
Using OpenModelica forUsing OpenModelica for
Bleeding-Edge System Simulations of Bleeding-Edge System Simulations of

Large Energy System Large Energy System ModelsModels

Francesco CasellaFrancesco Casella
(francesco.casella@polimi.it)(francesco.casella@polimi.it)

2

Outline

• Motivation

• The Delta Robot and Stewart Platform

• An Advanced Fuell Cell Model

• The SOS-CO2 Oxy-Combustion Power Plant Model

• Generation and Transmission System Modelling with PowerGrids 2.0.0

• Conclusions & Outlook

3

MotivationMotivation

4

The Big Question

Why Using OpenModelica for Serious Why Using OpenModelica for Serious
Modelling Work?Modelling Work?

5

The Big Question

Why Using OpenModelica for Serious Why Using OpenModelica for Serious
Modelling Work?Modelling Work?

You don’t pay a license feeYou don’t pay a license fee

6

The Big Question

Why Using OpenModelica for Serious Why Using OpenModelica for Serious
Modelling Work?Modelling Work?

You don’t pay a license feeYou don’t pay a license fee

You can release your work fully open-sourceYou can release your work fully open-source
• Scientific publicationsScientific publications
• Increased credibilityIncreased credibility
• Collaborative development with OS modelCollaborative development with OS model

7

The Big Question

Why Using OpenModelica for Serious Why Using OpenModelica for Serious
Modelling Work?Modelling Work?

You don’t pay a license feeYou don’t pay a license fee

You can release your work fully open-sourceYou can release your work fully open-source
• Scientific publicationsScientific publications
• Increased credibilityIncreased credibility
• Collaborative development with OS modelCollaborative development with OS model

You can look under the hood, and change stuffYou can look under the hood, and change stuff

8

The Big Question

Why Using OpenModelica for Serious Why Using OpenModelica for Serious
Modelling Work?Modelling Work?

You don’t pay a license feeYou don’t pay a license fee

You can release your work fully open-sourceYou can release your work fully open-source
• Scientific publicationsScientific publications
• Increased credibilityIncreased credibility
• Collaborative development with OS modelCollaborative development with OS model

You can look under the hood, and change stuffYou can look under the hood, and change stuff

You can try innovative approachesYou can try innovative approaches

9

The Even Bigger Question

DOES IT WORK?DOES IT WORK?

10

Case Study #1:Case Study #1:

The Delta Robot &The Delta Robot &
The Stewart PlatformThe Stewart Platform

11

Credits

12

The Delta Robot

13

The Model - I

14

The Model - II

15

The Model - III

16

Open Source Code on GitHub

17

Highlights

• Mostly based on open-source Modelica MultiBody library

• Closed kinematic chains galore (→ not trivial)

18

Highlights

• Mostly based on open-source Modelica MultiBody library

• Closed kinematic chains galore (→ not trivial)

• StateSelect.always on position and velocity of linear actuators

• 5346 equations, 12 state variables

19

Highlights

• Mostly based on open-source Modelica MultiBody library

• Closed kinematic chains galore (→ not trivial)

• StateSelect.always on position and velocity of linear actuators

• 5346 equations, 12 state variables

• Worked out of the box in OMC/OMEdit

20

Highlights

• Mostly based on open-source Modelica MultiBody library

• Closed kinematic chains galore (→ not trivial)

• StateSelect.always on position and velocity of linear actuators

• 5346 equations, 12 state variables

• Worked out of the box in OMC/OMEdit

• Fully open source code, described in the Modelica Conference Paper

21

Highlights

• Mostly based on open-source Modelica MultiBody library

• Closed kinematic chains galore (→ not trivial)

• StateSelect.always on position and velocity of linear actuators

• 5346 equations, 12 state variables

• Worked out of the box in OMC/OMEdit

• Fully open source code, described in the Modelica Conference Paper

• Tested daily in the OSMC CI

22

Performance

23

Demo

24

The Stewart Platform

25

The Stewart Platform

9389 equations
12 state variables

26

Demo

27

Outlook

• Open-Source OS (if you use Linux)

• Open-Source Modelica Tool: OMC/OMEdit

• Open-Source Base Library: MSL

• Open-Source Model Framework

28

Outlook

• Open-Source OS (if you use Linux)

• Open-Source Modelica Tool: OMC/OMEdit

• Open-Source Base Library: MSL

• Open-Source Model Framework

 Imagine the potential...

