Compute the optimal route for a data packet‖ and
―Compute the optimal route for a data packet in 4 sec‖ can
be two very different requirements

• The latter may force a concurrent realization

 It can sometimes be dangerous to separate the ―what‖ from
the ―how well‖

© Copyright Malina Software23

The Impact of Platforms on Software

 Platforms are the mediators through which real-
time software and the physical world interact

 Its properties can have a fundamental impact on design

 ... just like in other engineering disciplines

Software System

External
Actor
External

Actor
External

Actor

Computing
Platform (Actor)

The Environment

© Copyright Malina Software24

Platform

What Software is Made Of

 Platform:

the full complement of software and hardware required
for an application program to execute correctly

Software Application/Component

Operating System

Hardware

NB: Software
engineering is very
weak on methods for
specifying platform
requirements of
software applications

Physical World

© Copyright Malina Software25

Another One from the Sage

―[The interrupt] was a great invention, but also a
Pandora‘s Box…essentially, for the sake of
efficiency, concurrency [became] visible… and
then, all hell broke loose‖ (EWD 1303)

Edsgar Wybe Dijkstra (1930 – 2002)

© Copyright Malina Software26

Head start

An Inconvenient Truth: Concurrency

 Zeno‘s fable: Achilles and the Tortoise
S

T
A

R
T

It seems as if Achilles will never overtake the Tortoise!
 Humans have difficulty reasoning about concurrent processes

© Copyright Malina Software27

Concurrency

 Unfortunately, the physical world is concurrent

 Software that needs to monitor and control that
world must deal with concurrency

 Concurrency conflicts are a major source of defects
in real-time software

 Difficult to identify

 Difficult to detect

 Difficult to fix

 Can occur at many levels

 Memory location write conflicts

 Feature interactions

© Copyright Malina Software28

Yet Another Inconvenience: Asynchrony

 Events that occur out of
expected or desired
order

 E.g., hardware or
software failures

 Can happen any time
(Murphy's Law)

 ...yet we may have to
deal with it

―An idea that unifies all engineering
is the concept of failure. Virtually
every calculation an engineer
performs…is a failure calculation…to
provide the limits than cannot be
exceeded‖

-- Henry Petroski

© Copyright Malina Software29

Modeling Requirements for Real-Time Systems

 The ability to model the physical environment of a
real-time software application

 The ability to accurately model platforms and their
effects on software applications

 Includes the ability to model their quantitative
characteristics

 The ability to represent physical time, its effects,
and timing mechanisms

 The ability to accurately represent concurrency, its
effects, and concurrency control mechanisms

© Copyright Malina Software30

Accuracy and Prediction

 Accuracy is critical real-time system models since it
enhances their predictive value

 Necessary to avoid costly disasters

 7-second dial tone delay

 Damage to expensive equipment

 Violations of safety requirements

© Copyright Malina Software31

Overview

 The Essential Complexities of Real-Time Systems

 The Idea of Model-Based Engineering

 MBE for Real-Time Systems

 Core Concepts

 Domain-Specific Modeling Languages for RTE Systems

© Copyright Malina Software32

Why Do Engineers Build Models?

 To understand

 …the interesting characteristics of an existing or desired
(complex) system and its environment

 To predict

 …the interesting characteristics of the system by analysing
its model(s)

 To communicate

 …their understanding and design intent (to others and to
oneself!)

 To specify

 ...the implementation of the system (models as blueprints)

© Copyright Malina Software33

Models vs. Programs

 The primary purpose of models:

 To help us understand a complex system

 To help us predict its properties

 To communicate to others our understanding and intent

 To specify the implementation of some system

 The primary purpose of programs:

 To specify the implementation of some system to a

computer

© Copyright Malina Software34

refine

NotStarted

Started

start

producer

Modern MBSE Development Style

 Models can be refined continuously until the application
is fully specified  the model becomes the system that
it was modeling!

«sc_method»

producer
start out1

NotStarted

Started

start

producer

St1 St2

void generate_data()
{for (int i=0; i<10;
i++)
{out1 = i;}}

/generate_data()

© Copyright Malina Software37

A Unique Feature of Software

 A software model and the software being modeled
share the same medium—the computer

 Which also happens to be our most advanced and most
versatile automation technology

Software has the unique property that it allows
us to directly evolve models into
implementations without fundamental
discontinuities in the expertise, tools, or
methods!

 High probability that key design
decisions will be preserved in the
implementation and that the results of
prior analyses will be valid

© Copyright Malina Software38

NotStarted

Started

start

producer

St1 St2

But, if the Model is the System…

 …do we not lose the abstraction value of models?

void generate_data()
{for (int i=0; i<10;
i++)
{out1 = i;}}

/generate_data()

Started

• The computer offers a uniquely
capable abstraction device:

Software can be represented
from any desired viewpoint at
any desired level of abstraction

The abstraction is inside the system
and can be extracted automatically

© Copyright Malina Software39

The Model-Based Engineering (MBE) Approach

 An approach to system and software development in which
software models play an indispensable role

 Based on two time-proven ideas:

switch (state) {

case‘1:action1;

newState(‘2’);

break;

case‘2:action2;

newState(‘3’);

break;

case’3:action3;

newState(‘1’);

break;}

(2) AUTOMATION

S1

S3

S2

e1/action1

e2/action2

e3/action3

switch (state) {

case‘1:action1;

newState(‘2’);

break;

case‘2:action2;

newState(‘3’);

break;

case’3:action3;

newState(‘1’);

break;}

(1) ABSTRACTION

S1

S3

S2

e1/action1

e2/action2

e3/action3

Realm of
modeling
languages

Realm of
tools

© Copyright Malina Software40

Model-Driven Architecture (MDA)™

 In recognition of the increasing importance of MBE,
the Object Management Group (OMG) is developing
a set of supporting industrial standards

(1) ABSTRACTION (2) AUTOMATION

(3) INDUSTRY STANDARDS
• UML 2

• OCL
• MOF
• SysML
• SPEM
• …etc.

http://www.omg.org/mda/

© Copyright Malina Software41

Automatic Code Generation

 A form of model transformation (model to text)

 To a lower level of abstraction

 State of the art:

 All development done via the model (i.e., no modifications
of generated code)

 Size: Systems equivalent to ~ 10 MLoC

 Scalability: teams involving hundreds of developers

 Performance: within ±5-15% of equivalent manually coded
system

© Copyright Malina Software42

Automating The Analysis of RTE Models

 Automated analyses of expected QoS characteristics

 E.g., performance analyses, schedulability analyses, safety
property analyses

Modeling

Tool

5

3.1

4

Model Analysis

Tool

Automated
model transformation



Automated
inverse transformation

2.5

QoS annotations

© Copyright Malina Software43

The Importance of Standards

 Provide an agreed-on interface between different
specialties

 Enables specialization

Modeling

Tool

5

3.1

4

Model Analysis

Tool


2.5

Standardized interface
(e.g., MARTE, SysML)

© Copyright Malina Software46

Automated doors, Base Station, Billing (In Telephone Switches),
Broadband Access, Gateway, Camera, Car Audio, Convertible roof
controller, Control Systems, DSL, Elevators, Embedded Control, GPS,
Engine Monitoring, Entertainment, Fault Management, Military
Data/Voice Communications, Missile Systems, Executable Architecture
(Simulation), DNA Sequencing, Industrial Laser Control, Karaoke,
Media Gateway, Modeling Of Software Architectures, Medical
Devices, Military And Aerospace, Mobile Phone (GSM/3G), Modem,
Automated Concrete Mixing Factory, Private Branch Exchange (PBX),
Operations And Maintenance, Optical Switching, Industrial Robot,
Phone, Radio Network Controller, Routing, Operational Logic, Security
and fire monitoring systems, Surgical Robot, Surveillance Systems,
Testing And Instrumentation Equipment, Train Control, Train to
Signal box Communications, Voice Over IP, Wafer Processing,
Wireless Phone

Sampling of Successful MBE Products

© Copyright Malina Software47

Overview

 The Essential Complexities of Real-Time Systems

 The Idea of Model-Based Engineering

 MBE for Real-Time Systems

 Core Concepts

 Domain-Specific Modeling Languages for RTE Systems

© Copyright Malina Software48

The Objective of MBE for RTE Systems

 A systematic and reliable engineering process that

 Recognizes and accounts for the physical aspects of systems

 Exploits the predictive potential of engineering models

Construction
Materials Qualtitative

(non-functional)
Requirements

Functional
Requirements

X = cos (h + p/2)
+ x*5

X = cos (h + p/2)
+ x*5

Design

Functional
Requirements

¬OK

Qualtitative
Requirements

OK

¬OK

Construction
Materials

Conventional software
development process

Engineering-based
software development process

© Copyright Malina Software49

The MDA™ Interpretation of MBSE

 A cascade of successively refined models
leading to one or more implementations

Model

Transform

Model

Transform

Model

Transform

...

