Model-based Balance of Operations for Carbon Capture and Storage

OpenModelica Workshop, Feb. 5, 2024 Rüdiger Franke, <u>ruediger.franke@de.abb.com</u>

Clemens Grindler, <u>clemens.grindler@de.abb.com</u>

ABB Process Automation, Energy Industries

© 2024 ABB. All rights reserved.

Introduction

Facts & Figures

How much CO₂ do we generate?

• 36.8 Gt in 2022, all time high, further increased by 1.1% in 2023!

How are we doing?

 1.5°C limit – CO2 to reduce 43% by 2030 (from 2019 levels), 60% by 2035, net zero by 2050

Our World in Data

"Without CCS, net-zero is practically impossible" - IEA

Carbon Capture and Storage (CCS)

CCS Value Chain

Capture

CO₂ is separated from other gases at industrial facilities – cement, steel, power plant, etc

Proven and effective capture methods applied based on emission source

Transport

CO₂ is dehydrated and may be compressed for transportation in liquid state or free gas flow.

Pipelines and ships are two most common modes of transport

Storage

CO₂ is injected into deep rock formations, often at depths of >1km

High subsurface pressures keep CO_{2} in dense or supercritical phase

CCS Cluster Projects: Operational Challenges

- Complex overall CCS infrastructure with various components
- Captured CO₂ contains impurities, which can react to create corrosive compounds
- Storage capacity, integrity & lifetime
- CO₂ states vary through lifetime of plant from gas phase to supercritical
- Operational costs (compression, pumps, heating, cooling)

Figure: Carbon steel corrosion in CO₂, caused by typical CCS impurities

- 100 bar / 1500 psi & ambient temperature
- 99+ % CO₂
- Impurities are NO_x & H₂O at <100 ppm

Building partnerships to tackle the challenges

Current challenge of CCS industrial cluster projects: **Transition from design to operations** Need for a **full-chain** model/digital twin of the entire CCS network during entire project lifecycle

- ✓ ABB is global market leader in distributed control systems and process optimization
- ✓ Pace CCS is market leading in early design and FEED studies of CCS HUB projects

ABB OPTIMAX® Balance of Operations

Carbon Capture and Storage (CCS) Digital Twin: Features

- End-to-end CCS solution: The collaboration between our partner Pace CCS and ABB ensures safety, reliability, and efficiency from the emitters to the reservoirs and the full system lifecycle
- Leading-Edge modelling of CO2 processes and impurities: Combined expertise in complex thermodynamic fluid systems, including compositional tracking, enhancing our product's capabilities
- Training, Simulation, and Scenario Analysis: Facilitates understanding and application through exploratory scenarios and offline simulations.
- AI-Enhanced Monitoring & Optimization: Hybrid integration of AI and physical process optimization, enabling autonomous operations, enhanced by advanced monitoring and reporting. Our solution places a special focus on real-time (e.g. APC) as well as predictive optimization for
 - Efficient Compressor Control
 - Smart Heating and Cooling
 - Optimal injection into reservoirs or aquifers
 - Integrity supervision / management

Maximize Availability and Efficiency

Exemplary CCS plant: Modelica system model

Basing on ThermofluidStream and ExternalMedia libraries

New model features

ExternalMedia library

• Access to general purpose libraries for media properties, in particular CoolProp

ThermofluidStream library

- Robust modeling of complex thermo-fluid systems
- Novel concept, separating steady mass flow pressure from inertial pressure

FMI export exposing local IOs

- Easier path from simulation model to optimization model
- No need to create additional connectors at top level before model export
- Translator exposes unconnected IOs of component models

ExternalMedia

A Library for Use of External Fluid Property Code in Modelica

©ABB February 1, 2024

Slide 10 Francesco Casella, Christoph Ricter: External Media: A Library for Easy Re-Use of External Fluid Property Code in Modelica, 6th International Modelica Conference, Bielefeld, 2008.

