Modelica in the Julia
Environment: Latest
Developments and Prospects

John Tinnerholm

OpenModellca

LINKOPING
II." UNIVERSITY

An OpenModelica Environment in Julia

* Goal
« An OpenModelica

Environment in Julia OpenModelica

e This talk

e Overview of OMParser
OpenModelica.jl

e Some Current OMFrontend -
uxiliary
Challenges \

 Future Development OMBackend

II‘" Hll:lll}f/OEpRlé\ll'?Y Tinnerholm J, Pop A, Sjoélund M. A Modular, Extensible, and Modelica-Standard-Compliant OpenModelica Compiler Framework in Julia
Supporting Structural Variability. Electronics. 2022; 11(11):1772. https://doi.org/10.3390/electronics11111772

Experimental OpenModelica Environment in Julia

* OpenModelica.jl: A Modular and Extensible Modelica compiler framework in Julia
+ Translated the high-performance front end.

« Able to execute and translate Modelica/MetaModelica functions

» Able to simulate discrete-hybrid systems + regular continuous systems

+ Experimental backends developed
» Targeting DifferentialEquations.jl and ModelingToolkit.jl (MTK) E
* Casualization sorting, matching...
+ Integrated LightGraphs.jl package, DAG representation of the hybrid DAE
+ Integration with Sundials. IDAS used for numerical integration

» Integrated Plots.jl for interactive plotting and animation

» Alphais released, a Beta Release in the workings

+ MSL support (New 2022/2023) A A C
. ~ J‘

Working on full coverage in the frontend DN 7| HUBRID "\

2/ | SYSTUTON

Full code generation for the backend
« New Low Level Code Generator (New 2023)
* Support for Algorithmic Code Generation (New 2023)
+ A System Dynamic importer in progress
+ Uppdated for Julia 1.10 (January 2024)
* Optmization of both runtime and compiler structures in the frontend and in the backend
* MsC Thesis using OpenModelica.jl to propose a new language done at TU-Dresden Autumn 2023
+ Two Bachelor Thesises in progress at TU Dresden

» Supporting Experimental Modelica Features:

+ Language extensions for variable-structure system support (2022) Visualization of OpenModelica.jl by Chat GPT
* Dynamic Overconstrained Connectors (2022) R . o
. THETA (New 2023) OpenModelica.jl aims to be a complete

Modelica Environment

LINKOPING
RT e

model FreeFall
parameter Real e
parameter Real g

ST A Static Reconfiguration

nn
© o
]

Real vx; struct FLAT_MODEL <: FlatModel
cqnaiton)’ name: :String ° e

g::%xg v variables: :Vector{Variable} VIG Sepa rate Gttenlng

der[ﬁy)_z ¥§; equations: :Vector{Equation}
Lqerlvx) = €00 initialEquations: :Vector{Equation} . .
' algorithms: :Vector{Algorithm} Frontend was modified s.t it can
model Pendulum oo - 16- initialAlgorithms: :Vector{Algorithm} . .

Earameger :eai yg = 13 #= VSS Modelica extension =# ﬂatten mOdels m Separatlon

o el § 2 S on2 + yonz); StructuralSubmodels::List{FlatModel})

/2 Comnon variables */ scodeProgram: : Option{SCode.CLASS} » Note requires the structural mode

Real xlsrarr = xo) #= Dynamically Overconstrained connectors =#

" v, : : : keyword

:::i v DOCC_equations::List{Equation}

I¥ ﬂ.m,e’f'specific variables */ #= Contains the set of unresolved connect equations =# . .

