
Status of the New Backend

Karim Abdelhak, Bernhard Bachmann

February 3, 2025

University of Applied Sciences Bielefeld
Bielefeld, Germany

Karim Abdelhak Status of the New Backend February 3, 2025 1 / 22

1 Overview

2 Resizable Arrays
Structurally Resizable Strong Components
Optimizing Resizable Values
Target Code

3 Summary

Karim Abdelhak Status of the New Backend February 3, 2025 2 / 22

Overview

Section 1

Overview

Karim Abdelhak Status of the New Backend February 3, 2025 3 / 22

Overview

Backend Modules
Status on Array-Handling

Finished Core Finished Work in Progress

Lowering Bindings FunctionAlias Inline Simplify Events

DetectStates

Alias

Partitioning Causalize

Causalize Categorize

Initialization

DAE-Mode

Tearing Solve Jacobian SimCode

Karim Abdelhak Status of the New Backend February 3, 2025 4 / 22

Overview

Backend Modules
Status on Array-Handling

Finished Core Finished Work in Progress

Lowering Bindings FunctionAlias Inline Simplify Events

DetectStates

Alias

Partitioning Causalize

Causalize Categorize

Initialization

DAE-Mode

Tearing Solve Jacobian SimCode

Karim Abdelhak Status of the New Backend February 3, 2025 4 / 22

Overview

Backend Modules
Status on Array-Handling

Finished Core Finished Work in Progress

Lowering Bindings FunctionAlias Inline Simplify Events

DetectStates

Alias

Partitioning Causalize

Causalize Categorize

Initialization

DAE-Mode

Tearing Solve Jacobian SimCode

Karim Abdelhak Status of the New Backend February 3, 2025 4 / 22

Overview

Backend Modules
Status on Array-Handling

Finished Core Finished Work in Progress

Lowering Bindings FunctionAlias Inline Simplify Events

DetectStates

Alias

Partitioning Causalize

Causalize Categorize

Initialization

DAE-Mode

Tearing Solve Jacobian SimCode

Karim Abdelhak Status of the New Backend February 3, 2025 4 / 22

Overview

Backend Modules
Status on Array-Handling

Finished Core Finished Work in Progress

Lowering Bindings FunctionAlias Inline Simplify Events

DetectStates

Alias

Partitioning Causalize

Causalize Categorize

Initialization

DAE-Mode

Tearing Solve Jacobian SimCode

Karim Abdelhak Status of the New Backend February 3, 2025 4 / 22

Overview

Backend Modules
Status on Array-Handling

Finished Core Finished Work in Progress

Lowering Bindings FunctionAlias Inline Simplify Events

DetectStates

Alias

Partitioning Causalize

Causalize Categorize

Initialization

DAE-Mode

Tearing Solve Jacobian SimCode

Karim Abdelhak Status of the New Backend February 3, 2025 4 / 22

Resizable Arrays

Section 2

Resizable Arrays

Karim Abdelhak Status of the New Backend February 3, 2025 5 / 22

Resizable Arrays

Flags

Main Flag
–-resizableArrays Assumes all arrays are resizable. Current restrictions:

connect equations
split arrays
entwined for-equations

Individual Flag
Parameters that steer array sizes can be assumed to be non structural with:
annotation(__OpenModelica_resizable=true). Same restrictions as with
–-resizableArrays.

Debugging
Flag: -d=dumpResizable

Karim Abdelhak Status of the New Backend February 3, 2025 6 / 22

Resizable Arrays

Flags

Main Flag
–-resizableArrays Assumes all arrays are resizable. Current restrictions:

connect equations
split arrays
entwined for-equations

Individual Flag
Parameters that steer array sizes can be assumed to be non structural with:
annotation(__OpenModelica_resizable=true). Same restrictions as with
–-resizableArrays.

Debugging
Flag: -d=dumpResizable

Karim Abdelhak Status of the New Backend February 3, 2025 6 / 22

Resizable Arrays

Flags

Main Flag
–-resizableArrays Assumes all arrays are resizable. Current restrictions:

connect equations
split arrays
entwined for-equations

Individual Flag
Parameters that steer array sizes can be assumed to be non structural with:
annotation(__OpenModelica_resizable=true). Same restrictions as with
–-resizableArrays.