29

Case Study #2:Case Study #2:

A Fuel-Cell Model forA Fuel-Cell Model for
Oxy-Combustion CyclesOxy-Combustion Cycles

30

Credits

31

Context

Oxy-Combusion Thermal Power Plant Concept

The SOS-CO2 power plant

32

The Stack Model

33

The Single Module Model

36

Highlights

• About 10,000 equations

• Strongly nonlinear equations:

– Chemical equilibria (CH4 + 2H20 → CO2 + 4H2),

– Arrhenius-type exponential laws

37

Highlights

• About 10,000 equations

• Strongly nonlinear equations:

– Chemical equilibria (CH4 + 2H20 → CO2 + 4H2),

– Arrhenius-type exponential laws

• Steady state initializazion is extremely difficult: no homotopy, no party

38

Highlights

• About 10,000 equations

• Strongly nonlinear equations:

– Chemical equilibria (CH4 + 2H20 → CO2 + 4H2),

– Arrhenius-type exponential laws

• Steady state initializazion is extremely difficult: no homotopy, no party

• Homotopy-based strategy leads to sequential computations at l = 0

– Prescribed current

– Simplified linear polarization curve

– Fixed temperature in Arrhenius terms

39

Highlights

• About 10,000 equations

• Strongly nonlinear equations:

– Chemical equilibria (CH4 + 2H20 → CO2 + 4H2),

– Arrhenius-type exponential laws

• Steady state initializazion is extremely difficult: no homotopy, no party

• Homotopy-based strategy leads to sequential computations at l = 0

– Prescribed current

– Simplified linear polarization curve

– Fixed temperature in Arrhenius terms

• Model initially developed with Dymola

• We wanted to make it fully open-source for publication → run in OMC

40

Adapting the Model to OMC

• Steady-state initialization succeeded in Dymola but not in OMC

• Two issues:

– Insufficient symbolic manipulation for the required
l = 0 simplifications → sequential computations

– Bad tearing

41

Insufficient Symbolic Manipulation

42

Insufficient Symbolic Manipulation

43

Insufficient Symbolic Manipulation

44

Bad Tearing

• Dymola’s heuristics automatically selects the best tearing variables for
the core nonlinear implicit initial equations: p, T, X, i

45

Bad Tearing

• Dymola’s heuristics automatically selects the best tearing variables for
the core nonlinear implicit initial equations: p, T, X, i

• Unfortunately, OMC’s heuristics select other variables that lead to
convergence failure

46

Bad Tearing

• Dymola’s heuristics automatically selects the best tearing variables for
the core nonlinear implicit initial equations: p, T, X, i

• Unfortunately, OMC’s heuristics select other variables that lead to
convergence failure

• Adding __OpenModelica_tearingSelect=always to p, T, X, i
leads to successful convergence also in OMC

47

Bad Tearing

• Dymola’s heuristics automatically selects the best tearing variables for
the core nonlinear implicit initial equations: p, T, X, i

• Unfortunately, OMC’s heuristics select other variables that lead to
convergence failure

• Adding __OpenModelica_tearingSelect=always to p, T, X, i
leads to successful convergence also in OMC

The Tearing Dilemma:The Tearing Dilemma:

Rely on fantastic tearing algorithmsRely on fantastic tearing algorithms

vs.vs.

Rely on the modeller’s experience?Rely on the modeller’s experience?