Model

Transform

. . .

But, we must be
very careful in how
we interpret these
concepts!

© Copyright Malina Software50

The Concept of ―Platform Independence‖?

 A highly desirable objective

 Separation of concerns – reduces apparent problem complexity

 Enables portability

50

“Platform
Independent” Software

Application

Computing
Platform N

Computing
Platform 2

Computing
Platform 1

. . .

«deploy»
«deploy»

«deploy»

Does ―platform independence‖ mean that we can ignore
platform concerns when designing our application?

© Copyright Malina Software51

Interpreting the MDA™ View

 PLATFORM INDEPENDENCE is ...the quality that the
model is independent of the features of a platform of any
particular type

 NB: not independent of the platform as a whole

 A PLATFORM INDEPENDENT MODEL (PIM)...exhibits a
specified degree of platform independence so as to be
suitable for use with a number of different platforms of
similar type.

51

―platform independence‖ does NOT imply platform
ignorance!

© Copyright Malina Software52

Core Concept: Resource

 Resource:

 A facility or mechanism with limited capacity required to
attain some functional objective (e.g., perform a platform
service)

 The limited nature of resources is due to the finite
nature of the underlying hardware platform(s)

 Contention for shared resources is the primary source of
complexity related to platforms

 Resources can be viewed as providers of services

 E.g., computing power, memory storage, concurrency
management, communications paths

52

© Copyright Malina Software53

Core Concept: Quality of Service

 Quality of Service:

the degree of effectiveness in the provision of a service

 e.g. throughput, capacity, response time

 The two sides of QoS:

 offered QoS: the QoS that is available (supply side)

 required QoS: the QoS that is required (demand side)

© Copyright Malina Software54

Resources, Services, and QoS

Application

Software

sendMsg (myMsg)

Operating

System

Communications

(IPC) Service
sendMsg (m : Msg)

Timing

ServicegetTime ()

WCET = 1 ms

accuracy = 10 us

Offered

QoS

Required

QoS

deadline = 2 ms

 Offered QoS is an added attribute of a service‘s API

 In addition to the signature (parameters and their types)

 Resources can be viewed as service providers

 Analogously, clients need to specify their required
QoS

© Copyright Malina Software55

Central Issue of Resource Analysis

 Does the service (platform) have the capacity to
support its clients?

 i.e., does supply meet demand?
Key analysis question:
(RequiredQoS  OfferedQoS) ?

Application

Software

sendMsg (myMsg)

Operating

System

Communications

(IPC) Service
sendMsg (m : Msg)

Timing

ServicegetTime ()

WCET = 1 ms

accuracy = 10 us

Offered

QoS

Required

QoS

deadline = 2 ms

© Copyright Malina Software56

The Difficulty: Resource Contention

Operating System

Database

Service

Applic.1

Applic. 2

Applic. 3

WCET = 1 ms

deadline = 2 ms

deadline = 4 ms

deadline = 3 ms

Architecturally independent components (applications) can
become implicitly coupled if they share platform resources

 The interaction between these independently-designed
components can be very complex and difficult to analyze

© Copyright Malina Software57

Software Platforms and Physics

 We need our platforms to provide the necessary
QoS to ensure the correct operation of our
software

 The capacity (QoS) of a platform to support a given
application is fundamentally constrained by the
physical limitations of the underlying hardware

 Memory capacity and latency

 CPU speed

 Communications bandwidth and latency

 Reliability and availability

 ...etc.

© Copyright Malina Software58

Software Application 1

Platform

Software Application 2

Platforms as Service Providers

 The relationship between applications and platforms can be
represented as an instance of the client-server pattern

 NB: Most platforms can support multiple independent applications

 Services are often shared by multiple applications

dBase service CPU service Printer service

To deal with hardware platforms, we must generalize the concept of
service to include more than just software API-type services:

 CPU (processing) service

 Special device services (e.g., sensors and actuators)

 Storage service, etc.

© Copyright Malina Software59

Overview

 The Essential Complexities of Real-Time Systems

 The Idea of Model-Based Engineering

 MBE for Real-Time Systems

 Core Concepts

 Domain-Specific Modeling Languages for RTE Systems

© Copyright Malina Software60

Domain-Specific Modeling Languages

 UML 2

 MARTE

 SysML

 AADL

© Copyright Malina Software61

UML 1: The First Cut

Booch
OMT

OOSE

etc.

The primary intent
was to facilitate
documentation of the
results of analysis and
design.

© Copyright Malina Software62

UML Roots and Evolution: UML 1

MDA

UML 1.1 (First OMG Standard)

UML 1.3 (profiles)

UML 1.4 (bug fixes)

UML 1.5 (Action Semantics)
2003

1967

Semantic Foundations of OO (Nygaard, Goldberg, Meyer,
Stroustrup, Harel, Wirfs-Brock, Reenskaug,…)

JacobsonHarelBoochRumbaugh

1996

© Copyright Malina Software63

UML 1.1 (First OMG Standard)

UML 1.3 (profiles)

UML 1.4 (bug fixes)

UML 1.5 (Action Semantics)
2003

1967

Semantic Foundations of OO (Nygaard, Goldberg, Meyer,
Stroustrup, Harel, Wirfs-Brock, Reenskaug,…)

JacobsonHarelBoochRumbaugh

1996

UML Roots and Evolution: UML 2

2005

UML 2.0 (MDA)

UML 2.3
2009

.

.

.

© Copyright Malina Software64

What UML Offers to Real-Time Modelers

 Although UML is a general purpose modeling
language, it has some support for modeling
phenomena common in RTE systems:

 Modeling of complex structures

 Concurrency specification and management: Active objects,
run-to-completion, activity modeling, interaction modeling,

 Time: Timing diagrams

 Event handling: State machines

 Deployment: Deployment modeling

 However, all of them have limitations that often
make them inappropriate for use in RT systems

© Copyright Malina Software65

Structure: The Meaning of UML Class Diagrams

Bob

Karl

Alice

Jill

Peggy

Adults

Fred

Children

Cory

Dee

Guy

Hayley

Ida

Les

Adult

name : String

gender : [M, F]

Child

name : String

gender : [M, F]

parents

1..2

children

0..*

© Copyright Malina Software66

ClassA ClassB

1

al

1

left

1

ar

1

right

a1:ClassA b1:ClassB
al left

ar right

(1)

a1:ClassA b1:ClassB
ar right

a2:ClassA
right ar

b2:ClassB

(2)

al

left

al

left

Class Specifications and Run-Time

Q: How many
different run-time
configurations are
described by this
class diagram?

(3) etc.

© Copyright Malina Software67

Modeling Software Structures

 Class diagrams are not always sufficient for precise
representation of run-time structures

 Some structures need to be represented at the
instance level  especially if we need to perform
engineering analyses on the models
 e.g., performance, availability, timing

N1:Node N3:Node

N4:Node

N2:Node

N2:NodeN1:Node N3:Node

Node

left 0..1

0..1

right

Same class diagram
describes both systems!