Real Phiiseart = 1., Tixed = true); unresolvedConnectEquations::List{Equation} e Possible to formulate model with
equation active DOCC_Equations::Vector{Bool} . ind d ile AOT

DI 1 #= End VSS Modelica extension =# varying mdex and compile .

der (x) = vx; ' comment: :Option{SCode.Comment}

SO Yinse, end « To the left we can see the flat model
end pendulum; definition in the Julia Modelica
structurainods pendulum pendulun; compiler and an example of a
structuralmode FreeFall freeFall; .
equation breaking pendulum model.

initialStructuralState(pendulum);
structuralTransition(/* From */ pendulum, /* To */freeFall, time <= 5 /*Condition*/);
end BreakingPendulumStatic;

model BreakingPendulumStaticBouncingBall
structuralmode Pendulum pendulum;
structuralmode BouncingBall bouncingBall;
equation
initialStructuralState(pendulum);
structuralTransition(/* From */ pendulum, /* To */bouncingBall, time <= 5 /*Condition*/);
end BreakingPendulumStaticBouncingBall;

LINKOPING
RT e

Language extensions for variable-structure
system support (2022)

model SimpleClockArrayGrow
parameter Integer N = 10;
Real x[N](start = {i for i in 1:N});
equation
/* Resize this problem once every 20 seconds */
when sample(©0.0, 20.0) then
recompilation(N/* Parameter */, /* What we change the parameter */ N + 10);
end when;
for 1 in 1:N loop
x[i] = der(x[1i]);
end for;
end simpleClockArrayGrow;

Parsing

Instantiation and Flattening

Code Generation

model SimpleClockParameter
Real x;
parameter Integer N = 2;
equation
when sample(0.0, 0.2) then
recompilation(N, N * 2);
end when;]
der(x) = time * N; Continuous event handler

end SimpleClockParameter;

Compilation

Compiler Phases

Structural event handler

—_

> Possible to formulate recursive Discrete event handler Simulation Runtime
models that expand during simulation

LINKOPING Tinnerholm J, Pop A, Sjolund M. A Modular, Extensible, and Modelica-Standard-Compliant
I‘“ UNIVERSITY OpenModelica Compiler Framework in Julia Supporting Structural Variability. Electronics. 2022;
11(11):1772. https://doi.org/10.3390/electronics11111772

Towards Modeling and Simulation of Dynamic Overconstrained Connectors 2024-02-07 6

Dynamic Overconstrained Connectors

* Currently, Qvercons’grained model TransmissionLineVariableBranch
Conngctors 111 M.Odehca can not be extends TransmissionLineBase;
used in If-Equations3 _
« Relaxing constraints equation
. . . if closed then
* Allowing a special If-Equation port_a.omegaRef = port_b.omegaRef;
construct where the .
Connectors.branch operator ig Connections.branch (port_a.omegaRef,
allowed port_b.omegaRef) ;
- Allowing changing the end if;
connection graph dynamically at end TransmissionLineVariableBranch;
runtime.
* More efficient simulations > Restricted case of VSS, efficient no recompilation
e Allows the simulations of models needed. Could be implemented in a traditional compiler
current tools are unable to simulate using value propagation and pointer swapping

LINKOPING Tinnerholm, J., Casella, F., & Pop, A. (2022, November). Towards
I." UNIVERSITY Modeling and Simulation of Dynamic Overconstrained Connectors in

Modelica. In Modelica Conferences (pp. 35-44). 3https://specification.modelica.org/maint/3.5/connectors-and-connections.html#restrictions-of-connections-and-connectors

Supporting Infinitely Fast Processes in Continuous System Modeling

THETA-Operator

2024-02-07 7

Model

l Connection
R handling
‘ Parsing }—'1 Flattening |

Constant Evaluation

l Flat Modelica

Simulation Code Generation
Simulation

n Simplification
1 Y | | | Code Generation || Symbolic 1 -
i 8 — vt -0-'04 Y ; for Sub Simu]atlions ' | Tmnjthm)ations }
a Tl °
= o
Main Simulation
Successfully Algebraic P
_I Td equations. | Equation Block
ground Ju
Sub-Simulations
- ® — Process;
package CircuitTest
model ThetaCircuit2Dynamiec © — Process,
parameter RE=al THETA ;
extends CircuitlStatic: x
C‘ap._ﬁ:it:nr Cp(C le—12 «» THETA); Algebraic
equation (Non-linear)
connect (Cp.n, ground.p); Equation Block
connect (diode.n, Cp.p); lzu
end ThetaCircuitZDynamic; Differential equations 5 i
State , U,y
d ci i tTest : to be solved by the ;
en rcultlestc; solver of the main Equation Block
simulation.

