
Using OpenModelica forUsing OpenModelica for
Bleeding-Edge System Simulations of Bleeding-Edge System Simulations of 

Large Energy System Large Energy System ModelsModels

Francesco CasellaFrancesco Casella
(francesco.casella@polimi.it)(francesco.casella@polimi.it)



2

Outline

• Motivation

• The Delta Robot and Stewart Platform

• An Advanced Fuell Cell Model

• The SOS-CO2 Oxy-Combustion Power Plant Model

• Generation and Transmission System Modelling with PowerGrids 2.0.0

• Conclusions & Outlook 



3

MotivationMotivation



4

The Big Question

Why Using OpenModelica for Serious Why Using OpenModelica for Serious 
Modelling Work?Modelling Work?



5

The Big Question

Why Using OpenModelica for Serious Why Using OpenModelica for Serious 
Modelling Work?Modelling Work?

You don’t pay a license feeYou don’t pay a license fee



6

The Big Question

Why Using OpenModelica for Serious Why Using OpenModelica for Serious 
Modelling Work?Modelling Work?

You don’t pay a license feeYou don’t pay a license fee

You can release your work fully open-sourceYou can release your work fully open-source
•  Scientific publicationsScientific publications
•  Increased credibilityIncreased credibility
•  Collaborative development with OS modelCollaborative development with OS model



7

The Big Question

Why Using OpenModelica for Serious Why Using OpenModelica for Serious 
Modelling Work?Modelling Work?

You don’t pay a license feeYou don’t pay a license fee

You can release your work fully open-sourceYou can release your work fully open-source
•  Scientific publicationsScientific publications
•  Increased credibilityIncreased credibility
•  Collaborative development with OS modelCollaborative development with OS model

You can look under the hood, and change stuffYou can look under the hood, and change stuff



8

The Big Question

Why Using OpenModelica for Serious Why Using OpenModelica for Serious 
Modelling Work?Modelling Work?

You don’t pay a license feeYou don’t pay a license fee

You can release your work fully open-sourceYou can release your work fully open-source
•  Scientific publicationsScientific publications
•  Increased credibilityIncreased credibility
•  Collaborative development with OS modelCollaborative development with OS model

You can look under the hood, and change stuffYou can look under the hood, and change stuff

You can try innovative approachesYou can try innovative approaches
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The Delta Robot
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The Model - I
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The Model - II
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The Model - III
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Open Source Code on GitHub
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Highlights

• Mostly based on open-source Modelica MultiBody library

• Closed kinematic chains galore (→ not trivial)

• StateSelect.always on position and velocity of linear actuators

• 5346 equations, 12 state variables

• Worked out of the box in OMC/OMEdit

• Fully open source code, described in the Modelica Conference Paper

• Tested daily in the OSMC CI
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Performance
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The Stewart Platform

9389 equations
12 state variables
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Outlook

• Open-Source OS (if you use Linux)

• Open-Source Modelica Tool: OMC/OMEdit

• Open-Source Base Library: MSL

• Open-Source Model Framework

     Imagine the potential...
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Case Study #2:Case Study #2:

A Fuel-Cell Model forA Fuel-Cell Model for
Oxy-Combustion CyclesOxy-Combustion Cycles
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Credits
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Context

Oxy-Combusion Thermal Power Plant Concept

The SOS-CO2 power plant
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The Stack Model
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The Single Module Model
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Highlights

• About 10,000 equations

• Strongly nonlinear equations: 

– Chemical equilibria (CH4 +  2H20 → CO2 + 4H2),

– Arrhenius-type exponential laws

• Steady state initializazion is extremely difficult: no homotopy, no party

• Homotopy-based strategy leads to sequential computations at l = 0

– Prescribed current

– Simplified linear polarization curve

– Fixed temperature in Arrhenius terms

• Model initially developed with Dymola

• We wanted to make it fully open-source for publication → run in OMC
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Adapting the Model to OMC