© Copyright Malina Software68

MicroHamlet

Collaborations

 Describes a set of roles communicating using connectors

 A role can represent an instance or something more abstract

Gertrude

: OlderWoman
Ophelia

: YoungWoman

Hamlet

:YoungMan

Ghost

Collaboration

Constrained role

Unconstrained
role

Connector

© Copyright Malina Software69

Collaborations and Roles

 Collaborations represent a network of cooperating object
instances whose identities have been abstracted away (roles)

MicroHamlet(1948)

E.Herlie

/Gertrude
J. Simmons

/Ophelia

L.Olivier

/Hamlet

L.Olivier

/Ghost

MicroHamlet(1996)

J. Christie

/Gertrude
K. Winslet

/Ophelia

K. Branagh

/Hamlet

B.Blessed

/Ghost

MicroHamlet

Gertrude

: OlderWoman
Ophelia

: YoungWoman

Hamlet

:YoungMan

Ghost

«abstraction»«abstraction»

NB: Same
instance playing
different roles

NB: Same actor
playing two roles

© Copyright Malina Software70

1948 : MicroHamlet

Ghost Hamlet

OpheliaGertrude

Collaboration Uses

 A usage of a collaboration specification for a
particular purpose

E.Herlie :
OlderWoman

J. Simmons :
YoungWoman

L.Olivier :
YoungMan

E.Herlie

/Gertrude
J.Simmons

/Ophelia

L.Olivier

/Hamlet

L.Olivier

/Ghost

Alternative notation

© Copyright Malina Software71

MicroHamlet

Alternative Notation

 Common in textbooks – but not very practical

 Avoid; use rectangle notation instead

Gertrude:
OlderWoman

Ophelia:
YoungWoman

Hamlet
:YoungMan

Ghost

© Copyright Malina Software72

Collaborations and Generalization

Collaborations can be refined using inheritance
 Possibility for defining generic architectural structures

TwoViewMVC

view1 : View view2 : View

ctrlr

model

ThreeViewMVC

view1 : View view2 : View

ctrlr

model

view3 : View

© Copyright Malina Software73

TwoViewMVC

view1 : View view2 : View

controller

model

Collaborations and Behavior

 One or more behavior specs can be attached to a collaboration

 To show interesting interaction sequences within the collaboration

startSeq stopSeq

Interaction
declarations

sd stopSeq

model controller view1 view2

1.

2a.2b.

© Copyright Malina Software74

Structured Classes

 Classes with

 External structure (port interaction points)

 Internal (collaboration) structure

 Primarily intended for architectural modeling

 Heritage: architectural description languages (ADLs)

 UML-RT profile: Selic and Rumbaugh (1998)

 ACME: Garlan et al.

 SDL (ITU-T standard Z.100)

© Copyright Malina Software75

Structured Objects: Ports

 Multiple points of interaction

 Each dedicated to a particular purpose

e.g., Database Admin
port

e.g., Database Object

e.g., Database User
ports

© Copyright Malina Software76

The Port Structural Pattern

 Distinct interaction points of an object for multiple,
possibly simultaneous collaborations

 Ports allow an object to distinguish between
different external collaborators without direct
coupling to them

p

objM

objG

objFobjC

q
opQ {…

objM.setA(d)

…

opQ {…

q.setA(d)

…

opQ ()

Port

© Copyright Malina Software77

Ports and Interfaces

 Ports can provide and/or require Interfaces

 General case: both required and provided

 Uni-directional ports are also common

DataBase

adminPort

clientPort

«interface»

DBserver

readDB (recNo)

writeDB (recNo,d)

notifyOfChange (recNo)

«interface»

DBclient

change (d) «uses»

Provided interface

Required interface

© Copyright Malina Software78

ClassX

IntrfB

IntrfA

Internal Structures

 Structured classes can contain collaboration
structures comprising parts that are usages of
other structured (or basic) classes

partF: F

IntrfB

IntrfM

―Delegation‖
connector

―Part‖

© Copyright Malina Software79

Ports and Behaviours

 Behavior ports: ports that are connected to the
classifier behaviour of an object

ClassX

IntrfB

partF: F

classifierBehavior of myObj

S1 S2

IntrfB

IntrfM

IntrfM

Public
behavior port

Public non-
behavior port

Non-public
(internal)
behavior port

IntrfA

Classifier
behavior (not
shown explicitly
in diagrams)

© Copyright Malina Software80

Ports and Behaviours

 Behavior ports: ports that are connected to the
classifier behaviour of an object

ClassX

IntrfB

partF: F

IntrfB

IntrfM

IntrfM

IntrfA

Actual notation
does not show
the classifier
behavior 
implied by
behavior ports

© Copyright Malina Software81

sender : Fax

remote

receiver : Fax

remote

Assembling Structured Objects

 These connections can be constrained to a protocol

:FaxProtocol

FaxSender FaxReceiver

 Ports can be joined by connectors

• Static checks for dynamic type violations are possible

• Eliminates ―integration‖ (architectural) errors

© Copyright Malina Software82

FaxCall

receiveCtrlsendCtrl

sender:Fax

remote

receiver:Fax

remote

c c

Using Structured Classes

 Structured classes can be used to capture and
complex architectural structures as a unit

 Which can be created and destroyed as a unit

© Copyright Malina Software83

UML & Concurrency: Active Objects

 From the spec:

An active object is an object that, as a direct
consequence of its creation, [eventually] commences to
execute its classifier behavior [specification], and does
not cease until either the complete behavior is
executed or the object is terminated by some external
object.

The points at which an active object responds to
[messages received] from other objects is determined
solely by the behavior specification of the active
object...

AnActiveClass

© Copyright Malina Software84

anActiveObject

created

ready

created

Run-to-Completion Semantics

 Concurrent incoming events are queued and
handled one-at-a-time

 Priority only determines the order in which events are presented

 Run-to-completion (RTC) execution model

RTC eliminates potential
concurrency conflicts

© Copyright Malina Software85

Active1 Active2

RTC Semantics

 Within a single scheduling domain, a high-priority
event for another active object may preempt an
active object that is handling a low-priority event

 Limited priority inversion can occur

hi

hi

lo

(queued)

© Copyright Malina Software86

RTC Analysis

 Advantages:

 Eliminates concurrency conflicts for all passive objects
encapsulated by active objects

 No explicit synchronization code required

 Low-overhead context switching (RTC implies that stack
does not need to be preserved)

 Disadvantage:

 Limited priority inversion can occur (higher priority activity
may have to wait for a lower-priority activity to complete)

 Can be circumvented but at the expense of application-level
complexity

© Copyright Malina Software87

UML Communications Models and Concurrency

 Three fundamental models:

 Asynchronous signal-based messaging

 Synchronous operation invocation

• Semantics depends on active objects vs passive objects

 Asynchronous operation invocation

• Any replies ignored

 Only active objects can receive signals

 Using UML receptions

© Copyright Malina Software88

UML Activity and Interactions Modeling

 Activities

 Fork and join nodes

 Sophisticated token handling modes

 Interactions

 Can represent concurrent sequences using the ―par‖
interaction operator

 Can specify mutual exclusion using the ―region‖ interaction
operator

 Timing diagrams – based on the ―SimpleTime‖ model of time

• Assumes a single global time source

• Insufficient refinement for precise time modeling

© Copyright Malina Software89

sd DriverProtocol

d : Driver

o : OutPin

t = 0 t = 5 t = 10 t = 15

Timing Diagrams

 Can be used to specify time-dependent interactions

 Based on a simplified model of time (use standard ―real-time‖
profile for more complex models of time)

Idle Wait Busy Idle

0111 0011 0001 0111

© Copyright Malina Software90

sd Reader

r : Reader

t1

Timing Diagrams (cont.)