II “ LINKOPING Tinnerholm, J., Casella, F., & Pop, A. (2023, December) Supporting Infinitely Fast Processes in
o UNIVERSITY

Continuous System Modeling in the Proceedings of the 15t International Modelica Conference

System Dynamics and Algorithmic

Modelica
The Resulting Translation

The Translation was done according to the
XMILE specification

SD Elements were mapped to the
corresponding Modelica Elements

Table 1. Subset of Modelica to SD type matchings

SD Type Modelica Formulation
stock der(stock) = inflows — out flows
smooth der(smooth) -
averagingTimeVariable

flow flow = inflow

model ESCIMO

constant Real Future_volcanic_emissions(unit
VAe/yr") 0 "CONST";
Albedo_Antarctic_sens(unit “fraction")
T™;

s t Real
» Annual_pct_increase_CH4_emissions_from_2015_pct_yr(un
"1/yr") = 0.0 "CONST";

initial equation
Antarctic_ice_volume_km3

+ Antarctic_ice_volume_in_1860_km3 “STOCK";
Arctic_ice__on_sea__area_km2 =

» Arctic_ice_area_in_1860_km2 "STOCK";
C_in_permafrost_in_form_of CH4 = 1200.0 "STOCK" ;

equation

der (DESERT_Mkm2)

, flow_Shifting GRASS_to_DESERT Mkm2_yr

» flow_Sifting DESERT_to_GRASS_Mkm2_yr "STOCK";
der (Fossil_fuel _reserves_in_ground_GtC)

» flow_Man _made_fossil_C_emissions_GtC_yr "STOCK";

der (GRASS_area_burnt_Mkm2) flow_GRASS_burning Mkm2_yr
flow_GRASS_regrowing after_being burnt_Mkm2_yr

» "STOCK";
UNIT_conversion_for_CH4_from_C02e_to_C 1/(16/12 »
«» Global_Warming Potential CH4) "AUX";
UNIT_conversion_for_CO02_from C02e_to C = 12/44 "AUX";
UNIT_conversion_from_MtCH4_to_GtC 1 /(1000 / 12 =
< 16) "AUX";

flow_SW_surface_absorption=SW_surface_absorption

< "“FLOW";

flow_GRASS_runof f~GRASS_runoff "FLOW";

flow_NATURE_CCS_Fig3_GtC_yr=NATURE_CCS_Fig3_GtC_yr
» "FLOW";

end ESCIMO

Initial support for
Algorithmic
Modelica was
added in order to
simulate this
model

» 0ngoing work on expanding support for algorithmic Modelica

LINKOPING Tinnerholm, J., Zapatero, M., Pop, A., Fritzson, P., & Castro, R. (2023). Automatic Translator from
I." UNIVERSITY System Dynamics to Modelica with Application to Socio-Bio-Physical Systems. Scandinavian Simulation

Society, 302-309.

Translating System Dynamics into
Modelica

<model>
<gim_specs> <!-- OPTIONAL--»

ENERGY

</eim_specs>

CARBON
STOCKS AND ST‘:ES;‘;ND
<behavior> </-— OPTIONAL-->
Influences. o =
heatflow from Influences the </behavior>
he total area of <yariables> <7 REGUIRELD =

snow and ice

brightmess on the
surface ALBEDO .es
STOCKS AND </variablea>
FLOWS <views> <!/-- OPTIONAL-->
) _ </viewsa>
Figure 1. The three sectors of the ESCIMO climate model </model>
as described by (Randers et al., 2016).

 In order to achieve this a SD to Modelica translator was developed

« Mapping XMILE to Modelica
 Oasis XML Interchange
* We used ESCIMO, which is a fairly complicated SD model, to validate the

translator
Tinnerholm, J., Zapatero, M., Pop, A., Fritzson, P., & Castro, R. (2023). Automatic Translator from

Randers_, ‘]_" Goluke, U., Wenstap, F., & Wenstap, S. (2016). A us_er-fnendly earth system model of low System Dynamics to Modelica with Application to Socio-Bio-Physical Systems. Scandinavian Simulation
complexity: The ESCIMO system dynamics model of global warming towards 2100. Earth System Society, 302-309

Dynamics, 7(4), 831-850.