48

Outlook

• After the fixes, the model runs successfully

– Build time: about 1 min

– Simulation time: about 10 s

49

Outlook

• After the fixes, the model runs successfully

– Build time: about 1 min

– Simulation time: about 10 s

Adequate performanceAdequate performance

50

Outlook

• After the fixes, the model runs successfully

– Build time: about 1 min

– Simulation time: about 10 s

Full publication possible (incl. source code)Full publication possible (incl. source code)

Adequate performanceAdequate performance

51

Outlook

• After the fixes, the model runs successfully

– Build time: about 1 min

– Simulation time: about 10 s

Full publication possible (incl. source code)Full publication possible (incl. source code)

Fully open-source (incl. Modelica tool)Fully open-source (incl. Modelica tool)

Adequate performanceAdequate performance

52

Case Study #3:Case Study #3:

The SOS-CO2 The SOS-CO2
Power PlantPower Plant

53

The SOS-CO2 Plant Model

54

Building the Model

• Dymola requires 2-3 minutes to build the model on a fast i9 laptop

55

Building the Model

• Dymola requires 2-3 minutes to build the model on a fast i9 laptop

• OMC currently takes about 30 minutes

– 10 min compiling C code

– 8 min tearing

– 2 min matching & sorting

– 2 min removing simple equations

56

Building the Model

• Dymola requires 2-3 minutes to build the model on a fast i9 laptop

• OMC currently takes about 30 minutes

– 10 min compiling C code

– 8 min tearing

– 2 min matching & sorting

– 2 min removing simple equations

Further optimizations required in the backend Further optimizations required in the backend
and code generation phasesand code generation phases

Usable, but not very practical yetUsable, but not very practical yet

57

Initialization

• Extensive use of homotopy to make steady-state initialization possible
(incl. decouplers at the inlet of each component)

58

Initialization

• Extensive use of homotopy to make steady-state initialization possible
(incl. decouplers at the inlet of each component)

• Forward initialization in on-design conditions
– Succeeds in Dymola

– Succeeds in OMC if tearing is kept and tearingSelect is used

59

Initialization

• Extensive use of homotopy to make steady-state initialization possible
(incl. decouplers at the inlet of each component)

• Forward initialization in on-design conditions
– Succeeds in Dymola

– Succeeds in OMC if tearing is kept and tearingSelect is used

• Backward initialization in on-design conditions
– Succeeds in Dymola

– Fails in OMC

60

Initialization

• Extensive use of homotopy to make steady-state initialization possible
(incl. decouplers at the inlet of each component)

• Forward initialization in on-design conditions
– Succeeds in Dymola

– Succeeds in OMC if tearing is kept and tearingSelect is used

• Backward initialization in on-design conditions
– Succeeds in Dymola

– Fails in OMC

• Backward initialization in off-design conditions
– Works in Dymola only down to about 90% load

– Fails in OMC

61

Initialization

• Extensive use of homotopy to make steady-state initialization possible
(incl. decouplers at the inlet of each component)

• Forward initialization in on-design conditions
– Succeeds in Dymola

– Succeeds in OMC if tearing is kept and tearingSelect is used

• Backward initialization in on-design conditions
– Succeeds in Dymola

– Fails in OMC

• Backward initialization in off-design conditions
– Works in Dymola only down to about 90% load

– Fails in OMC

Numerically challenging problem!Numerically challenging problem!

62

Initialization

• Extensive use of homotopy to make steady-state initialization possible
(incl. decouplers at the inlet of each component)

• Forward initialization in on-design conditions
– Succeeds in Dymola

– Succeeds in OMC if tearing is kept and tearingSelect is used

• Backward initialization in on-design conditions
– Succeeds in Dymola

– Fails in OMC

• Backward initialization in off-design conditions
– Works in Dymola only down to about 90% load

– Fails in OMC

Numerically challenging problem!Numerically challenging problem!

Dymola: dead end because of IP issuesDymola: dead end because of IP issues

63

Initialization

• Extensive use of homotopy to make steady-state initialization possible
(incl. decouplers at the inlet of each component)

• Forward initialization in on-design conditions
– Succeeds in Dymola

– Succeeds in OMC if tearing is kept and tearingSelect is used

• Backward initialization in on-design conditions
– Succeeds in Dymola

– Fails in OMC

• Backward initialization in off-design conditions
– Works in Dymola only down to about 90% load

– Fails in OMC

Numerically challenging problem!Numerically challenging problem!

