
Dirk Zimmer,
Institute of System Dynamics and Control

03.02.2025 OpenModelica Workshop

MODELICA LITE
TOWARDS A STRICT, ROBUST AND
SCALABLE SUBSET OF MODELICA

2

WHAT IS EQUATION-BASED MODELING
GOOD FOR?

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Object-Oriented Modeling in Classic Programming Languages

3
Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

…
virtual void metainfo(Meta& meta) override{

meta.regComp(&t1, "t1: first vessel");
meta.regComp(&t2, "t2: second vessel");
meta.regComp(&s, "s: flow split");
meta.regComp(&t3, "t3: third vessel");
meta.regComp(&p1, "p1: first valve");
meta.regComp(&p2, "p2: 2nd valve");
meta.regComp(&p3, "p3: third valve");
};

};

class ComVessels : public Component {
public:
OutTank t1{};
InTank t2{};
InTank t3{};
Splitter s{};
PressureDrop p1{};
PressureDrop p2{};
PressureDrop p3{};

Connections con {
Connection{&t1.outlet, &p1.inlet},
Connection{&p1.outlet, &s.inlet},
Connection{&s.outlet1, &p2.inlet},
Connection{&p2.outlet, &t2.inlet},
Connection{&s.outlet2, &p3.inlet},
Connection{&p3.inlet, &t3.inlet},

};
...

Object-Oriented Modeling in Classic Programming Languages

4
Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

class CraneCrab : public Component {
public:

Fixed fixed{};
PrismaticJoint prismatic1{Eigen::Vector2d{1.0,0}};
Body body1{1.0,0.1};
RevoluteJoint revolute2{};
FixedTranslation rod2{Eigen::Vector2d{0.5,1.5}};
Body body2{0.5,0.05};
Connections con {

Connection{&fixed.flangeOn,&prismatic1.flangeTo},
Connection{&prismatic1.flangeOn,&body1.flangeTo},
Connection{&prismatic1.flangeOn,&revolute2.flangeTo},
Connection{&revolute2.flangeOn,&rod2.flangeTo},
Connection{&rod2.flangeOn,&body2.flangeTo}

};

[…]

};

f ixed

prismatic
body1

Superior Scaling with Memory

5
Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

f ixed

prismatic
body1

Acceptable Computational Efficiency

6
Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

f ixed

prismatic
body1

So why go for an equation-based language?

▪ Is it really worth all the effort of specification, compiler building, etc. Is the effort
not better invested in implementing software libraries directly?

▪ There are two strong point in favor of equation-based languages:
▪ Social

▪ Technical

7
Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

Social: Equation are useful to people

▪ Modelica is appealing to mathematical
experts in engineering domains.

▪ There is a demand of roughly 10 000s people
world-wide.

▪ This is a niche but not an unimportant one.

▪ We succeed in this niche.

▪ Equations and corresponding models are
dominant in technical and engineering
education.
▪ This a potential “market” of 10 000 000s people

▪ This is almost mainstream

▪ We mostly fail serving this market.

8
Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

10000s

10000000s

Technical: Equations are oblivious to compute architecture

9
Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

▪ Data and metric from Kurzweil 2023: “The Singularity is nearer”

▪ Relentless progress in the most relevant metric. Prime example of true human ingenuity.

▪ From 2008 on, GPUs dominate this chart

Technical: Equations are oblivious to compute architecture

10
Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

▪ Physics operates at high
frequencies.

▪ Having 3-8 orders of magnitude
between dynamics of interest
and internal dynamics is normal.

▪ CPU frequencies are however not
increasing since 20 years.

▪ Availability of compute changes
from

▪ Low latency architectures (CPU)

▪ High throughput architectures
(GPU)

▪ We must adapt, whether we
like it or not!

Bad for iterative

ODE solvers

based on Microprocessor chronology - Wikipedia

range for modern GPUs

https://en.wikipedia.org/wiki/Microprocessor_chronology

[3]

Technical: Equation are oblivious to compute architecture

▪ >95% of all simulations in the near future will be performed on high-throughput
architectures. Main purpose is AI training and optimization.

▪ 5h Training for the example below. One GPU. $1.20 electricity bill.

