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WHAT IS EQUATION-BASED MODELING 
GOOD FOR?

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024



Object-Oriented Modeling in Classic Programming Languages
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…
virtual void metainfo(Meta& meta) override{

meta.regComp(&t1, "t1: first vessel");
meta.regComp(&t2, "t2: second vessel");
meta.regComp(&s,  "s: flow split");
meta.regComp(&t3, "t3: third vessel");
meta.regComp(&p1, "p1: first valve");
meta.regComp(&p2, "p2: 2nd valve");           
meta.regComp(&p3, "p3: third valve");
};

};

class ComVessels : public Component {
public:
OutTank t1{};
InTank t2{};
InTank t3{};
Splitter s{};
PressureDrop p1{};
PressureDrop p2{};
PressureDrop p3{};

Connections con {
Connection{&t1.outlet, &p1.inlet},
Connection{&p1.outlet, &s.inlet},
Connection{&s.outlet1, &p2.inlet},
Connection{&p2.outlet, &t2.inlet},
Connection{&s.outlet2, &p3.inlet},
Connection{&p3.inlet, &t3.inlet},

};
...



Object-Oriented Modeling in Classic Programming Languages
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class CraneCrab : public Component {
public:

Fixed fixed{};
PrismaticJoint prismatic1{Eigen::Vector2d{1.0,0}};
Body body1{1.0,0.1};
RevoluteJoint revolute2{};
FixedTranslation rod2{Eigen::Vector2d{0.5,1.5}};
Body body2{0.5,0.05};            
Connections con { 

Connection{&fixed.flangeOn,&prismatic1.flangeTo},
Connection{&prismatic1.flangeOn,&body1.flangeTo},
Connection{&prismatic1.flangeOn,&revolute2.flangeTo},
Connection{&revolute2.flangeOn,&rod2.flangeTo},
Connection{&rod2.flangeOn,&body2.flangeTo}

};

[…]

}; 
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Superior Scaling with Memory
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Acceptable Computational Efficiency
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So why go for an equation-based language?

▪ Is it really worth all the effort of specification, compiler building, etc. Is the effort 
not better invested in implementing software libraries directly?

▪ There are two strong point in favor of equation-based languages:
▪ Social

▪ Technical
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Social: Equation are useful to people

▪ Modelica is appealing to mathematical 
experts in engineering domains.

▪ There is a demand of roughly 10 000s people 
world-wide.

▪ This is a niche but not an unimportant one.

▪ We succeed in this niche.

▪ Equations and corresponding models are 
dominant in technical and engineering 
education.
▪ This a potential “market” of 10 000 000s people

▪ This is almost mainstream

▪ We mostly fail serving this market. 

8
Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

10000s

10000000s



Technical: Equations are oblivious to compute architecture
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▪ Data and metric from Kurzweil 2023: “The Singularity is nearer”

▪ Relentless progress in the most relevant metric. Prime example of true human ingenuity.  

▪ From 2008 on, GPUs dominate this chart



Technical: Equations are oblivious to compute architecture
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▪ Physics operates at high 
frequencies. 

▪ Having 3-8 orders of magnitude 
between dynamics of interest 
and internal dynamics is normal.

▪ CPU frequencies are however not 
increasing since 20 years.

▪ Availability of compute changes 
from

▪ Low latency architectures (CPU)

▪ High throughput architectures 
(GPU)

▪ We must adapt, whether we 
like it or not!

Bad for iterative

ODE solvers

based on Microprocessor chronology - Wikipedia

range for modern GPUs

https://en.wikipedia.org/wiki/Microprocessor_chronology


[3]

Technical: Equation are oblivious to compute architecture

▪ >95% of all simulations in the near future will be performed on high-throughput 
architectures. Main purpose is AI training and optimization. 

▪ 5h Training for the example below. One GPU. $1.20 electricity bill.

Röstel, Lennart, et al. "Estimator-coupled reinforcement learning for robust purely tactile in-hand manipulation."

2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids). IEEE, 2023. 