Debugging
Flag: -d=dumpResizable

Karim Abdelhak Status of the New Backend February 3, 2025 6 / 22

Resizable Arrays

Main Challenges

Resizable Strong Components
1 detecting resizable strong components after causalization
2 generating efficient code for resizable strong components
3 adapting runtime/codegen to make it resizable

Optimizing Resizable Values
formulate an optimization problem
solve the optimization problem
use the solution for causalization

Motivation
1 resizing arrays after code generation
2 achieving array size independent execution time for the backend

Karim Abdelhak Status of the New Backend February 3, 2025 7 / 22

Resizable Arrays

Main Challenges

Resizable Strong Components
1 detecting resizable strong components after causalization
2 generating efficient code for resizable strong components
3 adapting runtime/codegen to make it resizable

Optimizing Resizable Values
formulate an optimization problem
solve the optimization problem
use the solution for causalization

Motivation
1 resizing arrays after code generation
2 achieving array size independent execution time for the backend

Karim Abdelhak Status of the New Backend February 3, 2025 7 / 22

Resizable Arrays

Main Challenges

Resizable Strong Components
1 detecting resizable strong components after causalization
2 generating efficient code for resizable strong components
3 adapting runtime/codegen to make it resizable

Optimizing Resizable Values
formulate an optimization problem
solve the optimization problem
use the solution for causalization

Motivation
1 resizing arrays after code generation
2 achieving array size independent execution time for the backend

Karim Abdelhak Status of the New Backend February 3, 2025 7 / 22

Resizable Arrays Structurally Resizable Strong Components

Subsection 1

Structurally Resizable Strong Components

Karim Abdelhak Status of the New Backend February 3, 2025 8 / 22

Resizable Arrays Structurally Resizable Strong Components

Structurally Resizable Strong Components

Definition
If the inner sorting of the Simple For-Equation results in a trivial solution, the original
for-equation ranges can be kept. The solution is considered trivial if it allows for each of the
ranges to be evaluated

1 in the original order (forwards)
2 reverse to the original order (backwards)
3 in any order (arbitrary)

Current Restrictions
no split arrays
no entwined for-equations

Karim Abdelhak Status of the New Backend February 3, 2025 9 / 22

Resizable Arrays Structurally Resizable Strong Components

Structurally Resizable Strong Components

Definition
If the inner sorting of the Simple For-Equation results in a trivial solution, the original
for-equation ranges can be kept. The solution is considered trivial if it allows for each of the
ranges to be evaluated

1 in the original order (forwards)
2 reverse to the original order (backwards)
3 in any order (arbitrary)

Current Restrictions
no split arrays
no entwined for-equations

Karim Abdelhak Status of the New Backend February 3, 2025 9 / 22

Resizable Arrays Structurally Resizable Strong Components

Structurally Resizable Strong Components

Definition
0 = f (X ,Y , I): the for-equation in residual form
x̂ ∈ X : the component reference for which to solve
X : the set of all component references belonging to the same variable x as x̂
Y : the set of all other occuring component references (irrelevant)
I : is the set of all for-equation iterators and their ranges

Algorithm Outline
1 compare all dimensions of x̂ and other variables in x

2 for each dimension: see if it allows for one of the three trivial solutions

Karim Abdelhak Status of the New Backend February 3, 2025 10 / 22

Resizable Arrays Structurally Resizable Strong Components

Structurally Resizable Strong Components

Definition
0 = f (X ,Y , I): the for-equation in residual form
x̂ ∈ X : the component reference for which to solve
X : the set of all component references belonging to the same variable x as x̂
Y : the set of all other occuring component references (irrelevant)
I : is the set of all for-equation iterators and their ranges

Algorithm Outline
1 compare all dimensions of x̂ and other variables in x

2 for each dimension: see if it allows for one of the three trivial solutions

Karim Abdelhak Status of the New Backend February 3, 2025 10 / 22

Resizable Arrays Structurally Resizable Strong Components

Structurally Resizable Strong Components

Definition
0 = f (X ,Y , I): the for-equation in residual form
x̂ ∈ X : the component reference for which to solve
X : the set of all component references belonging to the same variable x as x̂
Y : the set of all other occuring component references (irrelevant)
I : is the set of all for-equation iterators and their ranges