Validation of the Translator

» The translator was validated by first simulating the results in Vensim and

co2C tration in the at h
oncentration in the atmosphere (ppm) then simulating the same model in Modelica and in Julia

460 T T T T T
Vensim —H » The simulation was run from 1850 to 2500

440 & Modelica - O -
T 420 L gj \ Julia h * We then compared the results for each tenth-year to examine deviations from
g / EQ the original model
i \

400 \ 1
s ré{ \ » Three variables were examined in detail
® 380 Ia 53 §
= / \ » Temperature surface anomaly compared to 1850 (Celsius), that is, the

\ . .

© 360 - /;rZJ E‘j y difference in average global surface temperature compared to 1850.
c \
(o] . - . . o 7
: 340 \mh * pH in warm surface water, that is, the acidity of warm surface water
o} L i
o 320 z \S& ¢ CO2 Concentration in PPM, that is, the concentration of carbon dioxide in

300 F [@ B s the atmosphere.

e ‘BBsnanpoaenod p
280 & ' ' ' ' : ' » Solver Settings
1900 2000 2100 2200 2300 2400 2500
time (year) * Runge-Kutta-4 (Vensim)

« DASSL with absolute and relative tolerance of 1E-6 for Modelica

¢ Rodass with absolute and relative tolerance of 1E-6 for Julia

Tinnerholm, J., Zapatero, M., Pop, A., Fritzson, P., & Castro, R. (2023). Automatic Translator from

II " LINKOPING System Dynamics to Modelica with Application to Socio-Bio-Physical Systems. Scandinavian Simulation
o UNIVERSITY society, 302-309.

Practical Examples

Simulating models and profile Simulating and Plotting
memory julia> begin

import OM

import CSV

import DataFrames

function profileMemory(model = "Modelica.Mechanics.MultiBody.Examples.Loops.Enginela") USjJ1g Plots

collect fil - " _ " " - n
mn%iZiﬂgéﬂ?l ‘ sol = OM.simulate("HelloWorld"”, "./Models/HelloWorld.mo")
#= Precompile j i c=# OM.exportCSV("modelName", sol; filePath = "filename.csv")
println("Test to flatten a model") f = CSV.read("./f1lename.csv", DataFrame)
@time flattenModelInMSL_TST(); DataFrames.DataFrame(f)
println("Running a second time") plot(f time f x)

@time flattenModelInMSL_TST(model);
Try to flatten an engine model in the multibody library.
println("Profile memory allocations of that model")
Profile.Allocs.(@profile bsample_rate=0.1 flattenModelInMSL_TST(model);
println("Running profiler")
PProf.Allocs.pprof()

end

end

[—]

LINKOPING
II." UNIVERSITY

Practical Examples Continued

,_.
N

o
®

-
ala il

o o
N =
Pl B e |

o

o
v
1

o
File Edit

View SSP Simulation Data Reconciliation Sensitivity Optimization Debug Tools Help

Recent Fil

Clear Recent Files

Look in: 5 /mnt/c/users/johti17/OneD...JuliaPackages/OM.jitest ~

& computer Name
VariablePowerSourcePackage_PowerSource_res.csv
VariablePowerSourcePackage_PowerSource_part3.csv
9 omedit VariablePowerSourcePackage_PowerSource_part2.csv
ePackage_ e_partl.csv
SimpleMechanicalSystem_res.csv

9 jontin7

g | gf

BouncingBall_res

Pendulums 9] g

cingBall_par

9 g
nothing_res.csv

HelloWorld_res.csv

filename_res.csv

filename.csv_res.csv

B8 MSL_Use
9 Models

File name: [filename.csv

l Create New Modelica Class l

Files of type: | Of a Result Files (*.mat *.plt *.csv)

par

[_sgpen | !