• Steady-state initialization succeeded in Dymola but not in OMC

• Two issues:

– Insufficient symbolic manipulation for the required
l = 0 simplifications → sequential computations

– Bad tearing
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Bad Tearing

• Dymola’s heuristics automatically selects the best tearing variables for 
the core nonlinear implicit initial equations: p, T, X, i

• Unfortunately, OMC’s heuristics select other variables that lead to 
convergence failure

• Adding __OpenModelica_tearingSelect=always to p, T, X, i 
leads to successful convergence also in OMC

The Tearing Dilemma:The Tearing Dilemma:

Rely on fantastic tearing algorithmsRely on fantastic tearing algorithms

vs.vs.

Rely on the modeller’s experience?Rely on the modeller’s experience?
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• After the fixes, the model runs successfully

– Build time: about 1 min

– Simulation time: about 10 s

Full publication possible (incl. source code)Full publication possible (incl. source code)

Fully open-source (incl. Modelica tool)Fully open-source (incl. Modelica tool)

Adequate performanceAdequate performance
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Case Study #3:Case Study #3:

The SOS-CO2 The SOS-CO2 
Power PlantPower Plant
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The SOS-CO2 Plant Model
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Building the Model

• Dymola requires 2-3 minutes to build the model on a fast i9 laptop

• OMC currently takes about 30 minutes

– 10 min compiling C code

– 8 min tearing

– 2 min matching & sorting

– 2 min removing simple equations

Further optimizations required in the backend Further optimizations required in the backend 
and code generation phasesand code generation phases

Usable, but not very practical yetUsable, but not very practical yet
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• Extensive use of homotopy to make steady-state initialization possible
(incl. decouplers at the inlet of each component)

• Forward initialization in on-design conditions
– Succeeds in Dymola

– Succeeds in OMC if tearing is kept and tearingSelect is used

• Backward initialization in on-design conditions
– Succeeds in Dymola

– Fails in OMC

• Backward initialization in off-design conditions
– Works in Dymola only down to about 90% load

– Fails in OMC

Numerically challenging problem!Numerically challenging problem!

Dymola: dead end because of IP issuesDymola: dead end because of IP issues

OMC: we can still look under the hoodOMC: we can still look under the hood
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Simulation

• Dymola simulates the system without fuss

• OpenModelica is extremely inefficient (about 100 s per time step)
due to convergence issues on nonlinear systems involving derivatives
(even at steady state!)

Further investigation requiredFurther investigation required

Most likely a scaling issueMost likely a scaling issue
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Outlook

OMC is (almost) capable of handlingOMC is (almost) capable of handling
the most challenging thermal power plant model the most challenging thermal power plant model 

of my entire careerof my entire career

With some further optimization, it could match With some further optimization, it could match 
or even surpass Dymola’s performanceor even surpass Dymola’s performance

(e.g. handling backward init to 20% load)(e.g. handling backward init to 20% load)
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Case Study #4:Case Study #4:

Power System Modelling Power System Modelling 
with PowerGrids 2.0.0with PowerGrids 2.0.0
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Power Grids 1.0.0 (now 1.0.3)



71

What’s New?

• PowerGrids 2.0.0 new features
– Significant refactoring of interfaces, based on experience with 1.0.x

– Uses MSL 4.0.0



72

What’s New?

• PowerGrids 2.0.0 new features
– Significant refactoring of interfaces, based on experience with 1.0.x

– Uses MSL 4.0.0

– Embedded power flow



73

What’s New?

• PowerGrids 2.0.0 new features
– Significant refactoring of interfaces, based on experience with 1.0.x

– Uses MSL 4.0.0

– Embedded power flow

– Vastly improved user interface

– Benefits from recent advances in OMEdit
• Parameter-dependent enabling of parameter input fields

• DynamicSelect visualization of simulation results on diagrams

 



74

What’s New?