Dymola: dead end because of IP issuesDymola: dead end because of IP issues

OMC: we can still look under the hoodOMC: we can still look under the hood

64

Simulation

• Dymola simulates the system without fuss

65

Simulation

• Dymola simulates the system without fuss

• OpenModelica is extremely inefficient (about 100 s per time step)
due to convergence issues on nonlinear systems involving derivatives
(even at steady state!)

66

Simulation

• Dymola simulates the system without fuss

• OpenModelica is extremely inefficient (about 100 s per time step)
due to convergence issues on nonlinear systems involving derivatives
(even at steady state!)

Further investigation requiredFurther investigation required

Most likely a scaling issueMost likely a scaling issue

67

Outlook

OMC is (almost) capable of handlingOMC is (almost) capable of handling
the most challenging thermal power plant model the most challenging thermal power plant model

of my entire careerof my entire career

68

Outlook

OMC is (almost) capable of handlingOMC is (almost) capable of handling
the most challenging thermal power plant model the most challenging thermal power plant model

of my entire careerof my entire career

With some further optimization, it could match With some further optimization, it could match
or even surpass Dymola’s performanceor even surpass Dymola’s performance

(e.g. handling backward init to 20% load)(e.g. handling backward init to 20% load)

69

Case Study #4:Case Study #4:

Power System Modelling Power System Modelling
with PowerGrids 2.0.0with PowerGrids 2.0.0

70

Power Grids 1.0.0 (now 1.0.3)

71

What’s New?

• PowerGrids 2.0.0 new features
– Significant refactoring of interfaces, based on experience with 1.0.x

– Uses MSL 4.0.0

72

What’s New?

• PowerGrids 2.0.0 new features
– Significant refactoring of interfaces, based on experience with 1.0.x

– Uses MSL 4.0.0

– Embedded power flow

73

What’s New?

• PowerGrids 2.0.0 new features
– Significant refactoring of interfaces, based on experience with 1.0.x

– Uses MSL 4.0.0

– Embedded power flow

– Vastly improved user interface

– Benefits from recent advances in OMEdit
• Parameter-dependent enabling of parameter input fields

• DynamicSelect visualization of simulation results on diagrams

74

What’s New?

• PowerGrids 2.0.0 new features
– Significant refactoring of interfaces, based on experience with 1.0.x

– Uses MSL 4.0.0

– Embedded power flow

– Vastly improved user interface

– Benefits from recent advances in OMEdit
• Parameter-dependent enabling of parameter input fields

• DynamicSelect visualization of simulation results on diagrams

• Currently on https://github.com/PowerGrids/PowerGrids/tree/develop
will be released soon

https://github.com/PowerGrids/PowerGrids/tree/develop

75

What’s New?

• PowerGrids 2.0.0 new features
– Significant refactoring of interfaces, based on experience with 1.0.x

– Uses MSL 4.0.0

– Embedded power flow

– Vastly improved user interface

– Benefits from recent advances in OMEdit
• Parameter-dependent enabling of parameter input fields

• DynamicSelect visualization of simulation results on diagrams

• Currently on https://github.com/PowerGrids/PowerGrids/tree/develop
will be released soon

• New developments towards modelling of large-scale systems in OMC
(> 1000 buses)

https://github.com/PowerGrids/PowerGrids/tree/develop

76

What’s New?

