Status of the New Backend

Karim Abdelhak, Philip Hannebohm, Bernhard Bachmann

University of Applied Sciences Bielefeld
Bielefeld, Germany
Proper Hybrid Models for Smarter Vehicles

https://phymos.de

The presented work is part of the PHyMoS project, supported by the German Federal Ministry for Economic Affairs and Climate Action.
1. Overview
Overview

Backend Modules
Status on Array-Handling

Lowering → Simplify

DetectStates → Events → Partitioning → Causalize → Categorize → Tearing → Solve → Jacobian → SimCode

Initialization → DAE-Mode

Finished → Partially Finished → Work in Progress
Overview

Backend Modules
Status on Array-Handling

Lowering → Simplify → Events → Partitioning → Causalize → Categorize → Tearing → Solve → Jacobian → SimCode

- DetectStates
- Alias
- Initialization
- DAE-Mode

Finished Partially Finished Work in Progress
Overview

Backend Modules

Status on Array-Handling

Lowering

Simplify

Events

Alias

Partitioning

Causalize

Initialization

Categorize

Tearing

Solve

Jacobian

SimCode

DetectStates

Initialization

DAE-Mode

Finished

Partially Finished

Work in Progress

Karim Abdelhak, Philip Hannebohm

Status of the New Backend

February 6, 2023
Overview

Backend Modules
Status on Array-Handling

Lowering → Simplify → Events → Partitioning → Causelze → Initialization → Categorize → Tearing → Solve → Jacobian → SimCode

DetectStates → Alias

DAE-Mode

Finished → Partially Finished → Work in Progress

Overview

Checksum: 987654321
Overview

Backend Modules
Status on Array-Handling

Lowering → Simplify → Events → Partitioning → Causalize → Initialization

Initialization → Tearing → Solve → Jacobian → SimCode

DetectionStates → Alias → DAE-Mode

Finished → Partially Finished → Work in Progress
Overview

Backend Modules

Status on Array-Handling

Lowering → Simplify → Events → Partitioning → Causalize → Categorize → Tearing → Solve → Jacobian → SimCode

- DetectStates
- Alias
- Initialization
- DAE-Mode

Status:
- Finished
- Partially Finished
- Work in Progress

Karim Abdelhak, Philip Hannebohm

Status of the New Backend

February 6, 2023
Overview

Backend Modules

Status on Array-Handling

Lowering → Simplify → Events → Partitioning → Causelize → Categorize → Tearing → Solve → Jacobian → SimCode

- DetectStates
- Alias
- Initialization
- DAE-Mode

Status:
- Finished
- Partially Finished
- Work in Progress
Overview

Backend Modules
Status on Array-Handling

Lowering → Simplify → Events → Partitioning → Causalize
DetectStates → Initialization → Categorize → Tearing
Alias → DAE-Mode → Solve → Jacobian → SimCode

Finished → Partially Finished → Work in Progress

Karim Abdelhak, Philip Hannebohm
2. Two Step Sorting
Algorithm Outline

1. Pseudo-Array Matching
2. Scalar Sorting
3. Merge algebraic loop nodes
4. Merge array nodes
5. Array sorting
6. Sort array nodes internally

Advantages

- Force arrays to be solved in succession if possible
- Prevent entwining of arrays as much as possible
Algorithm Outline

1. Pseudo-Array Matching
2. Scalar Sorting
 - Merge algebraic loop nodes
 - Merge array nodes
3. Array sorting
4. Sort array nodes internally

Advantages

- Force arrays to be solved in succession if possible
- Prevent entwining of arrays as much as possible
Algorithm Outline

1. Pseudo-Array Matching
2. Scalar Sorting
3. Merge algebraic loop nodes
4. Merge array nodes
5. Array sorting
6. Sort array nodes internally

Advantages

- Force arrays to be solved in succession if possible
- Prevent entwining of arrays as much as possible
Algorithm Outline

1. Pseudo-Array Matching
2. Scalar Sorting
3. Merge algebraic loop nodes
4. Merge array nodes
5. Array sorting
6. Sort array nodes internally

Advantages

- Force arrays to be solved in succession if possible
- Prevent entwining of arrays as much as possible
Algorithm Outline

1. Pseudo-Array Matching
2. Scalar Sorting
3. Merge algebraic loop nodes
4. Merge array nodes
5. Array sorting
6. Sort array nodes internally

Advantages

- Force arrays to be solved in succession if possible
- Prevent entwining of arrays as much as possible
Algorithm Outline