~ | Xcancel I

Messages Browser

o

0.2

0.4 0.6
time (s)

0.8

Possible to simulate a model and
export the result to OMEdit

OM.exportCSV("modelName", sol; filePath = "filename.csv")

Practical Examples using the Standard
Library

model ElectricalComponentTestMSL

import Modelica.Electrical.Analog.Basic.Ground;
import Modelica.Electrical.Analog.Basic.Resistor;
import Modelica.Electrical.Analog.Basic.Capacitor;
import Modelica.Electrical.Analog.Basic.Inductor;
import Modelica.Electrical.Analog.Sources.SineVoltage;

model SimpleCircuit
Resistor R1(R=160);
Capacitor C(C=0.01);
Resistor R2(R=160);
Inductor L(L=6.1);
SineVoltage AC(freqHz = 1., phase = 1.);
Ground 6;
equation
connect(AC.p, R1.p);
connect(R1.n, C.p)

connect(C.n, AC.n);

file Edit Yiew 55 Simulation Data Reconciliation Sensitivity Optimization Debug Tools Help
connect(R1.p, R2.p); v HH B ¥ o5 XOLEdA %>
connect(R2.n, L.p); =

Ubean... B | [x . % | Documentation Browser
connect(L.n, C.n); I i
connect(AC.n, 6.p); Giraries il] e Cwer X B & e

end SimpleCircuit; julia> begin oo e st e e
end ElectricalComponentTestMSL; import OM »«:4 v

import CSV T | variabies srowser

import DataFrames 0s e 14

using Plots od— i - _ Semton Tena ok |2

sol = OM.simulate("ElectricalComponentTestMSL.SimpleCircuit”, s) ”

"./MSL_USE/ElectricalComponentTest.mo"; - Vanavis
MSL = true, MSL_VERSION = "MSL:3.2.3") ’ e

OM.exportCSV("modelName", sol; filePath = "filename.csv") - 1

f = CSV.read("./filename.csv", DataFrames.DataFrame) . . tee (&)

plot(f.time, f.C_v) - [)

end Kutomateaty loodua packaga Compiex 4,00 dus to uses annotation from Medlca

fEq_tmp2a

.| 12]10:37:00 Scripting Notification

Performance in OpenModelica.jl

Some History
Translation performance has historically been low in the frontend
First version (Early 2020), correct but around ~ 1 hour to compile simple programs like HelloWorld...

Issues
» Julia Type Inference: Julia historically struggled with type inference for mutually recursive data structures with deep recursion
+ Solved by introducing manually introducing barriers to type inference
* Hindrance of fully automatic translation
« OpenModelica relies on exceptions for control flow for operations such as lookup and error handling
+ Exceptions, while expensive, are comparable inexpensive in MetaModelica compared to Julia

Julia 1.5 - 1.6 ~ Gamechanger
* Could compile model without inference issues

Julia 1.10
» Faster Garbage Collector

More or less OpenModelica.jl has become faster and more memory efficient for each Julia Version since
» Furthermore, various improvements to the runtime and runtime data structures has been made
« Examples include statically generating less code when detecting a match expression that can not fail

Current version
» Faster than omc translating some models...

Better than OpenModelica?

include("perf.jl")
0.001865 seconds (5.23 k allocations: 263.023 KiB)
Flat Model:
class HelloWorld
Real x(fixed = true, start = 1.0);

parameter Real a = 1.0;
equation

der(x) = -a * x:
end HelloWorld;

(No Functions)

record SimulationResult

resultFile = "/mnt/c/Users/johtil7/Onebrive — Linkdpings univ
. . simulationOptions = "startTime = 0.0, stopTime = 1.0, numberO
> For small models, the Julia variant of the messages = "LOG_SUCCESS | info | The initialization
frontend perform better LOG_SUCCESS | info | The simulation finished successfull
» Conclusion is OM.]jl r than
Conclusio .SO?) better tha timeFrontend = ©.882198113,
OpenModelica timeBackend = 0.812460822,
» Not really... timeSimCode = 0.00A9588540000000001,
1 = @.042675T787,
timeCompile = 1.314578823,

timeSimulation = 0.8361420827,
timeTotal = 1.411066526
end SimulationResult;

