

• Goal

• An OpenModelica
Environment in Julia

• This talk

• Overview of
OpenModelica.jl

• Some Current
Challenges

• Future Development

OMFrontend

OMParser

OMBackend

MetaModelica

Absyn

SCod

DAE

OpenModelica

Auxiliary

libraries

Tinnerholm J, Pop A, Sjölund M. A Modular, Extensible, and Modelica-Standard-Compliant OpenModelica Compiler Framework in Julia

Supporting Structural Variability. Electronics. 2022; 11(11):1772. https://doi.org/10.3390/electronics11111772

• OpenModelica.jl: A Modular and Extensible Modelica compiler framework in Julia

• Translated the high-performance front end.

• Able to execute and translate Modelica/MetaModelica functions

• Able to simulate discrete-hybrid systems + regular continuous systems

• Experimental backends developed

• Targeting DifferentialEquations.jl and ModelingToolkit.jl (MTK)

• Casualization sorting, matching…

• Integrated LightGraphs.jl package, DAG representation of the hybrid DAE

• Integration with Sundials. IDAS used for numerical integration

• Integrated Plots.jl for interactive plotting and animation

• Alpha is released, a Beta Release in the workings

• MSL support (New 2022/2023)

• Working on full coverage in the frontend

• Full code generation for the backend

• New Low Level Code Generator (New 2023)

• Support for Algorithmic Code Generation (New 2023)

• A System Dynamic importer in progress

• Uppdated for Julia 1.10 (January 2024)

• Optmization of both runtime and compiler structures in the frontend and in the backend

• MsC Thesis using OpenModelica.jl to propose a new language done at TU-Dresden Autumn 2023

• Two Bachelor Thesises in progress at TU Dresden

• Supporting Experimental Modelica Features:

• Language extensions for variable-structure system support (2022)

• Dynamic Overconstrained Connectors (2022)

• THETA (New 2023)

Visualization of OpenModelica.jl by Chat GPT

OpenModelica.jl aims to be a complete
Modelica Environment

• Frontend was modified s.t it can
flatten models in separation

• Note requires the structural mode
keyword

• Possible to formulate model with
varying index and compile AOT.

• To the left we can see the flat model
definition in the Julia Modelica
compiler and an example of a
breaking pendulum model.

Continuous event handler

Simulation

Code Generation

Compilation

Discrete event handler

Structural event handler

Parsing

Instantiation and Flattening

Cache

Compiler Phases

Simulation Runtime➢ Possible to formulate recursive
models that expand during simulation

Tinnerholm J, Pop A, Sjölund M. A Modular, Extensible, and Modelica-Standard-Compliant

OpenModelica Compiler Framework in Julia Supporting Structural Variability. Electronics. 2022;

11(11):1772. https://doi.org/10.3390/electronics11111772

• Currently, Overconstrained
Connectors in Modelica can not be
used in If-Equations3

• Relaxing constraints

• Allowing a special If-Equation
construct where the
Connectors.branch operator is
allowed
• Allowing changing the

connection graph dynamically at
runtime.

• More efficient simulations

• Allows the simulations of models
current tools are unable to simulate

3https://specification.modelica.org/maint/3.5/connectors-and-connections.html#restrictions-of-connections-and-connectors

➢ Restricted case of VSS, efficient no recompilation
needed. Could be implemented in a traditional compiler
using value propagation and pointer swapping

Tinnerholm, J., Casella, F., & Pop, A. (2022, November). Towards

Modeling and Simulation of Dynamic Overconstrained Connectors in

Modelica. In Modelica Conferences (pp. 35-44).

Θ

Tinnerholm, J., Casella, F., & Pop, A. (2023, December) Supporting Infinitely Fast Processes in

Continuous System Modeling in the Proceedings of the 15th International Modelica Conference

➢

Tinnerholm, J., Zapatero, M., Pop, A., Fritzson, P., & Castro, R. (2023). Automatic Translator from

System Dynamics to Modelica with Application to Socio-Bio-Physical Systems. Scandinavian Simulation

Society, 302-309.