Robust object-oriented formulation of directed thermofluid stream networks

Root cause: Mixing flows generate non-linear equation systems: $p_{1/2} = f(m_{1/2_{flow}}), m_{1/2_{flow}} = g(p_{1/2}), p_1 = p_2$

Dirk Zimmer (2020) Robust object-oriented formulation of directed thermofluid stream networks, Mathematical and Computer Modelling of Dynamical Systems, 26:3, 204-233, DOI: 10.1080/13873954.2020.1757726. https://www.tandfonline.com/doi/full/10.1080/13873954.2020.1757726

Introduction of Inertance L, inertial pressure r and steady mass flow pressure p^

Derived from one-dimensional Euler equation for a stream

Slide 12 Dirk Zimmer (2020) Robust object-oriented formulation of directed thermofluid stream networks, Mathematical and Computer Modelling of Dynamical Systems, 26:3, 204-233, DOI: 10.1080/13873954.2020.1757726. https://www.tandfonline.com/doi/full/10.1080/13873954.2020.1757726

Robust object-oriented formulation of directed thermofluid stream networks

Idea: separate steady mass flow pressure p^{$^}$ from inertial pressure r – get rid of non-linear m_{1/2_flow} = g(p_{1/2})</sup>

Dirk Zimmer (2020) Robust object-oriented formulation of directed thermofluid stream networks, Mathematical and Computer Modelling of Dynamical Systems, 26:3, 204-233, DOI: 10.1080/13873954.2020.1757726. https://www.tandfonline.com/doi/full/10.1080/13873954.2020.1757726

Expose local IOs as toplevel IOs

New omc flag: --nonStdExposeLocalIOs = <level>

Idea

- Many models, such as boundaries or sensors, provide conditional input and output connectors
- Automatically promote them to toplevel IOs, particularly for FMI export 19 inputs and 47 outputs in the example

Why only connectors instead of any input/output?

- input/output is used for many things (e.g. binding equations, time varying "parameters")
- connector is intended for connections; unconnected connectors are likely to be exposed, e.g. RealInput of a boundary model

Why configurable level?

- Can exclude unconnected connectors at deeper model levels; nice: filter out unconnected outputs of submodels
- Critical: Modelica.Media.Interfaces.PartialMedium.BaseProperties.p/h/Xi are defined as input connectors to get balanced models without need to define binding equations connectors not intended for connections :~|
- Cf. approach of ThermofluidStream avoiding generic medium model by using specific state record with generic access functions instead – use specificEnthalpy(state) instead of medium.h
- A medium model is typically at model level 2 or higher, e.g. component.medium.p

ABB Dynamic Optimization

Treat optimal control programs basing on simulation models

For dynamic system model and sample time points tk, t0 < t1 < ... < tKfind control u (and/or initial states x(0)) that minimize criterion J subject to model behavior, initial conditions and further constraints g $J = \sum_{k=0}^{K} f_0[k, x_c(t_k), u_c(t_k)] \rightarrow \min_{\substack{x_c(t_0), u_c(t)}}$ FMU ME $\frac{dx_{c}(t)}{dt} = f_{c}[t, x_{c}(t), u_{c}(t)], \qquad x_{c}(t_{0}) = x_{c0}, \qquad t \in [t_{0}, t_{K}]$ k = 0,1, ..., K $\mathbf{y}(\mathbf{k}) = \mathbf{h}[\mathbf{k}, \mathbf{x}_{c}(\mathbf{t}_{\mathbf{k}}), \mathbf{u}_{c}(\mathbf{t})],$ $g[y(k), u_c(t_k)] \ge 0$

Model Predictive Control for CCS hub networks

Always ensures safe operation in complex and dynamic conditions

Conclusions

Carbon Capture and Storage reduces CO2 emissions to the atmosphere that cause global warming

- Can use depleted oil and gas reservoirs, to some extend re-purposing platforms and wells
- Even larger potential when building new aquifer storages

Promising applications for CCS

- Cement industries
- "blue" hydrogen (generated from natural gas) until "green" hydrogen will be available at scale

Modelica proved well suited for modeling and optimization of CCS processes - the open Modelica community rocks!

- ThermofluidStream library for robust fluid modeling
- ExternalMedia library for using CoolProp
- OpenModelica with new frontend and instance-based graphical editing for treatment of fluid models in OMEdit
- Extension with –nonStdExposeLocalIOs simplifying export of simulation models for optimization e.g. don't mess up exemplary CCS model with additional 19 toplevel inputs and 47 toplevel outputs
- Further work: efficient multiphase CO2 media models, including impurities AI for Model-Based Systems Engineering?