• PowerGrids 2.0.0 new features
– Significant refactoring of interfaces, based on experience with 1.0.x

– Uses MSL 4.0.0

– Embedded power flow

– Vastly improved user interface

– Benefits from recent advances in OMEdit
• Parameter-dependent enabling of parameter input fields

• DynamicSelect visualization of simulation results on diagrams

• Currently on https://github.com/PowerGrids/PowerGrids/tree/develop
will be released soon

• New developments towards modelling of large-scale systems in OMC
(> 1000 buses)

• Many thanks to:
– RTE for the financial support to the development of OMC

– Prof. Massimo Ceraolo (Univ. Pisa) for the financial support to the
development of PowerGrids 2.0.0 and for the (relentless!)
end-user feedback

https://github.com/PowerGrids/PowerGrids/tree/develop

77

PowerGrids 2.0.0 + OpenModelica

• A fully open-source integrated environment for power system simulation
– Usable for teaching and research

– Integrated power flow computation for initialization

– GUI for building and editing models and for simulation results display

– State of the art numerical solvers (IDA + Kinsol + KLU)

78

Using DynamicSelect Diagrams

79

Native Support for Large-Scale Models in OMC

• Enabling technology: array-preserving code generation

80

Native Support for Large-Scale Models in OMC

• Enabling technology: array-preserving code generation

• New Frontend: done
– Can flatten models without unrolling arrays

– Can collect individual model instances into arrays

81

Native Support for Large-Scale Models in OMC

• Enabling technology: array-preserving code generation

• New Frontend: done
– Can flatten models without unrolling arrays

– Can collect individual model instances into arrays

• New Backend: work in progress
– Basic infrastructure: done

82

Native Support for Large-Scale Models in OMC

• Enabling technology: array-preserving code generation

• New Frontend: done
– Can flatten models without unrolling arrays

– Can collect individual model instances into arrays

• New Backend: work in progress
– Basic infrastructure: done

– Array-preserving pre- and post optimization: done

83

Native Support for Large-Scale Models in OMC

• Enabling technology: array-preserving code generation

• New Frontend: done
– Can flatten models without unrolling arrays

– Can collect individual model instances into arrays

• New Backend: work in progress
– Basic infrastructure: done

– Array-preserving pre- and post optimization: done

– Scalarized causalization with array-based code generation: done

84

Native Support for Large-Scale Models in OMC

• Enabling technology: array-preserving code generation

• New Frontend: done
– Can flatten models without unrolling arrays

– Can collect individual model instances into arrays

• New Backend: work in progress
– Basic infrastructure: done

– Array-preserving pre- and post optimization: done

– Scalarized causalization with array-based code generation: done

– Support of Complex operator records: done

85

Native Support for Large-Scale Models in OMC

• Enabling technology: array-preserving code generation

• New Frontend: done
– Can flatten models without unrolling arrays

– Can collect individual model instances into arrays

• New Backend: work in progress
– Basic infrastructure: done

– Array-preserving pre- and post optimization: done

– Scalarized causalization with array-based code generation: done

– Support of Complex operator records: done

– Support of daeMode: almost done

86

Native Support for Large-Scale Models in OMC

• Enabling technology: array-preserving code generation

• New Frontend: done
– Can flatten models without unrolling arrays

– Can collect individual model instances into arrays

• New Backend: work in progress
– Basic infrastructure: done

– Array-preserving pre- and post optimization: done

– Scalarized causalization with array-based code generation: done

– Support of Complex operator records: done

– Support of daeMode: almost done

– Support of sparse solvers for initialization: almost done

87

Native Support for Large-Scale Models in OMC

• Enabling technology: array-preserving code generation

• New Frontend: done
– Can flatten models without unrolling arrays

– Can collect individual model instances into arrays

• New Backend: work in progress
– Basic infrastructure: done

– Array-preserving pre- and post optimization: done

– Scalarized causalization with array-based code generation: done

– Support of Complex operator records: done

– Support of daeMode: almost done

– Support of sparse solvers for initialization: almost done

– Index reduction: To-do (but not required for phasor-based models!)

88

Native Support for Large-Scale Models in OMC

• Enabling technology: array-preserving code generation

• New Frontend: done
– Can flatten models without unrolling arrays

– Can collect individual model instances into arrays

• New Backend: work in progress
– Basic infrastructure: done

– Array-preserving pre- and post optimization: done

– Scalarized causalization with array-based code generation: done

– Support of Complex operator records: done

– Support of daeMode: almost done

– Support of sparse solvers for initialization: almost done

– Index reduction: To-do (but not required for phasor-based models!)