Algorithm Outline
1 compare all dimensions of x̂ and other variables in x

2 for each dimension: see if it allows for one of the three trivial solutions

Karim Abdelhak Status of the New Backend February 3, 2025 10 / 22

Resizable Arrays Structurally Resizable Strong Components

Structurally Resizable Strong Components

Definition
0 = f (X ,Y , I): the for-equation in residual form
x̂ ∈ X : the component reference for which to solve
X : the set of all component references belonging to the same variable x as x̂
Y : the set of all other occuring component references (irrelevant)
I : is the set of all for-equation iterators and their ranges

Algorithm Outline
1 compare all dimensions of x̂ and other variables in x

2 for each dimension: see if it allows for one of the three trivial solutions

Karim Abdelhak Status of the New Backend February 3, 2025 10 / 22

Resizable Arrays Structurally Resizable Strong Components

Structurally Resizable Strong Components

Definition
0 = f (X ,Y , I): the for-equation in residual form
x̂ ∈ X : the component reference for which to solve
X : the set of all component references belonging to the same variable x as x̂
Y : the set of all other occuring component references (irrelevant)
I : is the set of all for-equation iterators and their ranges

Algorithm Outline
1 compare all dimensions of x̂ and other variables in x

2 for each dimension: see if it allows for one of the three trivial solutions

Karim Abdelhak Status of the New Backend February 3, 2025 10 / 22

Resizable Arrays Structurally Resizable Strong Components

Structurally Resizable Strong Components

Definition
0 = f (X ,Y , I): the for-equation in residual form
x̂ ∈ X : the component reference for which to solve
X : the set of all component references belonging to the same variable x as x̂
Y : the set of all other occuring component references (irrelevant)
I : is the set of all for-equation iterators and their ranges

Algorithm Outline
1 compare all dimensions of x̂ and other variables in x

2 for each dimension: see if it allows for one of the three trivial solutions

Karim Abdelhak Status of the New Backend February 3, 2025 10 / 22

Resizable Arrays Structurally Resizable Strong Components

Structurally Resizable Strong Components

Example

fo r i in 1 : p loop
x [i] = x [i +1]∗2 + x [i +2]∗3;

end fo r ;

1 if solved for x [i + 2]: i has to be forwards
2 if solved for x [i]: i has to be backwards
3 if solved for x [i + 1]: i cannot be solved trivially

Motivation
avoiding generation of index lists when not necessary
allowing the possibility of resizable for-equations

Karim Abdelhak Status of the New Backend February 3, 2025 11 / 22

Resizable Arrays Structurally Resizable Strong Components

Structurally Resizable Strong Components

Example

fo r i in 1 : p loop
x [i] = x [i +1]∗2 + x [i +2]∗3;

end fo r ;

1 if solved for x [i + 2]: i has to be forwards
2 if solved for x [i]: i has to be backwards
3 if solved for x [i + 1]: i cannot be solved trivially

Motivation
avoiding generation of index lists when not necessary
allowing the possibility of resizable for-equations

Karim Abdelhak Status of the New Backend February 3, 2025 11 / 22

Resizable Arrays Structurally Resizable Strong Components

Structurally Resizable Strong Components

Example

fo r i in 1 : p loop
x [i] = x [i +1]∗2 + x [i +2]∗3;

end fo r ;

1 if solved for x [i + 2]: i has to be forwards
2 if solved for x [i]: i has to be backwards
3 if solved for x [i + 1]: i cannot be solved trivially

Motivation
avoiding generation of index lists when not necessary
allowing the possibility of resizable for-equations

Karim Abdelhak Status of the New Backend February 3, 2025 11 / 22

Resizable Arrays Structurally Resizable Strong Components

Structurally Resizable Strong Components

Example

fo r i in 1 : p loop
x [i] = x [i +1]∗2 + x [i +2]∗3;

end fo r ;

1 if solved for x [i + 2]: i has to be forwards
2 if solved for x [i]: i has to be backwards
3 if solved for x [i + 1]: i cannot be solved trivially

Motivation
avoiding generation of index lists when not necessary
allowing the possibility of resizable for-equations

Karim Abdelhak Status of the New Backend February 3, 2025 11 / 22

Resizable Arrays Structurally Resizable Strong Components

Structurally Resizable Strong Components

Example

fo r i in 1 : p loop
x [i] = x [i +1]∗2 + x [i +2]∗3;

end fo r ;

1 if solved for x [i + 2]: i has to be forwards
2 if solved for x [i]: i has to be backwards
3 if solved for x [i + 1]: i cannot be solved trivially

Motivation
avoiding generation of index lists when not necessary
allowing the possibility of resizable for-equations

Karim Abdelhak Status of the New Backend February 3, 2025 11 / 22

Resizable Arrays Optimizing Resizable Values

Subsection 2

Optimizing Resizable Values

Karim Abdelhak Status of the New Backend February 3, 2025 12 / 22

Resizable Arrays Optimizing Resizable Values

Optimizing Resizable Values

Main Advantage
The main advantage of detecting resizable for-equations lies in the possiblity to size them down
as much as possible for all symbolical optimizations.

