

Motivation

So far:

Using the transient library for the simulation of coupled energy grids

Now:

Simulation of largescale district heating networks **without** aggregation

Purpose of model:

Using the thermal inertia of largescale district heating networks as a storage

- Heat storages
- Thermal inertia of pipes
- Thermal inertia of consumers

Dynamic models

2

26.02.2024

Modelling concept

Main concepts:

- 1. Use of mass flow states [1]
- 2. No use of fluid models
- 3. Exclusive discretization of the energy balance

Basics of the modeling concept

- Constant material properties (no media models)
- Connectors (h, m_flow, p)
- Transient energy balance in pipe and junction models
- Steady-state momentum and mass balance + linear pressure loss model Except: Pipe model -> physical pressure loss model (fluid dissipation) & use of an unsteady momentum balance

Consumer model

Consumer model

Target of the model:

Include thermal inertia of buidlings and determination of the heat demand at variable ambient temperature

Components:

- Heat exchanger
- Pump for specifying the mass flow and calculating the hydraulic capacity
- Thermal capacity
- Thermal resistance
- PI controller

Parameterization using a detailed model of a detached house [2]

Master thesis Anne Senkel [1]

Pipe model with n control volumes

Basic solution process of the model

Hydraulic parallel circuit

Structure graph of the model:

Screenshot of the Statistics:

Sizes of linear systems of equations: { } Sizes after manipulation of the linear systems: { } Sizes of nonlinear systems of equations: {7} Sizes after manipulation of the nonlinear systems: {1} Number of numerical Jacobians: 0

10 equations & 10 unknowns, but: Implicit systems of equations

Solution: Adding a mass flow state

Structure graph of the model:

Screenshot of the Statistics:

Sizes of linear systems of equations: { } Sizes after manipulation of the linear systems: { } Sizes of nonlinear systems of equations: { } Sizes after manipulation of the nonlinear systems: { } Number of numerical Jacobians: 0

System of equations can be solved explicitly!

8

26.02.2024

Sparse-Solver

Problem:

- Large matrices for large numbers of states (>50,000).
- Handling might require large computational effort

Approach / requirement:

• Utilization of the sparse properties of the matrix: more efficient storage and handling

Modeling of representative network topologies

Combination of representative main and branch topologies to form representative heating network topologies

26.02.2024

District Heating and Cooling (Sven Frederiksen, Sven Werne) [3]; Bachelor Thesis Elkhoundary [4]; "Integranet Abschlussbericht Fraunhofer" UMSICHT and GWI Essen [5]

Model of a largescale district heating network

- 1800+ consumers integrated in distribution grid topologies
- ca. 50000 states
- No meshes
- Design of different distribution grid topologies
- Joining of distribution grid blocks

Scenario 1.1:

Complete shutdown of the heat pump for one hour

Simulation results: Temperature curves

Summary and Outlook

- Modelling concept enables the dynamic simulation of largescale district heating networks
- The avoidance of implicit systems, especially non-linear systems, leads to a robust modelling concept
- 3. Models can be simulated even with a high number of states because of sparse solver
- Further investigations of the possibilities for the usage of the district heating network flexibility are planed

Dankeschön

Technische Universität Hamburg (TUHH) Prof. Dr.-Ing Arne Speerforck Jan Westphal Institut für Technische Thermodynamik www.tuhh.de

tuhh.de

TUHH Technische Universität Hamburg

References

- 1. Zimmer, Dirk (2020): Robust object-oriented formulation of directed thermofluid stream networks. In: *Mathematical and Computer Modelling of Dynamical Systems* 26 (3), S. 204–233. DOI: 10.1080/13873954.2020.1757726.
- 2. Senkel, Anne (2017): "Vergleich verschiedener Arten der Wärmeverbrauchsmodellierung in Modelica". Institute of Engineering Thermodynamics. Master Thesis. Hamburg: Hamburg University of Technology, 2017-09-25.
- 3. Frederiksen, Svend; Werner, Sven (2017): "District Heating and Cooling", ISBN 978-91-44-08530-2
- Benthin, Jörn; Hagemeier, Anne et al. (2020): Integrierte Betrachtung von Strom-, Gas- und Wärmesystemen zur modellbasierten Optimierung des Energieausgleichs- und Transportbedarfs innerhalb der deutschen Energienetze.
 1.1. Essen: Fraunhofer UMSICHT. url: <u>https://integranet.energy/wp-content/uploads/2020/04/IntegraNet-Abschlussbericht_V1.1.pdf</u>, last visit on 31.01.2024
- 5. Elkhoudary, Mulham (2023): "Recherche zu bestehenden und repräsentativen Wärmenetztopologien".Institute of Engineering Thermodynamics. Bachelor Thesis. Hamburg: Hamburg University of Technology, 2023-09-27.