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The Big Question

Why Using OpenModelica for Serious
Modelling Work?

. You don't pay a license fee

D

You can release your work fully open-source
 Scientific publications
* Increased credibility
» Collaborative development with OS model

. You can look under the hood, and change stuff

. You can try innovative approaches



DOES IT WORK?



Case Study #1:

The Delta Robot &
The Stewart Platform



Credits

Object-Oriented Models of Parallel Manipulators

' Gianni Ferretti?

Paolo Campanini
IMUSP Lab, Strada Torre della Razza, 29122 Piacenza, Italy, paolo.campanini@musp.it
2Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo da Vinci 32,
20133 Milano, Italy, gianni.ferretti@polimi.it

Abstract

In this paper, the development of models of parallel ma-
nipulator is described, based on components of the Mod-
elica standard library only. At first, the dynamic model
of a Delta robot is illustrated and validated with respect
to experimental data. Then, the model of a Stewart plat-
form is discussed. Thanks to the symbolic manipulation
capabilities of the OpenModelica compiler, the model is
then used to automatically generate the inverse dynamics,
which is in general is a quite difficult task.

Keywords: Object-oriented modelling; simulation; paral-
lel manipulators; Modelica; DAE systems; closed chains

DOI Proceedings of the 14" International Modelica Conference 211
10.3384 /ecp21181241 September 20-24, 2021, Linképing, Sweden
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The Delta Robot
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Open Source Code on GitHub

= O looms-polimi / Parallel_manipulators

<> code () Issues I Pull requests

@ Actions

B Projects [0 wiki

[ % master ~ Parallel_manipulators / Modelica_models /

©

lar casella Updated version number

Name
il .
M DeltaRobot

[ stewartPlatform

Last commit message

Updated version number

Updated version number

Q Gotofile

Q

r- on o @

@ Security |22 Insights

t Add file ~

da73b5d - 10 months ago @ History

Last commit date

10 months ago

10 months ago
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Highlights

Mostly based on open-source Modelica MultiBody library

Closed kinematic chains galore (— not trivial)
StateSelect.always on position and velocity of linear actuators
5346 equations, 12 state variables

Worked out of the box in OMC/OMEdit

Fully open source code, described in the Modelica Conference Paper

Tested daily in the OSMC CI
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Performance

DeltaRobot test using OpenModelica

Total Frontend Backend SimCode Templates Compilation Simulation Verification

o I B O A S —0

Model Verified Simulate Total buildModel Parsing Frontend Backend SimCode Templates Compile

G SO 1 50
LG OO 172
200 SO 1 76
S0 SAGI 1 53
LOS SATI 1 56
LOSI DS 172
0T DO 174
L0200 DG 174
L0200 B2 1 72

DeltaRobot. Scenanos DeltaRobot IdealActPos PositionValidation (sum)
DeltaRobot. Scenanos DeltaRobot IdealActPos Scenariol (sim)
DeltaRobot Scenanos DeltaRobot IdealActVel Scenariol (sum)
DeltaRobot. Scenanos DeltaRobot IdealActVel VelocityValidation (sum)
DeltaRobot. Tests IdealActuatorPos test (s1m)
DeltaRobot Tests IdealActuatorVel test (sim)
DeltaRobot Tests ServoMotor test (sim)

DeltaRobot Tests Switch? test (sim)

DeltaRobot Tests Trajectory test (sim)
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The Stewart Platform
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The Stewart Platform

9389 equations
12 state variables
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Demo
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Outlook

Open-Source OS (if you use Linux)
Open-Source Modelica Tool: OMC/OMEdit
Open-Source Base Library: MSL

Open-Source Model Framework
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Outlook

* Open-Source OS (if you use Linux)
* Open-Source Modelica Tool: OMC/OMEdit
* Open-Source Base Library: MSL

* Open-Source Model Framework

Imagine the potential...
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Case Study #2:

A Fuel-Cell Model for
Oxy-Combustion Cycles



Credits

2023 IEEE Conference on Control Technology and Applications (CCTA)
August 16-18, 2023. Bridgetown, Barbados

A Control-Oriented Modelica 1-D Model of a Planar Solid-Oxide Fuel
Cell for Oxy-Combustion Cycles

Matteo Luigi De Pascalil, Alessandro Donazzi2, Emanuele Martelli? and Francesco Casellal

Abstract— The authors propose an object-oriented Modelica
1-D SOFC model following the indications of a previous work.
The model is intended to be used in the study of the SOS-CO;
cycle for control studies purposes. The SOFC working condi-
tions are challenging and require adapting the model to handle
properly reformate mixtures at the anode and carbon dioxide-
rich mixtures at the cathode while keeping its formulation as
simple as possible. This paper reviews the previous contribution,
adapts the model for the new working conditions, provides
insights related to the Modelica implementation, reproduces the
tests presented in literature and extends the validation through
a comparison with experimental data. Finally the model is
tested under SOS-CO; cycle operative conditions.