Reading

Idle

Uninitialized

Initialize

Read ReadDone Read

{d..d+0.5}

{t1..t1+0.1}

State

Event
Occurrence

Constraint

Observation

© Copyright Malina Software91

Deployment Modeling

 The deployment model in UML is insufficiently
expressive to deal with the rich diversity of
deployment strategies and related phenomena that
occur in RTE systems

 Platforms are represented as simple Node and
CommunicationPath networks

 Only Artifacts can be deployed

 Deployment specification is owned by the platform model
(prevents reuse of platform model)

© Copyright Malina Software92

What is Missing from UML

 A more sophisticated model of time

 A more sophisticated model of concurrency

 Lack of real-time domain concepts

 E.g., traditional concurrency control mechanisms
(semaphores, etc.), schedulers, scheduling policies,
deadlines, deployment

 Ability to precisely specify quantitative information
(values and functional relationships)

© Copyright Malina Software93

Domain-Specific Modeling Languages

 UML 2

 MARTE

 SysML

 AADL

© Copyright Malina Software94

Specializing UML

 UML has a built-in language specialization kit: the
profile mechanism

 Allows domain-specific interpretations of UML
models

 …which are compatible with general (standard) UML!

 Implies the ability to reuse UML tools, expertise, etc.

UML Language
(metamodel)

UML for Real Time
UML for Systems

Engineering
UML for Business

Modeling
. . . etc.

© Copyright Malina Software95

Example: Adding a Semaphore Concept to UML

 Semaphore semantics:

 A specialized object that limits the number of concurrent
accesses in a multithreaded environment. When that limit is
reached, subsequent accesses are suspended until one of
the accessing threads releases the semaphore, at which
point the earliest suspended access is given access.

 What is required is a special kind of object

 Has all the general characteristics of UML objects

 …but adds refinements

© Copyright Malina Software96

Example: The Semaphore Stereotype

 Design choice: Refine the UML Class concept by

 ―Attaching‖ semaphore semantics

• Implied by stereotyping the general Class concept

 Adding constraints that capture semaphore semantics

• E.g., when the maximum number of concurrent accesses is reached,
subsequent access requests are queued in FIFO order

 Adding characteristic attributes (e.g., concurrency limit)

 Adding characteristic operations (getSemaphore (),
releaseSemaphore ())

 Create a new ―subclass‖ of the original metaclass with
the above refinements

 For technical reasons, this is done using special mechanisms
instead of MOF Generalization (see slide Why are Stereotypes
Needed?)

© Copyright Malina Software97

Example: Graphical Definition of the Stereotype

«metaclass»

UML::Class

«stereotype»

Semaphore

limit : Integer

getSema : Operation

relSema : Operation

active->size()

<= limitlimit <= MAXlimit

―Extension‖

Constraints

Special icon
(Optional)

© Copyright Malina Software98

Example: Applying the Stereotype

«semaphore»

limit = 1

getSema = get

relSema = release

Object

print()

BinarySem

get ()

release ()

SomeOtherClass
«semaphore»

DijkstraSem

p ()

v ()

«semaphore»

limit = MAXlimit

getSema = p

relSema = v

«semaphore»

BinarySem

© Copyright Malina Software99

The Semantics of Stereotype Application

BinarySem

get ()

release ()

«semaphore»

BinarySem

get ()

release ()
«semaphore»

limit = 1

getSema = get

relSema = release

:Class

name = “BinarySem”

:Operation

name = “get”

:Operation

name = “release”

:Class

name = “BinarySem”

:Operation

name = “get”

:Operation

name = “release”

«semaphore»

limit = 1

getSema = get

relSema = release

NB: attaching a
stereotype does
not change the
original!

© Copyright Malina Software100

Example: Stereotype Representation Options

«semaphore»

DijkstraSem

(a)

DijkstraSem

(b)

DijkstraSem

(c)

© Copyright Malina Software101

UML Profiles

 Profile:

 A special kind of package containing stereotypes and model
libraries that, in conjunction with the UML metamodel,
define a group of domain-specific concepts and relationships

 Profiles can be used for two different purposes:

 To define a domain-specific modeling language

 To define a domain-specific viewpoint that can be overlaid
onto an existing model = a way of reinterpreting the original
model

© Copyright Malina Software102

Overlay Profiles
 A profile can be used as an overlay mechanism that can be

dynamically applied or ―unapplied‖ to provide a desired view of an
UML model

 Allows a UML model to be interpreted from the perspective of the
viewpoint definer

 NB: Applying or unapplying profiles has no effect on the underlying
model

 Example: recast a UML model fragment as a queueing network to do
performance analysis

user1

user2

DBase

unapply

profile
user1

user2

DBase

«client»

user1

«client»

user2

«server»

DBase

serviceRate = . . .

arrivalRate = . . .

arrivalRate = . . .

apply

profile

© Copyright Malina Software103

The MARTE Profile of UML

 Modeling and Analysis of Real-Time and Embedded
Systems (MARTE)

 A UML 2-based successor to the UML Profile for
Scheduling, Performance, and Time

 Includes a general facility for

 Specifying quantitative and physical characteristics of
software systems and platforms

 Intended to support

 Accurate modeling of RTE systems

 Automated analyses of key system qualities

© Copyright Malina Software104

Design Principles/Objectives

 Precise modeling of both software and corresponding
computing hardware and the relationship between
them

 Cover the full development cycle (from requirements
specification to design to implementation)

 Minimally intrusive: users must not distort their
modeling methods and style just to fit MARTE

 Ability to take advantage of existing proven analysis
methods as well as support new ones

 Facilitate the use of complex analysis methods and
tools through automation

© Copyright Malina Software105

MARTE

Main Elements of MARTE

Foundations

Real-Time Domain
Modeling Support

Real-Time Domain
Analysis Support

«import»
«import»

Annexes

Shared abstractions
and concepts

Support for QoS
analyses

For precise modeling
of RT phenomena

© Copyright Malina Software106

MARTE Foundations

 Shared abstractions and concepts

 Includes an abstract model of dynamic semantics (necessary
for scenario modeling)

Foundations

Non-Functional
Properties Specification

(NFP)

Time Modeling
Support

Abstract Resources
Modeling (GRM)

Allocation
Specification

© Copyright Malina Software107

Non-Functional Properties

 Can be qualitative or quantitative

 Qualitative properties are usually enumerations

 E.g., ROM type: {EEPROM, EPROM, flash, OTP_EPROM,…}

 Quantitative properties involve:

 Quantity (value): how much/magnitude

 Dimension: what is being measured (e.g., length, volume,
duration)

 Unit: the standard used to measure a dimension (e.g.,
meter, litre, second)

 Sometimes it is necessary to add a qualification to
a property

 E.g., required or provided, measured or estimated,…

© Copyright Malina Software108

Defining Units

 Defined as a kind of Enumeration with enumeration
values that may have optional additional attributes

 Example: Time units

 Second [declared as a BASE unit]

 Millisecond [1/1000 of the BASE unit]

 Minute [60 times the BASE unit]

«enumeration»

TimeUnit

«unit» s

«unit» ms {convFactor = 1E-3,

baseUnit = s}

«unit» min {convFactor = 60,

baseUnit = s} . . .

«metaclass»

UML::EnumerationLiteral

«stereotype»

Unit

convFactor : Real [0..1]

convOffset : Real [0..1]

baseUnit : Unit [0..1]

© Copyright Malina Software109

Defining Types of Quantitative NFPs

«metaclass»

UML::DataType

«stereotype»

VSL::TupleType

tupleAttrib : Property [*]

«stereotype»

NFPType

valueAttrib : Property [0..1] {subsets tupleAttrib}

unitAttrib : Property [0..1] {subsets tupleAttrib}

expressionAttrib: Property [0..1] {subsets tupleAttrib}

«nfpType»

NFP_Real
{valueAttrib = value,

expressionAttrib = expression}

value : Real

expression : VSL_Expression

«nfpType»

MyDuration

unit : TimeUnit

All custom NFP types
should be stereotyped
by this stereotype

This and other base NFP
types are pre-defined in
the MARTE library

Custom (user-defined)
NFP type

© Copyright Malina Software110

«timedAction»

SendAction

«timedAction»

timeTaken = 5 ms

User Model

«stereotype»

TimedAction

«nfp» timeTaken : MyDuration

«metaclass»

UML::Action

Custom Profile Definition

Defining Types of Quantitative NFPs (cont.)

