

Status of OpenModelica
Real-Time Simulation Profiling

Martin Sjölund, Linköping University
2011-02-07

3rd OpenModelica Workshop
Linköping, Sweden

OpenModelica 1.5.0 (2010)

>> simulate(TanksConnectedPI, ...)

record SimulationResult

 resultFile =
"TanksConnectedPI_res.plt",

 messages = "",

end SimulationResult;

>> timing(simulate(TanksConnectedPI,
...))

0.85

 The compiler is silent
for a few seconds /
minutes / hours and
you get the result

 You don't even know
what phase is slow

OpenModelica r6077 (2010-09)

>> simulate(TanksConnectedPI, ...)

record SimulationResult

 resultFile =
"TanksConnectedPI_res.plt",

 messages = "",

 totalTime = 0.825739127,

 timeFrontend = 0.007130054,

 timeBackend = 0.004097103,

 timeCodegen = 0.019479138,

 timeCompile = 0.493652825,

 timeSimulation = 0.301340639

end SimulationResult;

 Added a few real-time
clocks so we can
show users how long
each phase takes

 What if the simulation
takes 99% of the time

OpenModelica ~r7700 (2011-01)

>> buildModel(TanksConnectedPI,
method="dassl2", ...)

{"TanksConnectedPI","TanksConnectedP
I_init.txt"}

>> system("./TanksConnectedPI -mt")

Time to calculate initial values:
0.000134333 sec.

Total time to do event handling:
7.2713e-05 sec.

Total time to produce the output
file: 0.0109643 sec.

Total time to calculate simulation:
0.0185101 sec.

 The -mt (measure
time) flag now shows
accumulated time for
event handling and
the output file

 Switching to Matlab
output format gives a
big performance
increase

OpenModelica ~r7800 (2011-01)

>> buildModel(TanksConnectedPI,
method="dassl2", ...)

{"TanksConnectedPI","TanksConnectedP
I_init.txt"}

>> system("./TanksConnectedPI -mt")

...

>> system("cat omc_mt.log | head -n
3")

step,time,solver time,limitValue,

0,0.002,7.0561e-05,94,1.2941e-05

1,0.004,1.0562e-05,12,1.675e-06

 -mt now also creates
omc_mt.log

 Functions, linear /
mixed / non-linear
blocks execution
count+time is shown

 Will change it to a
binary format for low
overhead real-time
profiling

What does it find? (1)

class SimpleNonLinear

 Real x = cos(x);

end SimpleNonLinear;

step,residualFunc1

1, 3, 7.6e-07

...

n, 3, 7.6e-07

 Finds potential
performance issues
even in small models

 The non-linear solver
used does not get a
jacobian function as
input

 The system is
executed in every
step

What does it find? (2)

class ArrayCall

// {cos(1*time), ...

// cos(10*time)}

 Real x[10] =
tenCos(time);

end ArrayCall;

Step,tenCos

0, 10, 1.3e-05

...

n, 10, 1.3e-05

 The following causes
the function to be
called 10 times in
every step

What does it find? (3)

class ArrayCall

 Real x[10];

equation

 x = tenCos(time);

end ArrayCall;

Step,tenCos

0, 1, 1.3e-06

...

n, 1, 1.3e-06

 This will call the
function only once
every step

 The compiler should
be improved as soon
as possible

