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Abstract: A central task in engineering is the modelling of dynamical systems. In addition to first-principle methods,
data-driven approaches leverage recent developments in machine learning to infer models from observations.
Hybrid models aim to inherit the advantages of both, white- and black-box modelling approaches by combin-
ing the two methods in various ways. In this sense, Neural Ordinary Differential Equations (NODEs) proved
to be a promising approach that deploys state-of-the-art ODE solvers and offers great modelling flexibility. In
this work, an exemplary NODE setup is used to train low-dimensional artificial neural networks with phys-
ically meaningful outputs to enhance a dynamical model. The approach maintains the physical integrity of
the model and offers the possibility to enforce physical laws during the training. Further, this work outlines
how a confidence interval for the learned functions can be inferred based on the deployed training data. The
robustness of the approach against noisy data and model uncertainties is investigated and a way to optimize
model parameters alongside the neural networks is shown. Finally, the training routine is optimized with mini-
batching and sub-sampling, which reduces the training duration in the given example by over 80 %.

1 INTRODUCTION introduced by Chen (Chen et al., 2018), pose an-

other promising approach. NODEs only approxi-
The modelling of dynamical systems is an impor- mate the right-hand side of the differential equations
tant and challenging engineering task which forms with neural networks (NNs) and benefit from the us-
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Physics-enhanced Neural ODE

physically meaningful neural components
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DEFINITION

Physics-enhanced Neural ODE

physically meaningful neural components

m Neural Network
m in-between other blocks

m usually relatively small
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EXAMPLE: NEURAL QVM

Quarter Vehicle Model

m masses connected with spring

[1] T. Kamp et. al. Closing the Sim-to-Real Gap with
Physics-Enhanced Neural ODEs. ICINCO 2023.

https://elib.dlr.de/200100/
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EXAMPLE: NEURAL QVM

Quarter Vehicle Model

m masses connected with spring

m nonlinearities

[1] T. Kamp et. al. Closing the Sim-to-Real Gap with
Physics-Enhanced Neural ODEs. ICINCO 2023.

https://elib.dlr.de/200100/
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EXAMPLE: NEURAL QVM

Quarter Vehicle Model

m masses connected with spring
m nonlinearities
m approximate by trained surrogate

[1] T. Kamp et. al. Closing the Sim-to-Real Gap with
Physics-Enhanced Neural ODEs. ICINCO 2023.

https://elib.dlr.de/200100/
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Images taken from [1]
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DO OR DO NOT, THERE IS NO TRAINING
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(a) Friction Force

Use cases
data driven — accuracy
reference model — speed

Images taken from [1]
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LIBRARY STRUCTURE

~ |%x| MNeuralNetwork
- Layer
» 4 Interfaces
®  Preprocessing
» B Dense
» B LSTM
+ / ActivationFunctions
* |¥*| MNetworks
= 4 Interfaces
k¥ Network
¥z SISO
i MISO
» P Examples
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LIBRARY STRUCTURE

- |#2| NeuralNetwork and it's open source (BSD-3)
- [] Layer
» 4 Interfaces
» H® Preprocessing
» B Dense
» B LSTM
» | ActivationFunctions
v Networks
- 4 Interfaces
Network
SISO
#| mMiIso

» P Examples https://github.com/AMIT-HSBI/NeuralNetwork
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HELLO WORLD

prediction

—reference

sine

nn

f=1 Hz S

-2.5 -

time (s)

NeuralNetwork | Hochschule Bielefeld | P. Hannebohm | 03.02.2025 | Slide 9



LSTM (WIP)

LSTM output

fi = O'g(WfZEt + Ufht_1 + bf)

1 = (Tg(WZ'CCt + U;hi—1 + bz>

0 = O'g(WOSCt + U,hi_1 + bo> =
C; = ac(cht + U.hy_1 + bc>

= JtOc 1+ OG

hy = o © op(cr)
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LSTM output

y = hold(h) "output”;
when clk then
x = sample(u) "input”;
hp = previous (h);
f = sigma_g(Wfxx + Ufxhp + bf); -
i = sigma_g(Wixx + Uixhp + bi); %
o = sigma_g(Woxx + Uoxhp + bo);
ca = sigma_c(Wecxx + Ucxhp + bc);
c = f.xprevious(c) + i.x*ca;
h = o.xsigma_h(c);
end when;
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USER BASE

m Modelon impact since v2.1.0 (PHyMoS)

m starting to use it for e-fmi (OpenSCALING)

We are looking forward to get feedback!
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WHAT'S NEXT FOR THE LIBRARY?

recent development

m simpler interface with m recurrent networks m new training approach

SISO, MISO (LSTM)
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m recurrent networks

(LSTM)

m replaceable components

m new training approach

m release 3.0.0
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WHAT'S NEXT FOR THE LIBRARY?

recent development

m simpler interface with m recurrent networks

SISO, MISO (LSTM)

current development

m more examples m replaceable components

(possibly) upcoming development

m convolutional networks, m flexible weights import
other structures (SSP?)
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m new training approach

m release 3.0.0

m sparse matrices
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