Röstel, Lennart, et al. "Estimator-coupled reinforcement learning for robust purely tactile in-hand manipulation."

2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids). IEEE, 2023.

Technical: Equation are oblivious to compute architecture

▪ Code generation for low-latency:

▪ This works nice in practice.

▪ Dealing with high frequency is often performed
using implicit solvers for stiff systems.

▪ Symbolic transformation helps as well
(Flattening is overrated)

▪ Code generation for high-throughput.
▪ I have seen no real good example. We fail albeit

this should be our strength.

▪ Multi-derivative methods are not exploited

▪ Modular code for kernels are not supported

12
Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

>95%

Control

Cache

Cache

DRAM

ALU ALU

ALU ALU

<5%

Cache

DRAM

Control

Cache

Control

Cache

Control

Cache

Summary: we fail to live up to our potential

▪ We have a user group of 10s of thousands
but it should be 10s of millions

▪ A million times more simulation would
soon be running Modelica models if we
support GPU simulation for AI training.

▪ Why do we fail to exploit our potential?
▪ We have simply become way to complex…

▪ The learning hurdle is very steep.

▪ So many specifics stipulate one (very
complicated) way of code generation instead of
upholding obliviousness of the compute
architecture.

▪ Hence we are tied down like Gulliver by a
thousand strings.

13
Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

from Gulliver's Travels: Coloured

Picture Book for the Nursery, Thomas

Nelson and Sons, London, Edinburgh,

New York, 1883

wikimedia commons

Summary: we fail to live up to our potential

▪ I estimate that writing a Go compiler is 10x
less complex than writing a Modelica
compiler + IDE

▪ I estimate that there are 1000 times more
Go users than Modelica users

▪ Our complexity per user ratio is 10000x
times worse than Go.

➔ Our modus operandi is barely sustainable

➔ simple and strict languages have an
appeal and a viable market (see SQL_lite)

14
Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

from Gulliver's Travels: Coloured

Picture Book for the Nursery, Thomas

Nelson and Sons, London, Edinburgh,

New York, 1883

wikimedia commons

15

CUTTING DOWN COMPLEXITY

Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

ModelicaLite: Easy to learn, Easy to process

Enforce
Order

Enforce
Determinism

Enforce
Frugality

16
Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

>20x

complexity

reduction

ModelicaLite: Enforce Frugality

Enforce
Order

Enforce
Determinism

Enforce
Frugality

17 Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

• Modelica v1.4 is a very well designed language

• We can renew from within!

• I see no need to start over, like with Modia.

• ModelicaLite will be technically a new language
but so that it is 100% compatible to existing
compilers.

• ModelicaLite libraries will all run in
OpenModelica.

• We can thus also reuse existing IDEs.

• It will require new libraries though.

ModelicaLite: Enforce Frugality

18
Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

declare variables
write equations

declare variables
write equations

connection.branch; instream(h_outflow); homothopy(); fixed=false;
expandable connectors; operator overload; constrainedBy, inline

ModelicaLite: Enforce Determinism

Enforce
Order

Enforce
Determinism

Enforce
Frugality

19 Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

• A lot of complexity originates from the fact that
arbitrary hybrid non-linear DAEs are an
extremely complex problem class.

0 = 𝐹(𝑥, ሶ𝑥, ℎ, ℎ′, 𝑢, 𝑡)

• Even in Modelica, it is unclear which of these
problems are actually solvable.

• This full generality is however not needed for
>90% of the applications.

ModelicaLite: Enforce Determinism for Signal Flows

20

sine

f=5 Hz

-

feedback

cosine

f=3 Hz

product1

firstOrder

PT1

T=0.02 s

sine

f=5 Hz

-

feedback

cosine

f=3 Hz

product1

Signals modelled as Flows Signals misperceived as Interface

• Local analysis suffices
• Deterministic (unique solution)
• Information complete

• Global analysis necessary
• Non-Deterministic
• Information incomplete

(many constructs attempt (but fail) to fix this
fixed=false, homothopy, etc.)