1. Pseudo-Array Matching
2. Scalar Sorting
3. Merge algebraic loop nodes
4. Merge array nodes
5. Array sorting
6. Sort array nodes internally

Advantages

- Force arrays to be solved in succession if possible
- Prevent entwining of arrays as much as possible
Algorithm Outline

1. Pseudo-Array Matching
2. Scalar Sorting
3. Merge algebraic loop nodes
4. Merge array nodes
5. Array sorting
6. Sort array nodes internally

Advantages

- Force arrays to be solved in succession if possible
- Prevent entwining of arrays as much as possible
Algorithm Outline

1. Pseudo-Array Matching
2. Scalar Sorting
3. Merge algebraic loop nodes
4. Merge array nodes
5. Array sorting
6. Sort array nodes internally

Advantages

- Force arrays to be solved in succession if possible
- Prevent entwining of arrays as much as possible
Abstract Graph

Two Step Sorting

Equations

Variables

For-Loop 1

Array-Variable 1

Array-Variable 2

For-Loop 2
Matching

For-Loop 1

For-Loop 2

Equations

Variables

Array-Variable 1

Array-Variable 2
Merge algebraic loop nodes

Equations

Variables

For-Loop 1

Array-Variable 1

For-Loop 2

Array-Variable 2
Merge array nodes

Equations

For-Loop 1

Array-Variable 1

For-Loop 2

Array-Variable 2
Two Step Sorting

Merge edges

Equations

Variables

For-Loop 1

Array-Variable 1

For-Loop 2

Array-Variable 2
Two Step Sorting

Equations

For-Loop 1

Array-Variable 1

For-Loop 2

Array-Variable 2

Variables
3. Generalized For-Loops
Example: Diagonal Slice Model

```plaintext
model diagonal_slice_for1
    Real x [4,4];
    Real y [4];
equation
    for i in 1:4 loop
        x[i,i] = i*cos(time);
    end for;
    for i in 1:4, j in 1:4 loop
        x[i,j] = y[j] + i*sin(j*time);
    end for;
end diagonal_slice_for1;
```

Expected Results

- The first for-loop will be solved for the diagonal elements of `x`
- The second for-loop will be split up into two for-loops:
 - `i ≠ j` solves the remaining non-diagonal elements of `x`
 - `i = j` solves `y`
Example: Diagonal Slice Model

```plaintext
model diagonal_slice_for1
    Real x[4,4];
    Real y[4];

equation
    for i in 1:4 loop
        x[i,i] = i*cos(time);
    end for;
    for i in 1:4, j in 1:4 loop
        x[i,j] = y[j] + i*sin(j*time);
    end for;
end diagonal_slice_for1;
```

Expected Results
- The first for-loop will be solved for the diagonal elements of x
- The second for-loop will be split up into two for-loops:
 1. $i \neq j$ solves the remaining non-diagonal elements of x
 2. $i = j$ solves y
Example: Diagonal Slice Model

BLT-Blocks after Solve (-d=bltdump)

--- Alias of INI[1 | 1] ---
BLOCK 1: Generic Component (status = Solve.EXPLICIT)

Variable:
\[x[i, i] \]

Equation:
\[
\begin{align*}
\text{[FOR]} & \quad (4) \ (\text{RES_SIM_2}) \\
\text{[---]} & \quad \text{for } i \text{ in } 1:4 \ \text{Loop} \\
\text{[---]} & \quad \text{[SCAL]} \ (1) \ x[i, i] = \text{CAST(Real, i)} \times \cos(\text{time}) \ (\text{RES_SIM_3}) \\
\text{[----]} & \quad \text{end for;} \\
\text{slice: } & \{3, 2, 1, 0\}
\end{align*}
\]
Example: Diagonal Slice Model
BLT-Blocks after Solve (-d=bltdump)

--- Alias of INI[1 | 2] ---
BLOCK 2: Generic Component (status = Solve.EXPLICIT)

Variable:
y[j]

Equation:

```plaintext
[FOR] (16) (RES_SIM_0)
[----] for {i in 1:4, j in 1:4} loop
[----] [SCAL] (1) y[j] = -(CAST(Real, i) * sin(CAST(Real, j) * time) - x[i, j]) (RES_SIM_1)
[----] end for;
slice: {15, 10, 5, 0}
```

Karim Abdelhak, Philip Hannebohm
Status of the New Backend
February 6, 2023
Example: Diagonal Slice Model
BLT-Blocks after Solve (-d=bltdump)

--- Alias of INI[1 | 3] ---
BLOCK 3: Generic Component (status = Solve.EXPLICIT)

Variable:
\[x[i, j] \]