Context

Oxy-Combusion Thermal Power Plant Concept
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The Stack Model
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The Single Module Model

-
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The 1D Channel Model
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The Proton Exchange Membrane Model
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Highlights

* About 10,060 equations

« Strongly nonlinear equations:
— Chemical equilibria (CHs + 2H.0 — CO, + 4H,),

— Arrhenius-type exponential laws
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Highlights

About 10,000 equations
Strongly nonlinear equations:
— Chemical equilibria (CHs + 2H,0 — CO; + 4H,),
— Arrhenius-type exponential laws
Steady state initializazion is extremely difficult: no homotopy, no party
Homotopy-based strategy leads to sequential computations at L. = 0
— Prescribed current
— Simplified linear polarization curve

— Fixed temperature in Arrhenius terms
Model initially developed with Dymola

We wanted to make it fully open-source for publication — run in OMC
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Adapting the Model to OMC

. Steady-staie initialization succeeded in Dymola but not in OMC

« Two issues:

— Insufficient symbolic manipulation for the required
A = 0 simplifications — sequential computations

— Bad tearing

40



Insufficient Symbolic Manipulation

dM dt = wIn - wOut + w02 "Overall mass balance";

dM dt = -V*rhoOut”2* (fluidOut.dv dT*der (Tout) +
fluidOut.dv dp*der (pOut) +
fluidOut.dv dX*der (Xout));

initial equation
if initType == InitType.steadyState then
if initialEquation then
der (pOut) = 0;

end if;
der (Tout) = 0;
der (Xout) = zeros (nX);
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Insufficient Symbolic Manipulation

dM dt = wIn - wOut + w02 "Overall mass balance";

if initial() and initType == InitType.steadyState then
dM dt = 0;
else

dM dt = -V*rhoOut”2* (fluidOut.dv dT*der (Tout) +
fluidOut.dv dp*der (pOut) +
fluidOut.dv dX*der (Xout));

end 1f;

initial equation

if initType == InitType.steadyState then
if initialEquation then
der (pOut) = 0;
end 1f;
der (Tout) = 0;
der (Xout) = zeros(nX);
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Insufficient Symbolic Manipulation

dM dt = wIn - wOut + w02 "Overall mass balance";

if isOMC then

if initial() and 1initType == InitType.steadyState then
dM dt = 0;

else
dM dt = -V*rhoOut”2* (fluidOut.dv dT*der (Tout) +

fluidout.dv dp*der (pout) +
fluidOut.dv dX*der (Xout));

end 1f;
else
dM dt = -V*rhoOut”2* (fluidOut.dv dT*der (Tout) +
fluidOut.dv dp*der (pOut) +
fluidOut.dv dX*der (Xout));
end 1f;

initial equation

if initType == InitType.steadyState then
if initialEquation then
der (pOut) = 0;
end 1f;
der (Tout) = 0;
der (Xout) = zeros(nX);
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Bad Tearing

Dymola’s heuristics automatically selects the best tearing variables for
the core nonlinear implicit initial equations: p, 7, X, i
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Bad Tearing

 Dymola’s heuristics automatically selects the best tearing variables for
the core nonlinear implicit initial equations: p, 7, X, i

« Unfortunately, OMC’s heuristics select other variables that lead to
convergence failure

« Adding OpenModelica tearingSelect=alwaystop 7T X i
leads to successful convergence also in OMC

The Tearing Dilemma:
Rely on fantastic tearing algorithms
VS.
Rely on the modeller’s experience?
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Outlook

« After the fixes, the model runs successfully
— Build time: about 1 min

— Simulation time: about 10 s
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Outlook

« After the fixes, the model runs successfully
— Build time: about 1 min

— Simulation time: about 10 s

. Adequate performance

. Full publication possible (incl. source code)

. Fully open-source (incl. Modelica tool)
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Case Study #3:

The SOS-CO0O2
Power Plant



The SOS-CO2 Plant Model
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Building the Model

Dymola requires 2-3 minutes to build the model on a fast i9 laptop
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Building the Model

« Dymola requires 2-3 minutes to build the model on a fast i9 laptop

OMC currently takes about 30 minutes
— 10 min compiling C code
— 8 min tearing
— 2 min matching & sorting