Target Function

Optimizing parameter values (x) such that it minimizes the size of the equation system.

Constraints
structural variable constraints (e.g. box-constraints of min and max values)
structural equation constraints (e.g. implied array size equalities)
retain equation structure such that resizable strong component analysis is not compromised

Karim Abdelhak Status of the New Backend February 3, 2025 13 / 22

Resizable Arrays Optimizing Resizable Values

Optimizing Resizable Values

Main Advantage
The main advantage of detecting resizable for-equations lies in the possiblity to size them down
as much as possible for all symbolical optimizations.

Target Function

Optimizing parameter values (x) such that it minimizes the size of the equation system.

Constraints
structural variable constraints (e.g. box-constraints of min and max values)
structural equation constraints (e.g. implied array size equalities)
retain equation structure such that resizable strong component analysis is not compromised

Karim Abdelhak Status of the New Backend February 3, 2025 13 / 22

Resizable Arrays Optimizing Resizable Values

Optimizing Resizable Values

Main Advantage
The main advantage of detecting resizable for-equations lies in the possiblity to size them down
as much as possible for all symbolical optimizations.

Target Function

Optimizing parameter values (x) such that it minimizes the size of the equation system.

Constraints
structural variable constraints (e.g. box-constraints of min and max values)
structural equation constraints (e.g. implied array size equalities)
retain equation structure such that resizable strong component analysis is not compromised

Karim Abdelhak Status of the New Backend February 3, 2025 13 / 22

Resizable Arrays Optimizing Resizable Values

Optimizing Resizable Values

Main Advantage
The main advantage of detecting resizable for-equations lies in the possiblity to size them down
as much as possible for all symbolical optimizations.

Target Function

Optimizing parameter values (x) such that it minimizes the size of the equation system.

Constraints
structural variable constraints (e.g. box-constraints of min and max values)
structural equation constraints (e.g. implied array size equalities)
retain equation structure such that resizable strong component analysis is not compromised

Karim Abdelhak Status of the New Backend February 3, 2025 13 / 22

Resizable Arrays Optimizing Resizable Values

Optimizing Resizable Values

Main Advantage
The main advantage of detecting resizable for-equations lies in the possiblity to size them down
as much as possible for all symbolical optimizations.

Target Function

Optimizing parameter values (x) such that it minimizes the size of the equation system.

Constraints
structural variable constraints (e.g. box-constraints of min and max values)
structural equation constraints (e.g. implied array size equalities)
retain equation structure such that resizable strong component analysis is not compromised

Karim Abdelhak Status of the New Backend February 3, 2025 13 / 22

Resizable Arrays Optimizing Resizable Values

Target Function

Dimension Target Function
Each dimension has a seperate target function that differs if it is a dimension which is span by
a resizable-constrained iterator of a for-equation (a1):

dl (x) =

{
(Dstop(x)−Dstart(x))/Dstep + 1 if (al)
Dsize(x) else

(1)

Equation Target Function
Multiplying all dimension sizes lead to the equation size:

fk(x) = Πldl (x) (2)

System Target Function

Accumulating all (relevant) equation sizes leads to the system target function:

min! F (x) = Σk fk(x) (3)
Karim Abdelhak Status of the New Backend February 3, 2025 14 / 22

Resizable Arrays Optimizing Resizable Values

Target Function

Dimension Target Function
Each dimension has a seperate target function that differs if it is a dimension which is span by
a resizable-constrained iterator of a for-equation (a1):

dl (x) =

{
(Dstop(x)−Dstart(x))/Dstep + 1 if (al)
Dsize(x) else

(1)

Equation Target Function
Multiplying all dimension sizes lead to the equation size:

fk(x) = Πldl (x) (2)