Technical: Equation are oblivious to compute architecture

▪ Code generation for low-latency:

▪ This works nice in practice. 

▪ Dealing with high frequency is often performed 
using implicit solvers for stiff systems.

▪ Symbolic transformation helps as well 
(Flattening is overrated)

▪ Code generation for high-throughput.
▪ I have seen no real good example. We fail albeit 

this should be our strength. 

▪ Multi-derivative methods are not exploited

▪ Modular code for kernels are not supported
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Summary: we fail to live up to our potential

▪ We have a user group of 10s of thousands 
but it should be 10s of millions

▪ A million times more simulation would 
soon be running Modelica models if we 
support GPU simulation for AI training. 

▪ Why do we fail to exploit our potential?
▪ We have simply become way to complex…

▪ The learning hurdle is very steep. 

▪ So many specifics stipulate one (very 
complicated) way of code generation instead of 
upholding obliviousness of the compute 
architecture.

▪ Hence we are tied down like Gulliver by a 
thousand strings.
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from Gulliver's Travels: Coloured

Picture Book for the Nursery, Thomas 

Nelson and Sons, London, Edinburgh, 

New York, 1883

wikimedia commons



Summary: we fail to live up to our potential

▪ I estimate that writing a Go compiler is 10x 
less complex than writing a Modelica 
compiler + IDE

▪ I estimate that there are 1000 times more 
Go users than Modelica users

▪ Our complexity per user ratio is 10000x 
times worse than Go. 

➔ Our modus operandi is barely sustainable

➔ simple and strict languages have an 
appeal and a viable market (see SQL_lite)
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CUTTING DOWN COMPLEXITY

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024



ModelicaLite: Easy to learn, Easy to process

Enforce
Order

Enforce 
Determinism

Enforce 
Frugality

16
Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

>20x 

complexity 

reduction



ModelicaLite: Enforce Frugality

Enforce
Order

Enforce 
Determinism

Enforce 
Frugality
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• Modelica v1.4 is a very well designed language

• We can renew from within!

• I see no need to start over, like with Modia. 

• ModelicaLite will be technically a new language 
but so that it is 100% compatible to existing 
compilers. 

• ModelicaLite libraries will all run in 
OpenModelica.

• We can thus also reuse existing IDEs.

• It will require new libraries though.



ModelicaLite: Enforce Frugality

18
Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

declare variables 
write equations

declare variables 
write equations

connection.branch;  instream(h_outflow); homothopy(); fixed=false;
expandable connectors; operator overload; constrainedBy, inline



ModelicaLite: Enforce Determinism

Enforce
Order

Enforce 
Determinism

Enforce 
Frugality
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• A lot of complexity originates from the fact that 
arbitrary hybrid non-linear DAEs are an 
extremely complex problem class.

0 = 𝐹(𝑥, ሶ𝑥, ℎ, ℎ′, 𝑢, 𝑡)

• Even in Modelica, it is unclear which of these 
problems are actually solvable.

• This full generality is however not needed for 
>90% of the applications. 



ModelicaLite: Enforce Determinism for Signal Flows
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Signals modelled as Flows Signals misperceived as Interface

• Local analysis suffices
• Deterministic (unique solution)
• Information complete

• Global analysis necessary
• Non-Deterministic 
• Information incomplete

(many constructs attempt (but fail) to fix this 
fixed=false, homothopy, etc.)



ModelicaLite: Enforce Determinism for Signal Flows
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ModelicaLite: Enforce Determinism for Physical Systems

▪ Signals are insufficient to properly model physical systems

▪ However, physical systems are only a tiny subset of non-linear DAEs. 

▪ What do we actually need?

▪ It turns out that physical systems derived from the stationary action principle have 
very favorable characteristics
▪ (semi-) local analysis sufficient

▪ Deterministic (unique solution)

▪ Information complete

▪ How powerful and useful is this approach? Let us review physics.