Memory Patterns for HelloWorld

model HelloWorld

Real x(start = 1, fixed = true); include("perf.jl™)
parameter Real a = 1; 0.001865 seconds (5.23 k allocations: 263.023 KiB)
- _ e . class HelloWorld

uel {K) = - & o Real x(fixed = true, start = 1.0);

end HelloWorld; parameter Real a = 1.0;
. equation
Experience: For small models such as der(x) = -a * x;
d HelloWorld;

the HelloWorld model and others, S
OpenModelica.jl > OpenModelica (No Functions)
» Here, OM.jl uses less memory even during OpenModelica:

instantiation... Notification: Performance of
> As we will see next it also uses less memory NFInst.instantiate(HelloWorld): time 0.00136/0.001485,

for other operations... allocations: 366.4 kB / 14.4 MB, free: 220 kB / 13.93

» However, the Julia Modelica Compiler MB
is cheating....

» Note, OM. jl requires less memory here
than omc requires for just one phase,

» A rough comparison of memory and
speed for the Engine1a model in the
Multibody library

» Here, OpenModelica consumes more
memory in total but is around 3 times
faster.

» Certain phases are cheaper in

OpenModelica
Notification: Performance of prepare postOptimizeDAE: time ©.009321/3.412, allocations: 3.976 MB / ©.7221 GB, free: 136.9 MB / 395.4 MB
> More On that later” Notification: Performance of postOpt lateInlineFunction (simulation): time ©.801914/3.414, allocations: ©.63uU5 MB / 6.7228 GB, free: 136.9 MB / 395.4 MB

Notification: Performance of postOpt wrapFunctionCalls (simulation): time ©.834/3.448, allocations: 14.31 MB / ©.7367 GB, fr 126.7 MB / 395.4 MB
Notification: Performance of postOpt inlineArrayEqn (simulation): time d4.761e-85/3.4d48, allocations: 39.94 kB / ©.7368 GB, fr 126.6 MB / 395.4 MB
Notification: Performance of postOpt constantLinearSystem (simulation): time d.364e-85/3.u48, allocations: 28 kB / ©.7368 GB, f 126.6 MB / 395.4 MB
Notification: Performance of postOpt simplifysemiLinear (simulation): time 4.682e-85/3.448, allocations: 14.77 kB / 08.7368 GB, fr 126.6 MB / 395.4 MB
' : : Notification: Performance of postOpt removeSimpleEquations (simulation): time ©.85772/3.586, allocations: 29.53 MB / ©.7657 GB, free: 96.97 MB / 395.U MB
> For Other model S Slmllar patterns Can Notification: Performance of postOpt simplifyComplexFunction (simulation): time 2.96e-85/3.586, allocations: .47 kB / ©.7657 GB, free: 96.96 MB / 395.4 MB
Notification: Performance of postOpt solveSimpleEquations (simulation): time ©.862412/3. ; allocations: 4 kB / ©.7661 GB, free: 96.58 MB / 395.4 MB
b b d Notification: Performance of postOpt tearingSystem (simulation): time ©.82351/3.532, allocations: 7.19 MB / ©.7731 GB, free: 89.45 MB / 395.4 MB

e O SeI Ve Notification: Performance of postOpt inputDerivativesUsed (simulation): time ©.0606618/3.533, allocations: 62.69 kB / 8.7731 GB, free: 89.39 MB / 395.4 MB
Notification: Performance of postOpt calculateStrongComponentJacobians (simulation): time ©.87976/3.612, allocations: 38.42 MB / 0.8187 GB, fre 50.89 MB / 395.4 M
Notification: Performance of postOpt calculateStateSetsJacobians (simulation): time 1.49e-05/3.612, allocations: 4.5U7 kB / ©.8187 GB, free: 508.89 MB / 395.4 MB
Notification: Performance of postOpt symbolicJacobian (simulation): time @. 8U/3.663, allocations: 20.43 MB / ©.8306 GB, free: 30.58 MB / 395.4 MB