• In order to achieve this a SD to Modelica translator was developed

• Mapping XMILE to Modelica

• Oasis XML Interchange

• We used ESCIMO, which is a fairly complicated SD model, to validate the
translator

Tinnerholm, J., Zapatero, M., Pop, A., Fritzson, P., & Castro, R. (2023). Automatic Translator from

System Dynamics to Modelica with Application to Socio-Bio-Physical Systems. Scandinavian Simulation

Society, 302-309.

Randers, J., Golüke, U., Wenstøp, F., & Wenstøp, S. (2016). A user-friendly earth system model of low

complexity: The ESCIMO system dynamics model of global warming towards 2100. Earth System

Dynamics, 7(4), 831-850.

• The translator was validated by first simulating the results in Vensim and
then simulating the same model in Modelica and in Julia

• The simulation was run from 1850 to 2500

• We then compared the results for each tenth-year to examine deviations from
the original model

• Three variables were examined in detail

• Temperature surface anomaly compared to 1850 (Celsius), that is, the
difference in average global surface temperature compared to 1850.

• pH in warm surface water, that is, the acidity of warm surface water

• CO2 Concentration in PPM, that is, the concentration of carbon dioxide in
the atmosphere.

• Solver Settings

• Runge-Kutta-4 (Vensim)

• DASSL with absolute and relative tolerance of 1E-6 for Modelica

• Rodas5 with absolute and relative tolerance of 1E-6 for Julia

Tinnerholm, J., Zapatero, M., Pop, A., Fritzson, P., & Castro, R. (2023). Automatic Translator from

System Dynamics to Modelica with Application to Socio-Bio-Physical Systems. Scandinavian Simulation

Society, 302-309.

Possible to simulate a model and
export the result to OMEdit

• Some History

• Translation performance has historically been low in the frontend

• First version (Early 2020), correct but around ~ 1 hour to compile simple programs like HelloWorld…

• Issues

• Julia Type Inference: Julia historically struggled with type inference for mutually recursive data structures with deep recursion

• Solved by introducing manually introducing barriers to type inference

• Hindrance of fully automatic translation

• OpenModelica relies on exceptions for control flow for operations such as lookup and error handling

• Exceptions, while expensive, are comparable inexpensive in MetaModelica compared to Julia

• Julia 1.5 - 1.6 ~ Gamechanger

• Could compile model without inference issues

• Julia 1.10

• Faster Garbage Collector

• More or less OpenModelica.jl has become faster and more memory efficient for each Julia Version since

• Furthermore, various improvements to the runtime and runtime data structures has been made

• Examples include statically generating less code when detecting a match expression that can not fail

• Current version

• Faster than omc translating some models…

➢ For small models, the Julia variant of the
frontend perform better

➢ Conclusion is OM.jl better than
OpenModelica?
➢ Not really…

OpenModelica:
Notification: Performance of
NFInst.instantiate(HelloWorld): time 0.00136/0.001485,
allocations: 366.4 kB / 14.4 MB, free: 220 kB / 13.93
MB

Experience: For small models such as
the HelloWorld model and others,
OpenModelica.jl > OpenModelica

➢ Here, OM.jl uses less memory even during
instantiation…

➢ As we will see next it also uses less memory
for other operations…
➢ However, the Julia Modelica Compiler

is cheating….
➢ Note, OM.jl requires less memory here

than omc requires for just one phase,

➢ A rough comparison of memory and
speed for the Engine1a model in the
Multibody library

➢ Here, OpenModelica consumes more
memory in total but is around 3 times
faster.
➢ Certain phases are cheaper in

OpenModelica
➢ More on that later..

➢ For other model's similar patterns can
be observed

• Not apparent at first glance, but due to
the heavy recursion used for this
function, the named arguments here
create a significant number of
allocations

• Removing the keyword arguments
here saved 5% of memory

➢Small models where lookup
processing is a significant part of
the translation

✓Changing this in the omc could
possibly save some memory as well

• Currently, the frontend consumes too much memory for
operations, around 10X that of OpenModelica

• Also, the OpenModelica Frontend has improved
future in terms of memory efficiency since I
started this work

• Memory patterns vary from model to model

• The backend (OMBackend.jl) could use some
efficiency improvements during translation.