 The base NFP type for a custom NFP type is
determined by the kind of value of the property:

 NFP_Boolean, NFP_String, NFP_Real, NFP_Integer,
NFP_DateTime, NFP_Natural

 Using the custom property in some custom extension
of MARTE:

© Copyright Malina Software111

MARTE Library

 Basic primitive types and corresponding operations:

 Boolean, Integer, Real, UnlimitedNatural, String, DateTime

 Common unit types:

 Length, area, weight, frequency, time, data length, power,
energy, data transmission rate

 Common complex data types:

 Integer vector, integer matrix, integer interval, real
vector, real matrix, real interval, arrays (template),
interval (template),

 Common NFP types

 Standard probability distributions

© Copyright Malina Software112

Value Specification Language

 Language to specify non-functional (QoS) property values

 Textual language

 Includes literals, variables and expressions

 Expressions involving variables can capture functional relationships
between values of different properties

 Examples:

 [1..5] = interval literal

 {1, 2, 4, 8} = numerical collection literal

 2008/01/31 Thr = date literal

 (2, us) = tuple literal (for structured data) or

(value=2, unit=us)

 in $temp : Temperature = 0 = a variable declaration

 ((temp>=0) ? ‗positive‘ : ‗negative‘) = conditional expression

 aComplexNum.real = reference to ―real‖ property of aComplexNum

© Copyright Malina Software113

Modeling Time with MARTE

―Time has been systematically removed from theories of
computation, since it has been viewed as representing
the annoying property that computations take time.‖

E. Lee, UC Berkeley

 Sophisticated time model

 But, can be reduced to a very simple subset

 3 main parts:

Structure of Time

• time bases

• multiple time bases

• instants

• time relationships

Access to Time

• clocks

• logical clocks

• chronometric clocks

• current time

Using Time

• timed elements

• timed events

• timed actions

• time constraints

© Copyright Malina Software114

Structure of Time: The Core Metamodel

Time Base

Instant

instant 1..* {ordered}

1

1 currentInstant

MultipleTime Base

0..* memberTB

TimeStructureRelation
0..*

tsRelations

TimeBaseRelation

TimeInstantRelation

2..*

2..*

Interval

lower 1 upper 1

© Copyright Malina Software115

Clocks

Clock

nature : {discrete, dense}

resolution : Real =1.0

currentTime : Real

maximalValue : Real [0..1]

TimeBase

clockTick

0..1

Unit

Event

timeBase

1

acceptedUnits

1

LogicalClockChronometricClock

standard: : TimeStandardKind [0..1]

stability : Real [0..1]

offset : DurationValue [0..1]

skew : Real [0..1]

drift : Real [0..1]

referenceClock

0..1

© Copyright Malina Software116

Time Values

TimeValue

nature : {discrete, dense}

InstantValue DurationValue

Clock

Unit

onClock

1

unit

0..1

TimeIntervalValue

isMinOpen : Boolean

isMaxOpen : Boolean

min 1 max 1

intervalValue

1

© Copyright Malina Software117

Timed Elements

 Serves to associate time with many different
concepts in a model

TimedElement

ModelElement

Clock

nature : {discrete, dense}

resolution : Real =1.0

currentTime : Real

maximalValue : Real [0..1]

on 1..*

TimedEventOccurrence

EventOccurrence

InstantValue

at 1..*

© Copyright Malina Software118

Example MARTE Annotations

Slide courtesy of Sebastien Gerard, CEA-LETI

:Controller :Sensor

start()

acquire()

ack()

sendData(data)

@t2
@t0

@t1

@t3

Sd DataAcquisitionSd DataAcquisition

:Controller :Sensor

acquire() { d1<=(1, ms) }

sendData (data) { [(0, ms)..(10, ms)] }

ack()

@t2

{ [d1..30*d1] }

&d1

constraint1= { (t0[i+1] - t0[i]) > (100, ms) }

constraint2= { (t3 when data<5.0) < t2+(30, ms) }

Extended

duration

intervals with

bound « [] »

specification

Instant Interval

Constraint

Constraint in an

observation with condition

expression

Duration expression

between two sucessive

occurrences

start() { jitter(t0)<(5, us) }

@t0

{]t1..t1+(8, ms)] }

Jitter constraint

@t3

@t1

© Copyright Malina Software119

Abstract Resource Modeling

 Resource take on load and provide services

 These concepts are used in both the modeling and
the analysis parts of MARTE

 The instance vs type split is at the core again:

Resource
type

1..*

ResourceService

ResourceInstance

ResourceServiceExecution
type

1..*

instance

0..*

instance

0..*

context 1

pServices 1exeServices 0..*

context 0..*

© Copyright Malina Software120

Resource Types

Resource

resMult : Integer [0..1]

isProtected : Boolean

isActive : Boolean

Storage
Resource

Communication
Resource

Timing
Resource

Synch
Resource

Concurrency
Resource

Computing
Resource

Device
Resource

© Copyright Malina Software121

Sample Resource Type: Communications

CommunicationResource

resMult : Integer [0..1]

isProtected : Boolean

isActive : Boolean

CommunicationEndPoint

packetSize: Integer

CommunicationMedia

elementSize : Integer

capacity : NFP_DataTxRate

packetTime : NFP_Duration

blockingTime : NFP_Duration

transmissionMode : TransmissionModeKind

ProcessingResource

speedFactor : NFP_Real = 1.0

© Copyright Malina Software122

Example Usage

«storageResource»
{elementSize = 1024x1024x8,
resMult = 256}

«computingResource»
{speedFactor = 0.6}

Controller

«deviceResource»
{speedFactor = 1.0}

RobotArm

«computingResource»
{speedFactor = 1.0}

NT_Station

«communicationsMedia»
{speedFactor = 8.5}

«communicationsMedia»
{speedFactor = 1.0}

VME_Bus

CAN_Bus

© Copyright Malina Software123

Scheduling Metamodel

Concurrency
Resource

SchedulingPolicyKind

EarliestDeadlineFirst

FIFO

FixedPriority
LeastLaxityFirst

RoundRobin

TimeTableDriven

Undef

Communication
Resource

Computing
Resource

Device
Resource

Scheduling
Policy

policy: SchedulingPolicyKind

Scheduler

policy 1

0..* schedulableResource

Schedulable
Resource

1

host

Scheduling
Parameters

1

host

1

*

Processing
Resource

processingUnits

1..*

*

© Copyright Malina Software124

Resource Usage Metamodel

 Abstract view of how a resource is used

 Basis for many different types of analyses

Resource
Usage

StaticUsage DynamicUsage

Behavor

UsageDemand
workload

0..* 0..*

Event

event 1

Resource

usedResource 0..*

0..*

UsageTypedAmount

execTime: NFP_Duration [*]

msgSize : NFP_DataSize [*]

allocateMemory : NFP_DataSize [*]

usedMemory : NFP_DataSize [*]

powerPeak : NFP_Power [*]

energy : NFP_Energy [*]

amount

0..*

0..*

© Copyright Malina Software125

Allocation

 Conceptual model borrowed from SysML

 Move towards convergence of the two real-time domain
languages

 In MARTE allocation is used for two semantically
quite different but syntactically similar purposes

 For modeling deployment of applications to platforms

 For specifying refinement relationships between elements of
a more abstract model to corresponding elements of a more
concrete one

• However, this can be done using standard UML facilities

© Copyright Malina Software126

Allocation Metamodel (Recent)

source

1..*Assign

ModelElement

NFP_Constraint

kind : AllocationKind

Nature : AllocationNature

«enumeration»

AllocationNature

spatialDistribution

timeScheduling

«enumeration»

AllocationKind

spatial

behavioral
hybrid

target

1..*

0..* impliedConstraint

© Copyright Malina Software127

: MyApplication

appComp1 : C1 appComp2 : C2:

: SomeOperatingSystem

appProcess : Process [256]

«computingResource»

c : LogicalCPU
«storageResource»

m : LogicalMemory

: SomePhysicalProcessor

«storageResource»