p ackage Test Notification: Performance of postOpt removeConstants (simulation): time ©.002354/3.666, allocations: ©.7332 MB / ©.8313 GB, free: 29.83 MB / 395.4 MB
- Notification: Performance of postOpt simplifyTimeIndepFuncCalls (simulation): time 0.882407/3.668, allocations: 68 kB / ©.8314 GB, fr 29.77 MB / 395.4 MB
Notification: Performance of postOpt simplifyAllExpressions (simulation): time ©.607889/3.676, allocations: 383.5 kB / ©.8317 GB, f 29.47 MB / 395.4 MB
import Modelica . Elect TiC&l .Analog . Basic . Ground . Notification: Performance of postOpt findZeroCrossings (simulation): time ©.881987/3.678, allocations: 2uu4.d4 kB / ©.8319 GB, free: 29.24 MB / 395.4 MB
. - - - J - Notification: Performance of postOpt collapseArrayExpressions (simulation): time ©.8088735/3.679, allocations: 95.17 kB / ©.832 GB, free: 29.15 MB / 395.4 MB
lmpor‘t Modellca - Mechanlcs . MultlBOdy . Examples . LOOpS . Englnelﬁ; Notification: Performance of sorting global known variables: time ©.815/3.694, allocations: 4.887 MB / ©.8368 GB, free: 24.29 MB / 395.4 MB
Notification: Performance of sort global known variables: time 7.41e-87/3.694, allocations: ® / 0.8368 GB, free: 24.29 MB / 395.4 MB
~ Notification: Performance of remove unused functions: time ©.01041/3.705, allocations: 2.134 MB / ©.8389 GB, free: 22.16 MB / 395.4 MB
model MBTest Notification: Model statistics after passing the back-end for simulation:
Enginela englne;
eguation - -
n n .
end MBTest : include("perf.jl");
=Nad ’
L] 3 3 L) -
[Info: Loading MSL Version: MSL:4.0.0
end Test; 3
0.000003 seconds

[Info: Loaded MSL successfully
Attempting to instantiate...Test.MBTest
7.353518 seconds (7.66 M allocations: 336.631 MiB, 4.91% gc time)

FrontEnd: time 2.415e-06/2.294, allocations 4e2.6 MB, 331.4 MB

NFInst ns: 312.4 MB / 326.4 MB, free: 10.83 MB / 251.4 MB

Reason: Issue with certain MetaModelica

practices

'" #= Performs an AVL right rotation on the given tree. =#"""

function rotateRight(inNode::Tree)::Tree

local outNode::Tree = inNode
outNode = begin
local node::Tree
local child::Tree
atch outNode begin
NODE(left = child && NODE(__)) =>
node = setTreelLeftRight(outNode,
setTreeLeftRight(child, right =
end

NODE(left = child && LEAF(__)) =>
node = setTreelLeftRight(outNode,
setTreeLeftRight(child, right =

end

_ => begin
inNode

end

end
end
return outNode
end

begin
left = child.right, right = outNode.right)
node, left = child.left)

begin
left = EMPTY(), right = outNode.right)
node, left = EMPTY())

» Not apparent at first glance, but due to
the heavy recursion used for this
function, the named arguments here
create a significant number of
allocations

« Removing the keyword arguments
here saved 5% of memory

»Small models where lookup
processing is a significant part of
the translation

v'Changing this in the omc could
possibly save some memory as well

LINKOPING
II." UNIVERSITY

Challenges

High Memory Consumption in the The Silver Linin
Frontend for some Models g
« For small models, OM.]jl typically consumes less memory

* Currently, the frontend consumes too much memory for than OM
operations, around 10X that of OpenModelica

 Also, the OpenModelica Frontend has improved
future in terms of memory efficiency since I

* No need to reparse libraries
« Faster instantiations for some models

started this work » Libraries such as MSL are loaded upon
¢ del del compilation.....