ModelicaLite: Enforce Determinism for Signal Flows

21

sine

f=5 Hz

-

feedback

cosine

f=3 Hz

product1

firstOrder

PT1

T=0.02 s

sine

f=5 Hz

-

feedback

cosine

f=3 Hz

product1

Signals modelled as Flows Signals misperceived as Interface

Knowing Guessing

ModelicaLite: Enforce Determinism for Physical Systems

▪ Signals are insufficient to properly model physical systems

▪ However, physical systems are only a tiny subset of non-linear DAEs.

▪ What do we actually need?

▪ It turns out that physical systems derived from the stationary action principle have
very favorable characteristics
▪ (semi-) local analysis sufficient

▪ Deterministic (unique solution)

▪ Information complete

▪ How powerful and useful is this approach? Let us review physics.

22

What constitutes classic physics

▪ Already Leibniz in 1696 argued for an extremal
principle:

▪ Physics is described by the transport of impulse 𝐼
through space 𝑠

▪ The action መ𝑆 is the integral over all these transports.

▪ This does not happen in any arbitrary way but in a

(locally) extremal way so that 𝛿 መ𝑆 = 0

𝛿 መ𝑆 = 𝛿න 𝐼𝑑𝑠 = 0

Gottfried Wilhelm
Leibniz

*1646 †1716

So
u

rc
e:

 W
ik

ip
ed

ia
 C

o
m

m
o

n
s

A different view on energy

▪We observe that the transport of Impulse takes time 𝑡

▪ It is thus attractive to reformulate the integral as an integral over time.

▪ The transformation to a time integral replaces the impulse 𝐼 with the
kinetic energy 𝑇 as the quantity to be integrated.

▪ Energy has now been defined without defining force.

න𝐼𝑑𝑠 = න𝑚𝑣 𝑑𝑠 = න𝑚
𝑑𝑠

𝑑𝑡
𝑑𝑠 = න𝑚

𝑑𝑠

𝑑𝑡

2

𝑑𝑡 = න𝑚𝑣2 𝑑𝑡 = න2𝑇 𝑑𝑡

The Lagrangian

▪ In reality, we observe motions that differ from a straight line.

▪ This is because kinetic energy 𝑇 can be stored in potentials 𝑉

▪ Also total energy is conserved: 𝐸𝑡𝑜𝑡 = 𝑇 + 𝑉 or 2𝑇 = 𝑇 − 𝑉 + 𝐸𝑡𝑜𝑡

▪We can now define 𝑆:

▪ Please note that the Lagrangian enables powerful idealizations:
▪ We can choose our dimensions and coordinates

▪ We can select the potentials of interest

▪ We can define the aggregate quantities

▪ However, we must not neglect the kinetic energy 𝑇

𝛿𝑆 =
𝜕

𝜕𝑞 𝑡
න𝑇 − 𝑉 𝑑𝑡 = 0

𝐿(𝑞, ሶ𝑞)Lagrangian:

From Lagrangian to Hamiltonian

▪ To define and distribute the resulting differential
equations we need the Hamiltonian form:

▪ … by introducing the generalized momentum:

▪ The Hamiltonian is then expresses the total energy*:

𝐿 𝑞, ሶ𝑞 → 𝐻(𝑞, 𝑝)

𝑝𝑖 =
𝜕𝐿

𝜕 ሶ𝑞𝑖

𝐻 = 𝑇 + 𝑉

William Rowan Hamilton
*1805 †1865

* under certain conditions

𝑑𝑞

𝑑𝑡
=
𝜕𝐻

𝜕𝑝

𝑑𝑝

𝑑𝑡
= −

𝜕𝐻

𝜕𝑞

Energy Flows to describe the Hamiltonian

▪ The Hamiltonian 𝐻 leads to our pairs of effort and flow that describe the energy
flows whose sum is the Hamiltonian

▪ But beware! Whereas each Hamiltonian can be expressed by a sum of energies, not
all sums of energies represent a Hamiltonian. This misconception of energies as
generic interface leads to non-physical systems and non-deterministic systems!

▪ Bond-graphs are the prime example of this fallacy.