— 2 min removing simple equations

. Usable, but not very practical yet

Further optimizations required in the backend
and code generation phases
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Initialization

« Extensive use of homotopy to make steady-state initialization possible
(incl. decouplers at the inlet of each component)
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Initialization

« Extensive use of homotopy to make steady-state initialization possible
(incl. decouplers at the inlet of each component)

« Forward initialization in on-design conditions
— Succeeds in Dymola
— Succeeds in OMC if tearing is kept and tearingSelect is used

« Backward initialization in on-design conditions

— Succeeds in Dymola
— Fails in OMC

« Backward initialization in off-design conditions

— Works in Dymola only down to about 90% load
— Fails in OMC

. Numerically challenging problem!
. Dymola: dead end because of IP issues

. OMC: we can still look under the hood
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Simulation

« Dymola simulates the system without fuss
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* OpenModelica is extremely inefficient (about 100 s per time step)
due to convergence issues on nonlinear systems involving derivatives

(even at steady state!)
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Simulation

« Dymola simulates the system without fuss

* OpenModelica is extremely inefficient (about 100 s per time step)
due to convergence issues on nonlinear systems involving derivatives

(even at steady state!)

. Further investigation required

. Most likely a scaling issue
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Outlook

D

OMC is (almost) capable of handling
the most challenging thermal power plant model
of my entire career
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Outlook

OMC is (almost) capable of handling
the most challenging thermal power plant model
of my entire career

D

With some further optimization, it could match
. or even surpass Dymola’s performance
(e.g. handling backward init to 20% load)
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Case Study #4.:

Power System Modelling
with PowerGrids 2.0.0



Power Grids 1.0.0 (now 1.0.3)

Towards Pan-European Power Grid Modelling in Modelica:
Design Principles and a Prototype for a Reference Power System
Library

I Francesco Casella? Adrien Guironnet?

Andrea Bartolini
1Dynamica s..L., Italy, andrea.bartolini@dynamica—it .com
’Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy,
francesco.casella@polimi.it
3RTE, France, adrien.guironnet@rte—-france.com

Abstract

This paper presents the PowerGrids library, which is
aimed at the modelling of large-scale power transmission
and distribution system. The requirements and design
principles of the library are extensively discussed, as well
as some key implementation details. The library repre-
sents a prototype implementation of the presented require-
ments and design guidelines, and will form the basis for
the future development of an industrial-grade open-source
library to be used by European TSOs and DSOs.

Keywords: Power System Modelling, Power Generation
and Transmission, Pan-European Power System

DOI Proceedings of the 13" International Modelica Conference 627
10.3384/ecp19157627 March 4-6, 2019, Regensburg, Germany
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What’s New?

» PowerGrids 2.0.0 new features

— Significant refactoring of interfaces, based on experience with 1.0.x
— Uses MSL 4.0.0
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What’s New?

 PowerGrids 2.0.0 new features
— Significant refactoring of interfaces, based on experience with 1.0.x
— Uses MSL 4.0.0
— Embedded power flow
— Vastly improved user interface

— Benefits from recent advances in OMEdit
« Parameter-dependent enabling of parameter input fields
» DynamicSelect visualization of simulation results on diagrams

* Currently on https://github.com/PowerGrids/PowerGrids/tree/develop
will be released soon

* New developments towards modelling of large-scale systems in OMC
(> 1000 buses)

* Many thanks to:
— RTE for the financial support to the development of OMC

— Prof. Massimo Ceraolo (Univ. Pisa) for the financial support to the
development of PowerGrids 2.0.0 and for the (relentless!)
end-user feedback


https://github.com/PowerGrids/PowerGrids/tree/develop

PowerGrids 2.0.0 + OpenModelica

« A fully open-source integrated environment for power system simulation
— Usable for teaching and research
— Integrated power flow computation for initialization
— GUI for building and editing models and for simulation results display
— State of the art numerical solvers (IDA + Kinsol + KLU)
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Using DynamicSelect Diagrams
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Native Support for Large-Scale Models in OMC

« Enabling technology: array-preserving code generation
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Native Support for Large-Scale Models in OMC

« Enabling technology: array-preserving code generation

* New Frontend: done
— Can flatten models without unrolling arrays
— Can collect individual model instances into arrays
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Native Support for Large-Scale Models in OMC

Enabling technology: array-preserving code generation
New Frontend: done

Can flatten models without unrolling arrays
Can collect individual model instances into arrays

New Backend: work in progress

Basic infrastructure: done

Array-preserving pre- and post optimization: done

Scalarized causalization with array-based code generation: done
Support of Complex operator records: done

Support of daeMode: almost done

Support of sparse solvers for initialization: almost done

Index reduction: To-do (but not required for phasor-based models!)