Equation:

\[
\text{FOR} \{i \text{ in } 1:4, j \text{ in } 1:4\} \text{ loop}
\]

\[
[SCAL] \text{(1) } x[i, j] = y[j] + \text{CAST(Real, i)} \times \sin(\text{CAST(Real, j)} \times \text{time})
\]

\[
\text{end for};
\]

slice: \{11, 7, 3, 14, 6, 2, 13, 9, 1, 12, \ldots\}
Example: Diagonal Slice Model

SimCode Structures (-d=dumpSimCode)

INIT

(3) single generic call [index 2] {3, 2, 1, 0}
(2) single generic call [index 1] {15, 10, 5, 0}
(1) single generic call [index 0] {11, 7, 3, 14, 6, 2, 13, 9, 1, 12, ...}

Algebraic Partition 1

(6) Alias of 3
(5) Alias of 2
(4) Alias of 1

Generic Calls

(0) [SNGL]: {{i | start:1, step:1, size: 4}, {j | start:1, step:1, size: 4}}
 x[i, j] = y[j] + CAST(Real, i) * sin(CAST(Real, j) * time)
(1) [SNGL]: {{i | start:1, step:1, size: 4}, {j | start:1, step:1, size: 4}}
 y[j] = -(CAST(Real, i) * sin(CAST(Real, j) * time) - x[i, j])
(2) [SNGL]: {{i | start:1, step:1, size: 4}}
 x[i, i] = CAST(Real, i) * cos(time)
Example: Diagonal Slice Model
SimCode Structures (-d=dumpSimCode)

INIT

(3) single generic call [index 2]	\{3, 2, 1, 0\}
(2) single generic call [index 1]	\{15, 10, 5, 0\}
(1) single generic call [index 0]	\{11, 7, 3, 14, 6, 2, 13, 9, 1, 12, ...\}

Algebraic Partition 1

| (6) Alias of 3 |
| (5) Alias of 2 |
| (4) Alias of 1 |

Generic Calls

| (0) [SNGL]: {{i | start:1, step:1, size: 4}, {j | start:1, step:1, size: 4}} |
| x[i, j] = y[j] + CAST(Real, i) * sin(\text{CAST}(\text{Real}, j) \ast \text{time}) |
| (1) [SNGL]: {{i | start:1, step:1, size: 4}, {j | start:1, step:1, size: 4}} |
| y[j] = -\text{CAST}(\text{Real}, i) * \text{sin}(\text{CAST}(\text{Real}, j) \ast \text{time}) - x[i, j] |
| (2) [SNGL]: {{i | start:1, step:1, size: 4}} |
| x[i, i] = \text{CAST}(\text{Real}, i) * cos(\text{time}) |
Example: Diagonal Slice Model
SimCode Structures (-d=dumpSimCode)

INIT

(3) single generic call [index 2] \{3, 2, 1, 0\}
(2) single generic call [index 1] \{15, 10, 5, 0\}
(1) single generic call [index 0] \{11, 7, 3, 14, 6, 2, 13, 9, 1, 12, \ldots\}

Algebraic Partition 1

(6) Alias of 3
(5) Alias of 2
(4) Alias of 1

Generic Calls

(0) [SNGL]: \{\{i | start:1, step:1, size: 4\}, \{j | start:1, step:1, size: 4\}\}
 \[\[i, j\] = y[j] + \text{CAST(Real, i)} \times \sin(\text{CAST(Real, j)} \times \text{time})\]
(1) [SNGL]: \{\{i | start:1, step:1, size: 4\}, \{j | start:1, step:1, size: 4\}\}
 \[y[j] = -\text{CAST(Real, i)} \times \sin(\text{CAST(Real, j)} \times \text{time}) - x[i, j]\]
(2) [SNGL]: \{\{i | start:1, step:1, size: 4\}\}
 \[x[i, i] = \text{CAST(Real, i)} \times \cos(\text{time})\]
Example: Diagonal Slice Model

Generated C-Code

```c
void genericCall_0 (DATA *data, threadData_t *threadData, int idx )
{
    int tmp = idx;
    int i_loc = tmp % 4;
    int i = 1 * i_loc + 1;
    tmp /= 4;
    int j_loc = tmp % 4;
    int j = 1 * j_loc + 1;
    tmp /= 4;
    (data->localData[0]->realVars[0] /* x[1,1] variable */)[(i - 1) * 4 + (j - 1)] = (data->localData[0]->realVars[16] /* y[1] variable */)[j - 1] + (((modelica_real)i)) * (sin(((modelica_real)j)) * (data->localData[0]->timeValue)));
}
```
Example: Diagonal Slice Model