27
Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Domain Translational

Mechanics

Rotational

Mechanics

Hydraulics Electrics Thermal …

Potential 𝑟 𝜑 𝑃 𝑉 𝑇

Flow 𝑓 𝜏 ሶ𝑄 𝑖 𝑄

ModelicaLite: Enforce Determinism for Energy Flows

28

Energy flows modeling a physical System Energy flows misperceived as Interface

• Local analysis suffices
• Deterministic (unique solution)
• Information complete

• Global analysis necessary
• Non-Deterministic
• Information incomplete

ModelicaLite: Enforce Determinism for Energy Flows

29

Energy flows modeling a physical system Energy flows misperceived as Interface

Knowing Guessing

ModelicaLite: No Flow without a Signal Flow

▪ The best currently known cure for this problem is to bind the pair to a signal
The pair then represents the part of the Lagrangian subjected to the Legendre
transformation to get the Hamiltonian.

▪ There are already useful libraries according to this principle
▪ ThermoFluid Stream

▪ Dialectic Mechanics

▪ Controlled Energy Flows

30
Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

Domain Translational

Mechanics

Rotational

Mechanics

Thermo

Fluids

Electrics ? …

Potential 𝑣𝑘𝑖𝑛 𝜔𝑘𝑖𝑛 r ? …

Flow 𝑓 𝜏 ሶ𝑚 ? …

Signal 𝑟 𝜑 𝚯 ? …

Motivation: From Necessary to Sufficient

31
Dirk Zimmer, Institute of System Dynamics and Control, February 08, 2024

A B

ramp

duration=8 s

A

B

C

D

E

48 V

A

B

C

D

E

800 V

400 V

A B -

feedback

ramp1

duration=8 s

12 V

A B

°C

Pa

kg/s

T

p

m

°C

Pa

kg/s

T

p

m

°C

Pa

kg/s

T

p

m

°C

Pa

kg/s

T

p

m

ModelicaLite: Enforce Determinism for Energy Flows

32

Energy flows modeling a physical system Energy flows misperceived as Interface

Knowing Guessing

ModelicaLite: Enforce Determinism

Enforce
Order

Enforce
Determinism

Enforce
Frugality

33 Dirk Zimmer, Institute of System Dynamics and Control, 24. July 2024

• Enforcing
• Enables modular compilation of kernels
• Scalable system composition
• Robust modeling

• No need for
• Dulmage Mendelsohn Permutation
• Higher Index Reduction
• Dynamic State Selection
• Tearing Heuristics
• Non-linear root solvers

• Still need for:
• Tarjan (modified)
• Differential index reduction
• Linear equation system solvers

ModelicaLite: Enforce Order

Enforce
Order

Enforce
Determinism

Enforce
Frugality

34

• A Modelica compilers can re-order declarations
and equations.

• However, this should not encourage writing
messy models and packages, but unfortunately
it does.

• Enforcing order:
• Keeps package dependencies in check
• Enables error messages on the line

• Each line in ModelicaLite shall be able to be
understood without looking forward.

ሶ𝑚 ሶ𝑚 ሶ𝑚, 𝚯

ModelicaLite: Enforce Order with assumed Causality

35

• Binding the pairs to a signal flow enables an a-priori
casualization of the corresponding pair:
• The potential (and its derivatives) shall have the

same causality as the signal
• The flow (and its derivatives) shall have the inverse

causality as the signal

• Static pre-determination of states and tearing variables is
also feasible

• This means that the component shall be formulated
under the assumption of this causality.

• This enables error messages on the line

• Modelling beginners will thank for this guidance

𝑑𝑠

𝑑𝑡
, 𝑓

𝑑𝜑

𝑑𝑡
, 𝜏

𝑑𝑥

𝑑𝑡
, 𝑓𝑥 ,

𝑑𝑦

𝑑𝑡
, 𝑓𝑦 ,

𝑑𝜑

𝑑𝑡
, 𝜏

𝑠, 𝑣 𝜑,𝜔
{𝑥, 𝑦, 𝜑},
{𝑣𝑥, 𝑣𝑦, 𝜔}

𝑑 ሶ𝑚

𝑑𝑡
, Δ𝑟

𝑑 ሶ𝑚

𝑑𝑡
, Δ𝑟

𝑑 ሶ𝑚

𝑑𝑡
, Δ𝑟

ModelicaLite: Enforce Order among Packages

36

• There is a reason why a modern language like GO is so strict
about packages.
• If package B depends on A, then A must not depend on B

directly or indirectly
• Loadable packages must be encapsulated
• Imports only directly in encapsulated packages
• If package A imports C, but C is not used then compile is

aborted.

