MODPROD 2011
xtUML in practice

Martin Nilsson
Feb 9 2011

© Saab AB
xtUML IN PRACTICE

Agenda

- Modelling background
- MDA and xtUML
- Experiences
MODELLING BACKGROUND
DIFFERENT MODEL ORIENTED WAYS

- Sketches ~ Traditional development
 - informal capture of ideas and concepts
 - explanation images in traditional documents
 - coding may proceed directly

- Blue Prints ~ SysML/UML
 - specifies product structure architecture
 - close one-to-one mapping towards implementation
 - code structure / skeleton can be generated – code is added to the model in target language or via separate files

- Executable models ≡ Executable specifications ~ xtUML
 - separates the application from its implementation, i.e. platform independent parts from platform unique parts
 - the model does not need to have one-to-one mapping towards implementation
MODELLING BACKGROUND

- Saab has been Using xtUML in:
 - Flight demonstrator
 - Flight planning systems
 - Missiles
 - Missile training system
 - Demonstrator systems
 - Software for usage analysis and tactics/methods development at FM

- Translating models into:
 - C++
 - Ada95
 - PD80
 - SQL/XML for persistence
 - html for documentation/reviews

- Reusing models for translation into different languages and platforms for different projects
MDA AND xtUML
THE PROMISES OF MDA AND xtUML

- Executable models/specifications (with an abstract and executable action language)
 - Early validation of specifications. Execute the models while building them, without code generation
 - Raise the abstraction level to a suitable level for each subject matter
 - Reuse of applications across architectures and platforms

- Translation of executable models/specifications to implementations
 - Repartition functionality across a platform, e.g. between software and hardware
 - Retarget functionality to new/modified platforms
 - Reuse architectural patterns across applications
 - Consistency between models, documentation and code

- Integration of systems and software disciplines
 - Raise the productivity
 - Shorten the development time
 - Increase product quality
 - Increase flexibility in building systems

© Saab AB

Courtesy of Saab Dynamics
 USING xtUML

- xtUML is a subset of UML, extended with semantics
- xtUML models can be executed
- Platform independent models
- Open translation process – model compiler
- Application/model independent model compiler
- Model compiler independent models – fundamental for reuse and portability
- Reduce redundant documentation
- Based on meta-models

- Compatibility/transition, other standards
MODEL TRANSLATION OVERVIEW

Model Compiler
- Model Compiler Metamodel(s)
- Archetypes
- Target Language Mechanisms

xtUML Metamodel

xtUML Model Builder

xtUML Application Model(s)

xtUML Generator

Manual Implementation

Compilation/Build Tools

Executable System

Legend
- PIM-Related Tools
- Architecture-Related Tools
- Implementation and Build-Related Tools/Activities

© Saab AB

Courtesy of Saab Dynamics
EXPERIENCES - MODELLING

- The model shall contain a limited set of rules and shall be unambiguous
 - Capture rules in classes and associations (graphical) models instead of action code

- Raise the level of abstraction
 - Do not think code, not bit and bytes – Function oriented
 - The model might be instantiated for a specific system
 - The graphical view of the model shall be clear, readable and articulate, reduce need to read the actions of the model to understand the functionality

- A model is a solution to a problem or a family of problems

- Functional oriented interfaces instead of interface oriented functions

- Easier to perform big changes (function, architecture)

- Hard for traditional programmers to specify articulate models and to raise the abstraction level
EXPERIENCES – MODEL ENABLES

- The “cool” and “hard to understand” code solutions are removed from design. Efficient code will be used by the MC and in the architecture.
- Consistency check of specification/model.
- Seamless handover between SE and SW development.
- Functions are disconnected from their implementation.
- A view to discuss problems and their solutions.
 - when you modify something you modify the solution.
- Execution and test from specification down to implementation.
- Defects in specification/design is found early in the process.
- Earlier design decisions and identification of missing requirements.
EXPERIENCES - ORGANIZATION

- Need to get cross-discipline and cross-functional teams and work process
- Use different modelling/development methods for different subject matters, within the same system/product. Let the methods use each other
- Big difference to base a project on a model based method compared to using model based methods of subsystems/applications within a project.
- Find the balance between model, legacy, build, test …
- Patience, it takes time. One (modeller) need to “fail” and see a better approach to understand
- Remember that the MC should be adapted for each project
EXPERIENCES - PROCESS

- Verification is still at object code level. Reuse of specification/model tests
- Functional review at model level
- Safety review at source code level
- Still lots of requirements in traditional documents, requirements at low level in model
- Parallel development
SUCCEEDING IN xtUML-MODELING
Creating Readable and Interpretable Models

Modeling Phase (Captured Rules and Logics)

- Actions
- State machines
- Classes / Associations
- Components

“Good model”
“Bad model”