System Target Function

Accumulating all (relevant) equation sizes leads to the system target function:

min! F (x) = Σk fk(x) (3)
Karim Abdelhak Status of the New Backend February 3, 2025 14 / 22

Resizable Arrays Optimizing Resizable Values

Target Function

Dimension Target Function
Each dimension has a seperate target function that differs if it is a dimension which is span by
a resizable-constrained iterator of a for-equation (a1):

dl (x) =

{
(Dstop(x)−Dstart(x))/Dstep + 1 if (al)
Dsize(x) else

(1)

Equation Target Function
Multiplying all dimension sizes lead to the equation size:

fk(x) = Πldl (x) (2)

System Target Function

Accumulating all (relevant) equation sizes leads to the system target function:

min! F (x) = Σk fk(x) (3)
Karim Abdelhak Status of the New Backend February 3, 2025 14 / 22

Resizable Arrays Optimizing Resizable Values

Constraints

Variable Constraints
user-defined box-constraints:

x ≥ xmin (4)
x ≤ xmax (5)

subscript-implied constraints:
subk(x) ≤ dimk(x) (6)

for each component reference in each equation with subk(x) being the expression
representing the subscript and dimk(x) being the expression representing the dimension
with dimension index k .

Karim Abdelhak Status of the New Backend February 3, 2025 15 / 22

Resizable Arrays Optimizing Resizable Values

Constraints

Variable Constraints
user-defined box-constraints:

x ≥ xmin (4)
x ≤ xmax (5)

subscript-implied constraints:
subk(x) ≤ dimk(x) (6)

for each component reference in each equation with subk(x) being the expression
representing the subscript and dimk(x) being the expression representing the dimension
with dimension index k .

Karim Abdelhak Status of the New Backend February 3, 2025 15 / 22

Resizable Arrays Optimizing Resizable Values

Constraints

Equation Constraints
For all equations the size of the left hand and the right hand side have to be equal.

lhski (x) = rhski (x) (7)

where lhski (x) and rhski (x) are the left hand side and respective right hand side expression of
dimension k in equation i .

Iterator Constraints
Ensure a minimal size 2 for each iterator to retain necessary structures. This leads to
constraints of the form

2 ≤ (D i
stop(x)−D i

start(x))/D
i
step (8)

for all iterators i .

Karim Abdelhak Status of the New Backend February 3, 2025 16 / 22

Resizable Arrays Optimizing Resizable Values

Constraints

Equation Constraints
For all equations the size of the left hand and the right hand side have to be equal.

lhski (x) = rhski (x) (7)

where lhski (x) and rhski (x) are the left hand side and respective right hand side expression of
dimension k in equation i .

Iterator Constraints
Ensure a minimal size 2 for each iterator to retain necessary structures. This leads to
constraints of the form

2 ≤ (D i
stop(x)−D i

start(x))/D
i
step (8)

for all iterators i .

Karim Abdelhak Status of the New Backend February 3, 2025 16 / 22

Resizable Arrays Optimizing Resizable Values

Solving the Optimization Problem

Classification
The parameters have to be integer valued and the target function as well as the constraints can
be nonlinear. Even though it oftentimes is only linear/convex we have to consider the
possibility of a general integer valued non linear optimization problem which is NP-hard.

Solving Algorithms
No optimal solution needed. Any reasonably good one that is feasable, suffices. Two attempts
are designed:

1 starting in a reasonably good point using min/max values and trying to reach feasability
2 starting in a feasable point using default bindings and trying to reach optimality under the

assumption of a convex search space

Karim Abdelhak Status of the New Backend February 3, 2025 17 / 22

Resizable Arrays Optimizing Resizable Values

Solving the Optimization Problem

Classification
The parameters have to be integer valued and the target function as well as the constraints can
be nonlinear. Even though it oftentimes is only linear/convex we have to consider the
possibility of a general integer valued non linear optimization problem which is NP-hard.

Solving Algorithms
No optimal solution needed. Any reasonably good one that is feasable, suffices. Two attempts
are designed:

1 starting in a reasonably good point using min/max values and trying to reach feasability
2 starting in a feasable point using default bindings and trying to reach optimality under the

assumption of a convex search space

Karim Abdelhak Status of the New Backend February 3, 2025 17 / 22

Resizable Arrays Optimizing Resizable Values

Solving the Optimization Problem

Classification
The parameters have to be integer valued and the target function as well as the constraints can
be nonlinear. Even though it oftentimes is only linear/convex we have to consider the
possibility of a general integer valued non linear optimization problem which is NP-hard.