• If discipline is not enforced, everything will eventually depend on
everything.

• Go learned its lesson from C++. We shall learn our lesson from
the MSL.

37

IMPLEMENTATION

ModelicaLite: Compliance Checker

▪ Fully self-contained implementation in C++17
(Handwritten Parser and Lexer. Just uses STL nothing else)

▪ Checks Compliance with Modelica Lite

▪ Shall enable independent implementation of ModelicaLite Libraries.
(Running as console application in parallel to Modelica IDE)
▪ 1D – 3D Mechanics
▪ ThermoFluid Stream Lite
▪ Controlled Energy Flows
▪ …

▪ Should be 75% of the work for a compiler to another high-level language.
38

Oct 2024: Start
of

implementation

Now: 50%
done….

Mar 2025: Start
of internal usage

and testing

Jul 2025: Full
open-sourcing

becoming
mature…

ModelicaLite: Measuring Complexity Reduction

▪ Goal is to avoid the writing of an explicit specification but make the code so good
and transparent that it serves as specification.

▪ Reusing existing IDEs and tools is also of big help
39

Dirk Zimmer, Institute of System Dynamics and Control, 10. October 2023

Projection
Projection

ModelicaLite: Cooperative Mode for Tool Development

40
Dirk Zimmer, Institute of System Dynamics and Control, 10. October 2023

Cooperate Compete

C
o

o
p

e
ra

te

non-equilibrium

C
o

m
p

e
te

non-equilibrium

▪ Implementing compilers is
mostly just cost without
revenue stream.

▪ Hence one is motivated to
reduce and share costs.

▪ Unfortunately this is not true for
Modelica compilers

▪ FMI did a better job (could build
on a matured association)

▪ We shall also do better with
ModelicaLite

	Modelica Lite�Towards a strict, robust and scalable subset of Modelica
	WHAT IS EQUATION-BASED Modeling Good FOR?
	Object-Oriented Modeling in Classic Programming Languages
	Object-Oriented Modeling in Classic Programming Languages
	Superior Scaling with Memory
	Acceptable Computational Efficiency
	So why go for an equation-based language?
	Social: Equation are useful to people
	Technical: Equations are oblivious to compute architecture
	Technical: Equations are oblivious to compute architecture
	Technical: Equation are oblivious to compute architecture
	Technical: Equation are oblivious to compute architecture
	Summary: we fail to live up to our potential
	Summary: we fail to live up to our potential
	Cutting Down COMPLEXITY
	ModelicaLite: Easy to learn, Easy to process
	ModelicaLite: Enforce Frugality
	ModelicaLite: Enforce Frugality
	ModelicaLite: Enforce Determinism
	ModelicaLite: Enforce Determinism for Signal Flows
	ModelicaLite: Enforce Determinism for Signal Flows
	ModelicaLite: Enforce Determinism for Physical Systems
	What constitutes classic physics
	A different view on energy
	The Lagrangian
	From Lagrangian to Hamiltonian
	Energy Flows to describe the Hamiltonian
	ModelicaLite: Enforce Determinism for Energy Flows
	ModelicaLite: Enforce Determinism for Energy Flows
	ModelicaLite: No Flow without a Signal Flow
	Motivation: From Necessary to Sufficient
	ModelicaLite: Enforce Determinism for Energy Flows
	ModelicaLite: Enforce Determinism
	ModelicaLite: Enforce Order
	ModelicaLite: Enforce Order with assumed Causality
	ModelicaLite: Enforce Order among Packages
	IMPLEMENTATION
	ModelicaLite: Compliance Checker
	ModelicaLite: Measuring Complexity Reduction
	ModelicaLite: Cooperative Mode for Tool Development