* Memory patterns vary from model to mode v The translation performance of the frontend for
« The backend (OMBackend.jl) could use some the Julia Modelica Compiler is now decent at large

efficiency improvements during translation. While we do not fully cover the MSL. A significant
« Not yet 100% coverage of the Standard Library in the amount of the Modelica Standard Library is handled by

Frontend the frontend

* Some issues with Fluids « The MTK and the wider Julia ecosystem provide a wide

array of solvers and libraries
» Better simulation time than OpenModelica®

II " LINKOPING IFor some models, and also via new language features
@ UNIVERSITY such as DOCC and the THETA operator

Using OpenModelica + OM.jl

Flat Modelica Capabilities

 Using tools such as OMJulia it is
possible to directly interface the
rest of the OpenModelica
environment

» For models currently not handled
by the Julia OpenModelica
Compiler it is possible to output
flat Modelica and then feed to the
OpenModelica.jl environment

Consequences

* One can imagine a combination

OMJulia.jl and OpenModelica.jl

use advanced libraries such as t|

of
to
ne

Buildings Library within the Jul
Environment

 Backend can be reused
with the frontend

1a

LINKOPING
II." UNIVERSITY

Conclusions

« OM.jl is moving closer to an initial real release

* Due to improvements of, Julia I now believe that one can feasibly
implement a full-fledged compiler in it that not only works but also has
decent performance

* Some detalils...

« OM.jl provides a way of working with the Modelica ecosystem in the Julia
Environment

 The capabilities of Julia allow one to quickly implement and prototype new
language features

LINKOPING
II." UNIVERSITY

References

Tinnerholm, J., Sj6lund, M., & Pop, A. (2019, November). Towards introducing just-in-time compilation in a modelica compiler. In Proceedings
of the 9th International Workshop on Equation-based Object-oriented Modeling Languages and Tools (pp. 11-19).

Tinnerholm, J., Pop, A., Sjolund, M., Heuermann, A., & Abdelhak, K. (2020).
Tinnerholm J. et al. Towards an Open-Source Modelica Compiler in Julia.

Tinnerholm, J., Pop, A., Heuermann, A., & Sjolund, M. (2021, September). OpenModelica. jl: A modular and extensible Modelica compiler
framework in Julia targeting ModelingToolkit. jl. In Modelica Conferences (pp. 109-117).

Tinnerholm, J. (2022). A Composable and Extensible Environment for Equation-based Modeling and Simulation of Variable Structured Systems
in Modelica (Licentiate dissertation, Link6ping University Electronic Press).

Tinnerholm, J., Casella, F., & Pop, A. (2022, November). Towards Modeling and Simulation of Dynamic Overconstrained Connectors in
Modelica. In Modelica Conferences (pp. 35-44).

Tinnerholm, J., Casella, F., & Pop, A. (2023, December) Supporting Infinitely Fast Processes in Continuous System Modeling in the
Proceedings of the 15" International Modelica Conference

Tinnerholm, J., Zapatero, M., Pop, A., Fritzson, P., & Castro, R. (2023). Automatic Translator from System Dynamics to Modelica with
Application to Socio-Bio-Physical Systems. Scandinavian Simulation Society, 302-309.

LINKOPING
IIC" UNIVERSITY

	Start / Välkommen
	Slide 1: Modelica in the Julia Environment: Latest Developments and Prospects
	Slide 2: An OpenModelica Environment in Julia
	Slide 3: Experimental OpenModelica Environment in Julia
	Slide 4: Static Reconfiguration via separate flattening
	Slide 5: Language extensions for variable-structure system support (2022)
	Slide 6: Dynamic Overconstrained Connectors
	Slide 7: THETA-Operator
	Slide 8: System Dynamics and Algorithmic Modelica
	Slide 9: Translating System Dynamics into Modelica
	Slide 10
	Slide 11: Practical Examples
	Slide 12: Practical Examples Continued
	Slide 13: Practical Examples using the Standard Library
	Slide 14: Notes on Performance
	Slide 15: Performance in OpenModelica.jl
	Slide 16: Better than OpenModelica?
	Slide 17: Memory Patterns for HelloWorld
	Slide 18
	Slide 19: Reason: Issue with certain MetaModelica practices
	Slide 20: Challenges
	Slide 21: Using OpenModelica + OM.jl
	Slide 22: Conclusions
	Slide 23: References
	Slide 24
	Slide 25