PhysicalMemory
«computingResource»

PhysicalCPU

Allocation Example

«assign»

{nature = timeScheduling,

kind = structural}

«assign»

{nature = spatialDistribution,

kind = structural}

«assign»

{nature = spatialDistribution,

kind = structural}

«assign»

{nature = spatialDistribution,

kind = structural}

«assign»

{nature = spatialDistribution,

kind = structural}

© Copyright Malina Software128

«hwResource»

ServerNode

«hwProcessor»

cpu : CPU
«hwDrive»

disk : Disk[2]

Abstract Model

«hwResource»

ProcessingNode

«hwProcessor»

: CPU

«hwBus»

: Bus

«hwDMA»

: DMA

«hwDrive»

: Disk[2]
«hwRAM»

: RAM

{isSynchronous = true}

{mips = 5,

nbCores = 2}

{memorySize = (300, GB),

timing[1] = (, averageAxTime, (5, ms)),

timing[2] = (, maximumAxTime, (50, ms)}
{nbChannels = 2}

{isSynchronous = true

isStatic = false}

Refined Model

«refine»

Using UML Refinement

 Example: Refining an abstract platform model into a
more concrete one

© Copyright Malina Software129

Real-Time Domain Modeling Support

 For precise modeling of real-time specific
phenomena

Modeling

Abstract Component
Model (GCM)

Application Modeling
Support (HLAM)

Software Resources
Modeling (SRM)

Hardware Resource
Modeling (HRM)

© Copyright Malina Software130

Abstract Component Model

 Specializes the UML Structured Classes and
Components concepts for the real-time domain

 Primary conceptual refinement is the addition of
flow ports, for modeling data streams

FlowPort

/isAtomic : Boolean
direction : FlowDirectionKind

ownedFlowProperties

0..*

FlowProperty

direction: FlowDirectionKind

FlowDirectionKind

in

out

inout

© Copyright Malina Software131

Port Specializations and Notation Refinements

PORT NOTATION TYPE OF PORT

Port that only sends outgoing signal (but not operations)

Port that only receives incoming signals (but not

operations)

Port that receives or sends signals (but not operations)

Port that only provides operations (but not signals)

Port that only requires operations (but not signals)

Port that requires or provides operations (but not signals)

<>

© Copyright Malina Software132

Other Parts of the Modeling Part of MARTE

Modeling

Abstract Component Model
(GCM)

Application Modeling
Support (HLAM)

Software Resources
Modeling (SRM)

Hardware Resource
Modeling (HRM)

Further refinements of
the GRM concurrency-
related concepts from the
applications standpoint

Detailed refinements of
GRM‘s concepts for
software platform resources
based on existing RTOS,
with specialized notations

Detailed refinements of
GRM‘s concepts for
hardware platform
resources commonly used in
RTE systems

Applications side

Platforms side

© Copyright Malina Software133

«hwResource»

ProcessingNode

«hwProcessor»

: CPU

«hwBus»

: Bus

«hwDMA»

: DMA

«hwDrive»

: Disk[2]
«hwRAM»

: RAM

{isSynchronous = true}

{mips = 5,

nbCores = 2}

{memorySize = (300, GB),

timing[1] = (, averageAxTime, (5, ms)),

timing[2] = (, maximumAxTime, (50, ms)}
{nbChannels = 2}

{isSynchronous = true

isStatic = false}

Modeling Hardware with MARTE

 Example: A hardware platform with specified QoS
parameter values

© Copyright Malina Software134

Real-Time Domain Analysis Support

 Extensible to other analysis types in the future

Analysis

Abstract QoS Analysis
Model (GQAM)

Schedulability Analysis
Support (SAM)

Performance Analysis
Support (PAM)

«import»
«import»

© Copyright Malina Software135

The Basic Analysis Process

UML Modeling

Tool

5

3.1

4

Model Analysis

Tool

Automated
model transformation



Automated
inverse transformation

2.5

QoS annotations

© Copyright Malina Software136

Generic Quantitative Analysis Model (GQAM)

 Captures the pattern common to many different kinds of
quantitative analyses (using concepts from GRM)

 Specialized for each specific analysis kind

(e.g., application
programs, system
programs, etc.)

Work demand
arrivals
(Workload)

(e.g., event arrivals,
time triggers)

Demand Side Supply Side

Work
CharacterizationWork
CharacterizationWork
Characterization

Resource1

ResourceN

.

.

.

(e.g., disk)

(e.g., CPU)

Analysis Context

© Copyright Malina Software137

GQAM Workload Metamodel

 Different ways of capturing the sources of the
workload

WorkloadEvent

pattern: ArrivalPattern

«dataType»

«choiceType»

ArrivalPattern

periodic: ArrivalPattern

Aperiodic : AperiodicPattern

Sporadic : SporadicPattern

burst : BurstPattern

irregular : IrregularPattern

Closed : ClosedPattern

open : OpenPattern

TimedEvent

WorkloadGenerator

population : NFP_Integer

EventTrace
trace

0..1

generator

0..1

timeEvent

0..1

© Copyright Malina Software138

GQAM Dynamic Behavior Metamodel

WorkloadEvent

pattern: ArrivalPattern

PrecedenceRelation

connectorKind : ConnectorKind

BehaviorScenario

hostDemand: NFP_Duration [*]

hostDemandOps : NFP_Real [*]

interOccTime : NFP_Duration [*]

throughput : NFP_Frequency [*]

respTime : NFP_Duration [*]

utilization : NFP_Real [*]

utilizationOnHost : NFP_Real [*]

Step

isAtomic : NFP_Boolean

blockingTime : NFP_Duration [*]

repetitions: NFP_Real = 1

probability : NFP_Real = 1

priority : NFP_Integer

steps 0..*root 0..1

effect

1

1..*

inputStream

succ

*

pred

*

connectors *

© Copyright Malina Software139

GQAM Steps

relRes 0..1

ReleaseStep

resUnits: NFP_Integer

Step

isAtomic : NFP_Boolean

blockingTime : NFP_Duration [*]

repetitions: NFP_Real = 1

probability : NFP_Real = 1

priority : NFP_Integer

AcquireStep

resUnits: NFP_Integer

CommunicationStep

msgSize: NFP_DataSize

Resource

acqRes 0..1

ExecutionHost
host

0..1

CommunicationHost CommunicationChannel

0..1 0..1

Requested
Service

© Copyright Malina Software140

Performance Analysis Example – Context

 An interaction (seq. diagram representation)

webserver

<<PaRunTInstance>>

{instance = webserver}

database
<<PaRunTInstance>>

{instance = database}

browser

<<PaRunTInstance>>

{instance = browser}

<<GaPerformanceContext>> {contextParams= in$Nusers, in$ThinkTime, in$Images, in$R}

2: getCustomerData

<<PaStep>>

{hostDemand = (2,ms)}

3:

<<GaWorkload Event>> {closed (population=Nusers,

extDelay=ThinkTime)}

<<PaCommStep>> {msgSize=(2.9, KB)}

1: getHomePage

<<PaStep>> {prob=0.2}[if customer is logged in]opt<<PaStep>> {hostDemand = (1,ms),

respT={((1,s,percent95),req),

((R,s,percent95),calc)}

Slide courtesy of D. Petriu, M. Woodside (Carleton U.)