• PowerGrids 2.0.0 new features
– Significant refactoring of interfaces, based on experience with 1.0.x

– Uses MSL 4.0.0

– Embedded power flow

– Vastly improved user interface

– Benefits from recent advances in OMEdit
• Parameter-dependent enabling of parameter input fields

• DynamicSelect visualization of simulation results on diagrams

• Currently on https://github.com/PowerGrids/PowerGrids/tree/develop
will be released soon 

https://github.com/PowerGrids/PowerGrids/tree/develop


75

What’s New?

• PowerGrids 2.0.0 new features
– Significant refactoring of interfaces, based on experience with 1.0.x

– Uses MSL 4.0.0

– Embedded power flow

– Vastly improved user interface

– Benefits from recent advances in OMEdit
• Parameter-dependent enabling of parameter input fields

• DynamicSelect visualization of simulation results on diagrams

• Currently on https://github.com/PowerGrids/PowerGrids/tree/develop
will be released soon 

• New developments towards modelling of large-scale systems in OMC
(> 1000 buses)

https://github.com/PowerGrids/PowerGrids/tree/develop


76

What’s New?

• PowerGrids 2.0.0 new features
– Significant refactoring of interfaces, based on experience with 1.0.x

– Uses MSL 4.0.0

– Embedded power flow

– Vastly improved user interface

– Benefits from recent advances in OMEdit
• Parameter-dependent enabling of parameter input fields

• DynamicSelect visualization of simulation results on diagrams

• Currently on https://github.com/PowerGrids/PowerGrids/tree/develop
will be released soon 

• New developments towards modelling of large-scale systems in OMC
(> 1000 buses)

• Many thanks to:
– RTE for the financial support to the development of OMC

– Prof. Massimo Ceraolo (Univ. Pisa) for the financial support to the 
development of PowerGrids 2.0.0 and for the (relentless!)
end-user feedback

https://github.com/PowerGrids/PowerGrids/tree/develop
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PowerGrids 2.0.0 + OpenModelica

• A fully open-source integrated environment for power system simulation
– Usable for teaching and research

– Integrated power flow computation for initialization

– GUI for building and editing models and for simulation results display

– State of the art numerical solvers (IDA + Kinsol + KLU)
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Using DynamicSelect Diagrams
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Native Support for Large-Scale Models in OMC

• Enabling technology: array-preserving code generation

• New Frontend: done
– Can flatten models without unrolling arrays

– Can collect individual model instances into arrays

• New Backend: work in progress
– Basic infrastructure: done

– Array-preserving pre- and post optimization: done

– Scalarized causalization with array-based code generation: done

– Support of Complex operator records: done

– Support of daeMode: almost done

– Support of sparse solvers for initialization: almost done

– Index reduction: To-do (but not required for phasor-based models!)

• Code generation: done

• Simulation runtime: done, using IDA+Kinsol+KLU
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Current Test Results with New Backend
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Next Steps

• Feb-Mar 2024: continuous-time models should be handled

• Tests will be carried out with ScalablePowerGrids on exemplary power 
transmission models with size up to 20,000 buses

• 2024-2025:
– Efficient handling of events

– Code optimizations
(e.g. removing non-observable variables and equations)

– More efficient new backend algorithms for the scalarized parts
(causalization, Jacobians)

Goal: run national- and continental-size power Goal: run national- and continental-size power 
system models out of the box in OMCsystem models out of the box in OMC

Support the challenges posed by the energy Support the challenges posed by the energy 
transition on the power systems in the EUtransition on the power systems in the EU

and beyondand beyond
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Conclusions

• OpenModelica is now capable of tackling challenging, state-of-the-art 
problems in energy, mechatronics, and other areas

• OpenModelica enables fully open source solutions
– for open scientific publications including the simulation code

– for open collaboration (e.g. among ENTSO-E partners)

• Shortcoming and issues can be handled together with end-users thanks 
to the open-source model

• Work in progress to further optimize and streamline performance and 
numerical robustness

Bright future ahead!Bright future ahead!
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Thank you for yourThank you for your
 kind attention! kind attention!
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