22



What constitutes classic physics

▪ Already Leibniz in 1696 argued for an extremal 
principle:

▪ Physics is described by the transport of impulse 𝐼
through space 𝑠

▪ The action መ𝑆 is the integral over all these transports.

▪ This does not happen in any arbitrary way but in a 

(locally) extremal way so that 𝛿 መ𝑆 = 0

𝛿 መ𝑆 = 𝛿න 𝐼𝑑𝑠 = 0

Gottfried Wilhelm 
Leibniz

*1646  †1716
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A different view on energy

▪We observe that the transport of Impulse takes time 𝑡

▪ It is thus attractive to reformulate the integral as an integral over time.

▪ The transformation to a time integral replaces the impulse 𝐼 with the 
kinetic energy 𝑇 as the quantity to be integrated.

▪ Energy has now been defined without defining force.

න𝐼𝑑𝑠 = න𝑚𝑣 𝑑𝑠 = න𝑚
𝑑𝑠

𝑑𝑡
𝑑𝑠 = න𝑚

𝑑𝑠

𝑑𝑡

2

𝑑𝑡 = න𝑚𝑣2 𝑑𝑡 = න2𝑇 𝑑𝑡



The Lagrangian

▪ In reality, we observe motions that differ from a straight line.

▪ This is because kinetic energy 𝑇 can be stored in potentials 𝑉

▪ Also total energy is conserved: 𝐸𝑡𝑜𝑡 = 𝑇 + 𝑉 or 2𝑇 = 𝑇 − 𝑉 + 𝐸𝑡𝑜𝑡

▪We can now define 𝑆:

▪ Please note that the Lagrangian enables powerful idealizations:
▪ We can choose our dimensions and coordinates 

▪ We can select the potentials of interest

▪ We can define the aggregate quantities

▪ However, we must not neglect the kinetic energy 𝑇

𝛿𝑆 =
𝜕

𝜕𝑞 𝑡
න𝑇 − 𝑉 𝑑𝑡 = 0

𝐿(𝑞, ሶ𝑞)Lagrangian: 



From Lagrangian to Hamiltonian

▪ To define and distribute the resulting differential 
equations we need the Hamiltonian form: 

▪ … by introducing the generalized momentum:

▪ The Hamiltonian is then expresses the total energy*:

𝐿 𝑞, ሶ𝑞 → 𝐻(𝑞, 𝑝)

𝑝𝑖 =
𝜕𝐿

𝜕 ሶ𝑞𝑖

𝐻 = 𝑇 + 𝑉

William Rowan Hamilton
*1805  †1865

* under certain conditions

𝑑𝑞

𝑑𝑡
=
𝜕𝐻

𝜕𝑝

𝑑𝑝

𝑑𝑡
= −

𝜕𝐻

𝜕𝑞



Energy Flows to describe the Hamiltonian

▪ The Hamiltonian 𝐻 leads to our pairs of effort and flow that describe the energy 
flows whose sum is the Hamiltonian

▪ But beware! Whereas each Hamiltonian can be expressed by a sum of energies, not 
all sums of energies represent a Hamiltonian. This misconception of energies as 
generic interface leads to non-physical systems and non-deterministic systems!

▪ Bond-graphs are the prime example of this fallacy.
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Domain Translational

Mechanics

Rotational

Mechanics

Hydraulics Electrics Thermal …

Potential 𝑟 𝜑 𝑃 𝑉 𝑇

Flow 𝑓 𝜏 ሶ𝑄 𝑖 𝑄



ModelicaLite: Enforce Determinism for Energy Flows
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Energy flows modeling a physical System Energy flows misperceived as Interface

• Local analysis suffices
• Deterministic (unique solution)
• Information complete

• Global analysis necessary
• Non-Deterministic 
• Information incomplete



ModelicaLite: Enforce Determinism for Energy Flows
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Energy flows modeling a physical system Energy flows misperceived as Interface

Knowing Guessing



ModelicaLite: No Flow without a Signal Flow

▪ The best currently known cure for this problem is to bind the pair to a signal
The pair then represents the part of the Lagrangian subjected to the Legendre 
transformation to get the Hamiltonian.