© Copyright Malina Software141

Typical Performance Analysis Results

 Typical non-linear behaviour for queue length and waiting time

 server reaches saturation at a certain arrival rate (utilization close to
1)

 at low workload intensity: an arriving customer meets low competition,
so its residence time is roughly equal to its service demand

 as the workload intensity rises, congestion increases, and the
residence time along with it

 as the service center approaches saturation, small increases in arrival
rate result in dramatic increases in residence time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8

Arrival Rate

U
ti

li
z
a
ti

o
n

0

5

10

15

20

0 0.2 0.4 0.6 0.8

Arrival rate

R
e
s
id

e
n

c
e
 T

im
e

0

5

10

15

20

0 0.2 0.4 0.6 0.8

Arrival rate

Q
u

e
u

e
 l
e
n

g
th

Utilization Residence Time Queue length

saturation saturation saturationSlide courtesy of

D. Petriu, M. Woodside (Carleton U.)

© Copyright Malina Software142

MARTE Annexes

Annexes

Value Specification
Language (VSL)

«modelLibrary»

MARTE Library

Repetitive Structure
Modeling (RSM)

For concise graphical
representation of complex
arrayed structures (e.g.,
memory and CPU arrays)

© Copyright Malina Software143

«hwResource»

ProcessingNode

«hwProcessor»

: CPU

«hwBus»

: Bus

«hwDMA»

: DMA

«hwDrive»

: Disk[2]
«hwRAM»

: RAM

{isSynchronous = true}

{mips = 5,

nbCores = 2}

{memorySize = (300, GB),

timing[1] = (, averageAxTime, (5, ms)),

timing[2] = (, maximumAxTime, (50, ms)}
{nbChannels = 2}

{isSynchronous = true

isStatic = false}

«hwResource»

ServerNode

«hwProcessor»

cpu : CPU
«hwDrive»

disk : Disk[2]

«refine»

Modeling Platforms as Service Providers

 A platform offers a set of services

 Can be abstracted to a model with service provision points

© Copyright Malina Software144

The Acceptable Platform Architectural Pattern

 An application can include a spec of an ―acceptable
platform‖ that defines minimal acceptable QoS
values

 Provides true platform independence while retaining platform
awareness

144

videoClient

: MyApp

videoClient

: MyApp
videoServer

: VServer

videoServer

: VServer

«resource»

apClientNode

: ClientDomain

«resource»

apClientNode

: ClientDomain

«commMedia»

apNetwork

: NetworkDomain

«commMedia»

apNetwork

: NetworkDomain

«resource»

apSNode

: ServerDomain

«resource»

apSNode

: ServerDomain

cpu : CPU disk : Disk

{memorySize = (20, GB),

timing[1] = (, averageAxTime, (5, ms)),

timing[2] = (, maximumAxTime, (80, ms)}

{memorySize = (20, GB),

timing[1] = (, averageAxTime, (5, ms)),

timing[2] = (, maximumAxTime, (80, ms)}

{mips = 2}{mips = 2}

«allocate» «allocate» «allocate»

Acceptable

Platform

© Copyright Malina Software145

Matching Required and Offered QoS

 This combination of models can be formally analyzed

145

videoClient

: MyApp

videoClient

: MyApp
videoServer

: VServer

videoServer

: VServer

«hwResource»

sn

: ServerNode

«hwResource»

sn

: ServerNode

cpu : CPU

disk : Disk[2]

«hwResource»

cn

: ClientNode

«hwResource»

cn

: ClientNode

«hwMedia»

net

: LAN

«hwMedia»

net

: LAN

«resource»

apClientNode

: ClientDomain

«resource»

apClientNode

: ClientDomain

«commMedia»

apNetwork

: NetworkDomain

«commMedia»

apNetwork

: NetworkDomain

«resource»

apSNode

: ServerDomain

«resource»

apSNode

: ServerDomain

cpu : CPU disk : Disk

{memorySize = (20, GB),

timing[1] = (, averageAxTime, (5, ms)),

timing[2] = (, maximumAxTime, (80, ms)}

{memorySize = (20, GB),

timing[1] = (, averageAxTime, (5, ms)),

timing[2] = (, maximumAxTime, (80, ms)}

{mips = 2}{mips = 2}

{memorySize = (300, GB),

timing[1] = (, averageAxTime, (5, ms)),

timing[2] = (, maximumAxTime, (50, ms)}

{memorySize = (300, GB),

timing[1] = (, averageAxTime, (5, ms)),

timing[2] = (, maximumAxTime, (50, ms)}

{mips = 5,

nbCores = 2}

«allocate»«allocate»«allocate»«allocate»

«allocate» «allocate» «allocate»

Acceptable

Platform

© Copyright Malina Software146

Summary: The MARTE Profile

 The MARTE profile adds an important new
capability to UML and UML-based languages: the
ability to specify quantitative information (e.g.,
QoS)

 It foresees two main areas of application

 Modeling of systems

 Analysis of systems

 It is extensible and intended to be specialized
further

 For architects, it is important as a tool for
capturing the various qualities of systems

© Copyright Malina Software147

D0main-Specific Modeling Languages

 UML 2

 MARTE

 SysML

 AADL

© Copyright Malina Software149

Systems Engineering (SE)

 ―Systems engineering is a holistic, product oriented
engineering discipline whose responsibility is to
create and execute an interdisciplinary process to
ensure that customer and stakeholder needs are
satisfied in a high quality, trustworthy, cost
efficient, and schedule compliant manner throughout
a system‘s life cycle.‖ (International Council On
Systems Engineering – INCOSE)

 SE is a mature discipline based on principles
developed over 50 years ago

 Weak support for software modeling

 Need to adopt it to iterative design model common in MDD

© Copyright Malina Software150

SysML: Rationale

 Systems engineering typically involves complex
combinations of diverse disciplines and technologies

 Difficult to understand

 Many integration problems

 Modeling can alleviate many of these problems

 Raising the level of abstraction hides technological detail
that can be confusing

 Why a UML profile?

 Reuse of widely-available UML expertise

 Reuse of UML tooling

© Copyright Malina Software151

UML concepts

Excluded

UML

concepts

UML 2 and SysML

 Uses a subset of UML concepts
 Simplified language

 Provides SE-specific customization of certain UML concepts

 However, it is possible to combine the excluded concepts if
desired

SysML concepts

Reused

UML

concepts

Extended

UML

concepts

© Copyright Malina Software152

SysML Diagram Types

 Some UML diagrams were modified, others omitted, and
new SysML-specific diagrams added

SysML Diagram

Requirement

Diagram

Statechart

Diagram

UseCase

Diagram

Sequence

Diagram

Activity

Diagram

Structure

Diagram

Behavior

Diagram

Block

Definition

Package

Diagram

Parametric

Diagram

Internal Block

Diagram

© Copyright Malina Software153

CONTENTS

diagramKind [elementType] elementName [diagramName]

SysML Diagram Format

 Simpler and more systematic approach than UML
 All diagrams have a common format

act

bdd

ibd

pkg

par

req

sd

stm

uc

HEADER

activity

block

package

...

pkg [package] Top

PkgA PkgB
«import»

© Copyright Malina Software154

Defining and Specifying Physical Quantities

 Using value types
 e.g. a delay expressed in seconds:

timeDelay : s

 ValueType is a specialization of the UML DataType
concept and has a dimension and a unit:

«valueType»

s

unit = Second

«unit»

Second

dimension = Time

«dimension»

Time

 Pre-defined units:
 Time

 Length

 Mass

 ElectricCurrent

 ...