Solving Algorithms
No optimal solution needed. Any reasonably good one that is feasable, suffices. Two attempts
are designed:

1 starting in a reasonably good point using min/max values and trying to reach feasability
2 starting in a feasable point using default bindings and trying to reach optimality under the

assumption of a convex search space

Karim Abdelhak Status of the New Backend February 3, 2025 17 / 22

Resizable Arrays Optimizing Resizable Values

Solving the Optimization Problem

Classification
The parameters have to be integer valued and the target function as well as the constraints can
be nonlinear. Even though it oftentimes is only linear/convex we have to consider the
possibility of a general integer valued non linear optimization problem which is NP-hard.

Solving Algorithms
No optimal solution needed. Any reasonably good one that is feasable, suffices. Two attempts
are designed:

1 starting in a reasonably good point using min/max values and trying to reach feasability
2 starting in a feasable point using default bindings and trying to reach optimality under the

assumption of a convex search space

Karim Abdelhak Status of the New Backend February 3, 2025 17 / 22

Resizable Arrays Target Code

Subsection 3

Target Code

Karim Abdelhak Status of the New Backend February 3, 2025 18 / 22

Resizable Arrays Target Code

Resizable Arrays: Variables

Old Memory Layout

flat variables: x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

New Memory Layout

flat variables: x1
1 x2

1 x3
1 x4

1 x2 x3 x1
4 x2

4 x3
4 x4

4

index map: 1 5 6 7

Karim Abdelhak Status of the New Backend February 3, 2025 19 / 22

Resizable Arrays Target Code

Resizable Arrays: Variables

Old Memory Layout

flat variables: x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

New Memory Layout

flat variables: x1
1 x2

1 x3
1 x4

1 x2 x3 x1
4 x2

4 x3
4 x4

4

index map: 1 5 6 7

Karim Abdelhak Status of the New Backend February 3, 2025 19 / 22

Resizable Arrays Target Code

Resizable Arrays: Variables

Old Memory Layout

flat variables: x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

New Memory Layout

flat variables: x1
1 x2

1 x3
1 x2 x3 x1

4 x2
4 x3

4 x4
4 x5

4 x6
4 x7

4

index map: 1 4 5 6

Karim Abdelhak Status of the New Backend February 3, 2025 19 / 22

Summary

Section 3

Summary

Karim Abdelhak Status of the New Backend February 3, 2025 20 / 22

Summary

Results

Overview

Large TestSuite NB resizable NB OB

Recent Coverage Scalable TestSuite PowerGrids

Karim Abdelhak Status of the New Backend February 3, 2025 21 / 22

https://libraries.openmodelica.org/branches/
https://libraries.openmodelica.org/branches/heavy_tests/LargeTestSuite_NB_resizable/LargeTestSuite_NB_resizable.html
https://libraries.openmodelica.org/branches/heavy_tests/LargeTestSuite_NB/LargeTestSuite_NB.html
https://libraries.openmodelica.org/branches/heavy_tests/LargeTestSuite_OB/LargeTestSuite_OB.html
https://libraries.openmodelica.org/branches/history/newInst-newBackend/ScalableTestSuite.svg
https://libraries.openmodelica.org/branches/history/newInst-newBackend/PowerGrids.svg

Summary

Summary

Recent Development
Compact for-loop structures
Backend resizable support

Current Development
Jacobian and sparsity updates
Target code resizable support

Upcoming Plans
Pseudo-Array Index Reduction

Karim Abdelhak Status of the New Backend February 3, 2025 22 / 22

Summary

Summary

Recent Development
Compact for-loop structures
Backend resizable support

Current Development
Jacobian and sparsity updates
Target code resizable support

Upcoming Plans
Pseudo-Array Index Reduction

Karim Abdelhak Status of the New Backend February 3, 2025 22 / 22

Summary

Summary

Recent Development
Compact for-loop structures
Backend resizable support

Current Development
Jacobian and sparsity updates
Target code resizable support

Upcoming Plans
Pseudo-Array Index Reduction

Karim Abdelhak Status of the New Backend February 3, 2025 22 / 22

	Overview
	Resizable Arrays
	Structurally Resizable Strong Components
	Optimizing Resizable Values
	Target Code

	Summary