▪ There are already useful libraries according to this principle
▪ ThermoFluid Stream

▪ Dialectic Mechanics

▪ Controlled Energy Flows
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Domain Translational

Mechanics

Rotational

Mechanics

Thermo 

Fluids

Electrics ? …

Potential 𝑣𝑘𝑖𝑛 𝜔𝑘𝑖𝑛 r ? …

Flow 𝑓 𝜏 ሶ𝑚 ? …

Signal 𝑟 𝜑 𝚯 ? …



Motivation: From Necessary to Sufficient
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ModelicaLite: Enforce Determinism for Energy Flows
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Energy flows modeling a physical system Energy flows misperceived as Interface

Knowing Guessing



ModelicaLite: Enforce Determinism

Enforce
Order

Enforce 
Determinism

Enforce 
Frugality
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• Enforcing
• Enables modular compilation of kernels
• Scalable system composition
• Robust modeling

• No need for 
• Dulmage Mendelsohn Permutation
• Higher Index Reduction
• Dynamic State Selection
• Tearing Heuristics
• Non-linear root solvers

• Still need for:
• Tarjan (modified)
• Differential index reduction
• Linear equation system solvers



ModelicaLite: Enforce Order

Enforce
Order

Enforce 
Determinism

Enforce 
Frugality
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• A Modelica compilers can re-order declarations 
and equations.

• However, this should not encourage writing 
messy models and packages, but unfortunately 
it does.

• Enforcing order:
• Keeps package dependencies in check
• Enables error messages on the line

• Each line in ModelicaLite shall be able to be 
understood without looking forward.



ሶ𝑚 ሶ𝑚 ሶ𝑚, 𝚯

ModelicaLite: Enforce Order with assumed Causality
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• Binding the pairs to a signal flow enables an a-priori 
casualization of the corresponding pair:
• The potential (and its derivatives) shall have the 

same causality as the signal
• The flow (and its derivatives) shall have the inverse 

causality as the signal

• Static pre-determination of states and tearing variables is 
also feasible

• This means that the component shall be formulated 
under the assumption of this causality.

• This enables error messages on the line

• Modelling beginners will thank for this guidance
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ModelicaLite: Enforce Order among Packages
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• There is a reason why a modern language like GO is so strict 
about packages.
• If package B depends on A, then A must not depend on B 

directly or indirectly
• Loadable packages must be encapsulated
• Imports only directly in encapsulated packages
• If package A imports C, but C is not used then compile is 

aborted.

• If discipline is not enforced, everything will eventually depend on 
everything.

• Go learned its lesson from C++. We shall learn our lesson from 
the MSL. 
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IMPLEMENTATION



ModelicaLite: Compliance Checker

▪ Fully self-contained implementation in C++17
(Handwritten Parser and Lexer. Just uses STL nothing else)

▪ Checks Compliance with Modelica Lite

▪ Shall enable independent implementation of ModelicaLite Libraries.
(Running as console application in parallel to Modelica IDE)
▪ 1D – 3D Mechanics
▪ ThermoFluid Stream Lite
▪ Controlled Energy Flows
▪ …

▪ Should be 75% of the work for a compiler to another high-level language. 
38

Oct 2024: Start 
of 

implementation

Now: 50% 
done….

Mar 2025: Start 
of internal usage

and testing

Jul 2025: Full
open-sourcing

becoming
mature…



ModelicaLite: Measuring Complexity Reduction

▪ Goal is to avoid the writing of an explicit specification but make the code so good 
and transparent that it serves as specification. 

▪ Reusing existing IDEs and tools is also of big help
39
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ModelicaLite: Cooperative Mode for Tool Development
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▪ Implementing compilers is 
mostly just cost without 
revenue stream. 

▪ Hence one is motivated to 
reduce and share costs.

▪ Unfortunately this is not true for 
Modelica compilers

▪ FMI did a better job (could build 
on a matured association)

▪ We shall also do better with 
ModelicaLite
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