© Copyright Malina Software155

SysML Blocks

 Block = a unifying SysML concept that unifies the UML
Class and Collaboration concepts into a concept more
familiar to systems engineers

«block»

{isEncapsulated}

Controller

{a + b= 0}

constraints

start ()

stop ()

operations

driver : Driver

console : Instrumentation

parts

timeoutInterval : s = 30

values

A NON-encapsulated
block is logically
equivalent to a
collaboration

Parts are elements of
the internal structure
of a block

Defines useful values
related to the block

 Used to model:
 Hardware

 Software

 Data

 Facilities

 Physical entities

 etc.
policy : Policy

references

Parts that are not
owned by the block

© Copyright Malina Software156

Block Definition Diagram (bdd)

 Plays the same role as UML class diagrams

bdd [package] ControllerSystem

«block»

Controller

«block»

Driver

«block»

Instrumentation

driver 1 console 1

«block»

Panel

«block»

Policy

policy 1

Reference
part (plug-in)

(Owned) part (Owned) part

© Copyright Malina Software157

bdd [package] ControllerSystem

«block»

Controller

«block»

Driver

«block»

Instrumentation

driver 1 console 1

«block»

Panel

«block»

Policy

policy 1

Internal Block Diagram (ibd)

 Captures the internal
structure of a block

ibd [block] Controller

driver :

Driver

console :

Console

policy :

Policy

Reference part

(Owned) part

(Owned) part

© Copyright Malina Software158

Nested Connectors

 Connectors that reach inside a non-encapsulated
block instance

ibd [block] WheelAssembly

axle : Axle

left : Wheel

tire:Tire hub :Hub

right : Wheel

tire :Tire hub :Hub

© Copyright Malina Software159

«block»

author : MentalBlock

«block»

editor : Pest

ed:MsgPort

a:MsgPort

SysML Ports and Flows

 Two kinds:

 Standard ports = UML ports

 Flow ports = support the transfer of flows

 A flow models a streaming phenomena (energy, liquids, electrical
currents, data streams, etc,)

 Flows have a direction relative to a block

p:IdeaPort

«block»

sheet : Paper

i:Ideas w:IdeaPort

Conjugated
standard port

Flow port

Flow

© Copyright Malina Software160

SysML Parametrics

 Specify relationships (equations) between value properties

 Used for engineering analysis

 Have a block-like syntax

 Constraint blocks defines a constraint and identify its parameters

«constraint»

NewtonsLaw

{f = m * a}

constraints

m : Mass

a : Acceleration

f : Force

parameters

n1:NewtonsLaw

m:

a:

f:

An occurrence of the constraint

© Copyright Malina Software161

Parametrics Diagram

 Used for engineering analysis

par [constraintBlock] BrakingDistance

:NewtonsLaw

{f = m*a}

m:

a:

f:

veh.brakes.Force:

:VelocityEquation

{v(n+1) = v(n)+a*dt}

v: a:

veh.Mass:

veh.dist:

:DistanceEquation

{d(n+1) = d(n)+v*dt}

d:

© Copyright Malina Software162

SysML Allocations

 Mapping of a set of (client) elements in a model to
another (target) element

 An abstract concept with many potential
interpretations
 The target element is an implementation of the client elements

 The client element is an abstract representation of the target

 The target is the hardware on which the client software is
deployed

 The target is responsible for the behavior represented by the
client

 etc.

Client Target

«allocate»

© Copyright Malina Software163

SysML Requirements Modeling

 Requirements represent an important and dynamic element of
system engineering

 SysML provides a set of modeling concepts and relationships for capturing
requirements and their relationships to other system engineering artifacts

 Complement to use case modeling

 Basic concepts:

«requirement»

SystemRecovery

id = “SR100/07”

text: “The system shall…”

Requirement

«testCase»

TestRecovery

result : VerdictKind

parameter [0..*]

Test Case

«enumeration»

VerdictKind

pass

fail

inconclusive

error

© Copyright Malina Software164

req [package] ReqPackage

Hierarchical Requirements

 For decomposing complex requirements into sub-
requirements

«requirement»

ParentRequirement

«requirement»

ChildRequirement1

«requirement»

ChildRequirementN
. . .

© Copyright Malina Software165

Requirements Relationships (1)

 Satisfaction

«requirement»

RequirementXYZ
SomeElement

«satisfy»

«requirement»

BaseRequirement

«requirement»

DerivedRequirement

«deriveReq»

 Derivation:

«requirement»

RequirementXYZ

«testCase»

TestCase123

«verify»

 Verification:

© Copyright Malina Software166

Requirements Relationships (2)

 Refinement

«requirement»

RequirementXYZ
SomeElement

«refine»

«requirement»

RequirementXYZ

«requirement»

RequirementABC

«trace»

 Trace:

© Copyright Malina Software167

SysML References

 SysML spec:

 http://www.omg.org/cgi-bin/doc?ptc/2006-05-04

 Books:

 Friedenthal, S., Moore, A. and Steiner, R., ―A Practical Guide
to the Systems Modeling Language,‖

© Copyright Malina Software168

D0main-Specific Modeling Languages

 UML 2

 MARTE

 SysML

 AADL

© Copyright Malina Software169

The AADL Language

 Architectural Analysis and Design Language

 Defined by the ―AS 2C ADL Subcommittee of the
Embedded Systems Committee of the Aerospace Avionics
Division of SAE Aerospace‖

 SAE report: AS-5506

 http://www.aadl.info

 Derived from an earlier ADL called MetaH developed by
Honeywell for the US DoD

 For the design of dependable embedded real-time
systems

 Strong focus on timing (schedulability) and reliability
characteristics

 Supports automated analysis through specialized tools

 A UML profile version has also been defined

© Copyright Malina Software170

AADL Model of Computation

 Structure-dominant

 Network of communicating (application) components

 AADL run-time:

 Provides reliable communication and other system services

 Ensures timing properties maintained

 Isolates applications from deep platform knowledge

Application
Component

Application
Component

Application
Component

AADL run-time system (virtual machine)

Real-time OS

Hardware Platform

© Copyright Malina Software171

AADL Viewpoints

 Component View:

 Software architecture as a platform-independent
hierarchical configuration of components, connectors, and
interfaces

 Concurrency and Interaction View:

 Time-ordered component interactions through interfaces
and connectors

 Include quality of service (QoS) properties (timing)

 Execution View:

 Platform modeling (as a set of resources) and allocation of
software to platform elements

 Analysis of timing, reliability, and other QoS of full
system

© Copyright Malina Software172

thread1

thread1

Process1

thread3

Process2

SystemX

data

20 Hz

20 Hz

AADL: Modeling Concepts – Software

 Component model inspired by real-time and OS world concepts

 Systems, concurrent processes, concurrent threads, subprograms, data

 Ports: event port, data port, event-data port

Event PortFlow

Data Port

property

© Copyright Malina Software173

AADL: Modeling Concepts – Hardware

 Hardware concepts: processor memory, bus, device

 Context diagram shows software application in context

Autopilot

Pilot
Display

Radio

GPS

Avionics
System

RTOS RAM

© Copyright Malina Software174

AADL: Concrete Syntax

 Both graphical and textual syntactic variants exist

 Graphical syntax is limited and is supplemented by
textual specifications

 Example:

Displayer

position

speed

screen_position

system Displayer

features

speed : in data port speed_port;

position : in data port position_port;

screen_position : out data port position_port

end Displayer

© Copyright Malina Software175

Summary

 The design of RTE systems is hard due to essential
complexities (concurrency, asynchrony, etc.) stemming
from the complexity of the real world

 Traditional methods of RTE development suffer from an
overdose of accidental complexity (inadequate languages,
methods, tools)

 Model-based approaches mitigate and even eliminate
some of the accidental complexity

 A set of powerful and standardized modeling languages
have been developed explicitly for RTE development
(UML-MARTE, SysML, Modelica, AADL)

 Industrial experience with the application of these
languages has demonstrated its potential to substantially
improve productivity and product quality

© Copyright Malina Software176

The System of Systems Design Problem

 Early domain specialization often
leads to:

 Inadequate requirements
coverage

 Suboptimal designs

 Integration problems

Software system

Electronics system

Mechanical system

System

© Copyright Malina Software177

Major Pain Point: Designs Disconnect

SW design

tool

Model

CAD

tool
…etc.

Systems

engineering

tool

ibd [block] Anti-LockController

[Internal Block Diagram]

d1:Traction

Detector

m1:Brake

Modulator

c1:modulator

interface

Project

management

tool

Manual and document-based

interconnection between tools, or

 Pairwise and uni-directional tool

coupling (requires many separate

integrations)

 Project tracking based on informal

and subjective reporting

© Copyright Malina Software178

A Tooling Architecture for Systems Design

SW design

tool

Model

CAD

tool
…etc.

SE

tool

ibd [block] Anti-LockController

[Internal Block Diagram]

d1:Traction

Detector

m1:Brake

Modulator

c1:modulator

interface

Development

governance

tool

SOA I/F SOA I/F

SOA I/F SOA I/F

Collaborative Development Environment (e.g., Jazz)

semantic links