Code generation: done
Simulation runtime: done, using IDA+Kinsol+KLU
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Current Test Results with New Backend

Model
DPowerGrids.Controls. Test. TestDeadBand (sim)
PowerGrids Controls Test. TestDerivativelag (sim)
PowerGrids.Controls. Test. TestDiscontinuousDeadBand (sim)
DowerGrids.Controls. Test. TestFirstOrder WithNon WindupLimiter
PowerGrids Controls Test. TestIntegrator WithNonWindupL imiter
PowerGrids.Controls Test. Testl eadLag (sim)
PowerGrids. Controls Test. Testl eadLagWithNon WindupL imiter
PowerGrids Controls Test Testl eadMOrderLag (sim)
PowerGrids.Controls. Test. TestLimiterWithLag
PowerGrids. Controls Test. TestPIWithNonWindupLimiter
PowerGrids Controls Test. TestRampTrackingFilter
PowerGrids Electrical Test LoadlmpedanceP(Q) (sim)
PowerGrids Electrical Test. OneBusImpedanceOnel oad (sim)
PowerGrids Flectrical Test OneBusImpedanceOneVariableload (sim)
PowerGrids Electrical. Test. OneBusImpedance VariableVoltageOnel oad (sim)
PowerGrids Electrical Test. OneBusOnel oad (sim)
PowerGrids Flectrical Test OneBusTransmissionl ineOnel oad (sim)
PowerGrids Electrical Test. OneBusTransmissionLineShuntOnel.oad (sim)
PowerGrids Electrical Test. SynchronousMachine4 Windings (sim)
PowerGrids Electrical Test. SynchronousMachined WindingsAccurate (sim)
PowerGrids Electrical Test. SynchronousMachine4d WindingsExact (sim)
PowerGrids Electrical Test. SynchronousMachine4 WindingsNoL oad (sim)
PowerGrids Electrical Test. SynchronousMachine4d WindingsNoL oad Accurate (sim)
PowerGrids Electrical Test SynchronousMachined WindingsNoL oadExact (sim)

PowerGrids Electrical Test. SynchronousMachine4 WindingsPowerSwing
PowerGrids Electrical Test. TestExciterRectifierRegulationCharacteristicIEEE (sim)
PowerGrids Electrical Test TestExciterVoltage TransducerIEEE

PowerGrids Electrical Test. TestOneBusTransmissionl meWithBreakersOnel oad
PowerGrids Electrical Test. TestTapChangerl ogicInterval

PowerGrids Electrical Test TestTapChangerl ogicMax

Verified Simulate Total buildModel Parsing Frontend Backend SimCode Templates Compile

0.00 (1/8 failed) DOT eI 162
0.01 (1/35 failedy QOISO 170
0.00 (1/8 failed) oI e 162
000 016 1.73
000 004 1.68
0.01 (1/38 failed) -_16?
0.16 1.70
1.03 (301/1346 fauled)-_ 1.67
000 003 1.64 000  0.00
000 003 1.68 000 000 0.00
000 0.0 172 000 000 000 000 0.00

0.13 (5/148 failed)
0.03 (5/148 failed)
0.05 (15/148 failed)
0.48 (5/148 failed)
0.47 (5/148 failed)
0.48 (5/148 failed)
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« Tests will be carried out with ScalablePowerGrids on exemplary power
transmission models with size up to 20,000 buses
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Next Steps

Feb-Mar 2024: continuous-time models should be handled

Tests will be carried out with ScalablePowerGrids on exemplary power
transmission models with size up to 20,000 buses

2024-2025:
— Efficient handling of events

— Code optimizations
(e.g. removing non-observable variables and equations)

— More efficient new backend algorithms for the scalarized parts
(causalization, Jacobians)

Goal: run national- and continental-size power
system models out of the box in OMC

Support the challenges posed by the energy
transition on the power systems in the EU
and beyond
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Conclusions

« OpenModelica is now capable of tackling challenging, state-of-the-art
problems in energy, mechatronics, and other areas
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Conclusions

« OpenModelica is now capable of tackling challenging, state-of-the-art
problems in energy, mechatronics, and other areas

« OpenModelica enables fully open source solutions
— for open scientific publications including the simulation code
— for open collaboration (e.g. among ENTSO-E partners)

« Shortcoming and issues can be handled together with end-users thanks
to the open-source model

 Work in progress to further optimize and streamline performance and
numerical robustness

B Bright future ahead!
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Thank you for your
Kind attention!
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