• Not yet 100% coverage of the Standard Library in the
Frontend

• Some issues with Fluids

• For small models, OM.jl typically consumes less memory
than OM

• No need to reparse libraries

• Faster instantiations for some models

• Libraries such as MSL are loaded upon
compilation…..

✓ The translation performance of the frontend for
the Julia Modelica Compiler is now decent at large

• While we do not fully cover the MSL. A significant
amount of the Modelica Standard Library is handled by
the frontend

• The MTK and the wider Julia ecosystem provide a wide
array of solvers and libraries

• Better simulation time than OpenModelica1

1For some models, and also via new language features
such as DOCC and the THETA operator

• Using tools such as OMJulia it is
possible to directly interface the
rest of the OpenModelica
environment

• For models currently not handled
by the Julia OpenModelica
Compiler it is possible to output
flat Modelica and then feed to the
OpenModelica.jl environment

• One can imagine a combination of
OMJulia.jl and OpenModelica.jl to
use advanced libraries such as the
Buildings Library within the Julia
Environment

• Backend can be reused
with the frontend

• OM.jl is moving closer to an initial real release

• Due to improvements of, Julia I now believe that one can feasibly
implement a full-fledged compiler in it that not only works but also has
decent performance

• Some details…

• OM.jl provides a way of working with the Modelica ecosystem in the Julia
Environment

• The capabilities of Julia allow one to quickly implement and prototype new
language features

Tinnerholm, J., Sjölund, M., & Pop, A. (2019, November). Towards introducing just-in-time compilation in a modelica compiler. In Proceedings

of the 9th International Workshop on Equation-based Object-oriented Modeling Languages and Tools (pp. 11-19).

Tinnerholm, J., Pop, A., Sjölund, M., Heuermann, A., & Abdelhak, K. (2020).

Tinnerholm J. et al. Towards an Open-Source Modelica Compiler in Julia.

Tinnerholm, J., Pop, A., Heuermann, A., & Sjölund, M. (2021, September). OpenModelica. jl: A modular and extensible Modelica compiler

framework in Julia targeting ModelingToolkit. jl. In Modelica Conferences (pp. 109-117).

Tinnerholm, J. (2022). A Composable and Extensible Environment for Equation-based Modeling and Simulation of Variable Structured Systems

in Modelica (Licentiate dissertation, Linköping University Electronic Press).

Tinnerholm, J., Casella, F., & Pop, A. (2022, November). Towards Modeling and Simulation of Dynamic Overconstrained Connectors in

Modelica. In Modelica Conferences (pp. 35-44).

Tinnerholm, J., Casella, F., & Pop, A. (2023, December) Supporting Infinitely Fast Processes in Continuous System Modeling in the

Proceedings of the 15th International Modelica Conference

Tinnerholm, J., Zapatero, M., Pop, A., Fritzson, P., & Castro, R. (2023). Automatic Translator from System Dynamics to Modelica with

Application to Socio-Bio-Physical Systems. Scandinavian Simulation Society, 302-309.

Visualization of OpenModelica.jl by Chat GPT

Visualization of OpenModelica by Chat GPT

	Start / Välkommen
	Slide 1: Modelica in the Julia Environment: Latest Developments and Prospects
	Slide 2: An OpenModelica Environment in Julia
	Slide 3: Experimental OpenModelica Environment in Julia
	Slide 4: Static Reconfiguration via separate flattening
	Slide 5: Language extensions for variable-structure system support (2022)
	Slide 6: Dynamic Overconstrained Connectors
	Slide 7: THETA-Operator
	Slide 8: System Dynamics and Algorithmic Modelica
	Slide 9: Translating System Dynamics into Modelica
	Slide 10
	Slide 11: Practical Examples
	Slide 12: Practical Examples Continued
	Slide 13: Practical Examples using the Standard Library
	Slide 14: Notes on Performance
	Slide 15: Performance in OpenModelica.jl
	Slide 16: Better than OpenModelica?
	Slide 17: Memory Patterns for HelloWorld
	Slide 18
	Slide 19: Reason: Issue with certain MetaModelica practices
	Slide 20: Challenges
	Slide 21: Using OpenModelica + OM.jl
	Slide 22: Conclusions
	Slide 23: References
	Slide 24
	Slide 25