• Code generation: done

• Simulation runtime: done, using IDA+Kinsol+KLU

89

Current Test Results with New Backend

90

Next Steps

• Feb-Mar 2024: continuous-time models should be handled

• Tests will be carried out with ScalablePowerGrids on exemplary power
transmission models with size up to 20,000 buses

91

Next Steps

• Feb-Mar 2024: continuous-time models should be handled

• Tests will be carried out with ScalablePowerGrids on exemplary power
transmission models with size up to 20,000 buses

• 2024-2025:
– Efficient handling of events

92

Next Steps

• Feb-Mar 2024: continuous-time models should be handled

• Tests will be carried out with ScalablePowerGrids on exemplary power
transmission models with size up to 20,000 buses

• 2024-2025:
– Efficient handling of events

– Code optimizations
(e.g. removing non-observable variables and equations)

93

Next Steps

• Feb-Mar 2024: continuous-time models should be handled

• Tests will be carried out with ScalablePowerGrids on exemplary power
transmission models with size up to 20,000 buses

• 2024-2025:
– Efficient handling of events

– Code optimizations
(e.g. removing non-observable variables and equations)

– More efficient new backend algorithms for the scalarized parts
(causalization, Jacobians)

94

Next Steps

• Feb-Mar 2024: continuous-time models should be handled

• Tests will be carried out with ScalablePowerGrids on exemplary power
transmission models with size up to 20,000 buses

• 2024-2025:
– Efficient handling of events

– Code optimizations
(e.g. removing non-observable variables and equations)

– More efficient new backend algorithms for the scalarized parts
(causalization, Jacobians)

Goal: run national- and continental-size power Goal: run national- and continental-size power
system models out of the box in OMCsystem models out of the box in OMC

95

Next Steps

• Feb-Mar 2024: continuous-time models should be handled

• Tests will be carried out with ScalablePowerGrids on exemplary power
transmission models with size up to 20,000 buses

• 2024-2025:
– Efficient handling of events

– Code optimizations
(e.g. removing non-observable variables and equations)

– More efficient new backend algorithms for the scalarized parts
(causalization, Jacobians)

Goal: run national- and continental-size power Goal: run national- and continental-size power
system models out of the box in OMCsystem models out of the box in OMC

Support the challenges posed by the energy Support the challenges posed by the energy
transition on the power systems in the EUtransition on the power systems in the EU

and beyondand beyond

96

Conclusions

• OpenModelica is now capable of tackling challenging, state-of-the-art
problems in energy, mechatronics, and other areas

97

Conclusions

• OpenModelica is now capable of tackling challenging, state-of-the-art
problems in energy, mechatronics, and other areas

• OpenModelica enables fully open source solutions
– for open scientific publications including the simulation code

– for open collaboration (e.g. among ENTSO-E partners)

98

Conclusions

• OpenModelica is now capable of tackling challenging, state-of-the-art
problems in energy, mechatronics, and other areas

• OpenModelica enables fully open source solutions
– for open scientific publications including the simulation code

– for open collaboration (e.g. among ENTSO-E partners)

• Shortcoming and issues can be handled together with end-users thanks
to the open-source model

99

Conclusions

• OpenModelica is now capable of tackling challenging, state-of-the-art
problems in energy, mechatronics, and other areas

• OpenModelica enables fully open source solutions
– for open scientific publications including the simulation code

– for open collaboration (e.g. among ENTSO-E partners)

• Shortcoming and issues can be handled together with end-users thanks
to the open-source model

• Work in progress to further optimize and streamline performance and
numerical robustness

100

Conclusions

• OpenModelica is now capable of tackling challenging, state-of-the-art
problems in energy, mechatronics, and other areas

• OpenModelica enables fully open source solutions
– for open scientific publications including the simulation code

– for open collaboration (e.g. among ENTSO-E partners)

• Shortcoming and issues can be handled together with end-users thanks
to the open-source model

• Work in progress to further optimize and streamline performance and
numerical robustness

Bright future ahead!Bright future ahead!

101

Thank you for yourThank you for your
 kind attention! kind attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