Generated C-Code

```c
void genericCall_1 (DATA *data, threadData_t *threadData, int idx)
{
    int tmp = idx;
    int i_loc = tmp % 4;
    int i = 1 * i_loc + 1;
    tmp /= 4;
    int j_loc = tmp % 4;
    int j = 1 * j_loc + 1;
    tmp /= 4;

    (&data->localData[0]->realVars[16] /* y[1] variable */)[j - 1] = ((((modelica_real)i)) * (sin(((modelica_real)j)) * (data->localData[0]->timeValue))) - (&data->localData[0]->realVars[0] /* x[1,1] variable */)[(i - 1) * 4 + (j - 1)];
}
```
Example: Diagonal Slice Model

Generated C-Code

```c
void genericCall_2 (DATA *data, threadData_t *threadData, int idx)
{
    int tmp = idx;
    int i_loc = tmp % 4;
    int i = 1 * i_loc + 1;
    tmp /= 4;
    (&data->localData[0]->realVars[0] /* x[1,1] variable */)[(i - 1) * 4 + (i-1)] = (((modelica_real)i)
        ) * (cos(data->localData[0]->timeValue));
}
```
Example: Diagonal Slice Model

Generated C-Code

```c
/*
equation_index: 1
type: SES_GENERIC_ASSIGN call index: 0
*/
void diagonal_slice_for1_eqFunction_1(DATA *data, threadData_t *threadData)
{
    TRACE_PUSH
    const int equationIndexes[2] = {1, 1};
    const int idx_lst[12] = {11, 7, 3, 14, 6, 2, 13, 9, 1, 12, 8, 4};
    for (int i = 0; i < 12; i++)
        genericCall_0 (data, threadData, idx_lst[i]); //diagonal_slice_for1_genericCall*/
    TRACE_POP
}
```
Example: Entwined For-Loops Model

```model entwine_for1
  Real x[10];
  Real y[10];
  equation
    x[1] = 1;
    y[1] = 2;
    for j in 2:10 loop
      x[j] = y[j-1] * sin(time);
    end for;
    for i in 2:5 loop
      y[i] = x[i-1];
    end for;
    for i in 6:10 loop
      y[i] = x[i-1] * 2;
    end for;
  end entwine_for1;
```

Expected Results

- The first two scalar equations will be solved for $x[1]$ and $y[1]$
- The three for loops will be solved as follows:
 1. alternating between the first and the second for $i = 2 : 5$
 2. alternating between the first and the third for $i = 6 : 10$
Example: Entwined For-Loops Model

```plaintext
model entwine_for1
    Real x[10];
    Real y[10];
equation
    x[1] = 1;
    y[1] = 2;
    for j in 2:10 loop
        x[j] = y[j-1] * sin(time);
    end for;
    for i in 2:5 loop
        y[i] = x[i-1];
    end for;
    for i in 6:10 loop
        y[i] = x[i-1] * 2;
    end for;
end entwine_for1;
```

Expected Results
- The first two scalar equations will be solved for $x[1]$ and $y[1]$
- The three for loops will be solved as follows:
 1. alternating between the first and the second for $i = 2 : 5$
 2. alternating between the first and the third for $i = 6 : 10$
Generalized For-Loops

BLOCK 3: Entwined Component (status = Solve.EXPLICIT)

- **call order**: \{\$RES_SIM_2, \$RES_SIM_4, \$RES_SIM_2, \$RES_SIM_4, \$RES_SIM_2, \$RES_SIM_4, \$RES_SIM_2, \$RES_SIM_4, \$RES_SIM_0, \$RES_SIM_4, \ldots\}

BLOCK: Generic Component (status = Solve.EXPLICIT)

Variable: \(y[i]\)

Equation:

\[
\text{[FOR]} (5) (\$RES_SIM_0)
\]

\[
\text{[---]} \text{for} \ i \text{ in} \ 6:10 \text{ loop}
\]

\[
\text{[---]} \ [SCAL] \ (1) \ y[i] = 2.0 \ast x[(-1) + i] \ (\$RES_SIM_1)
\]

\[
\text{[---]} \text{end for;}
\]

slice: \{0, 1, 2, 3, 4\}

BLOCK: Generic Component (status = Solve.EXPLICIT)

Variable: \(x[j]\)

Equation:

\[
\text{[FOR]} (9) (\$RES_SIM_4)
\]

\[
\text{[---]} \text{for} \ j \text{ in} \ 2:10 \text{ loop}
\]

\[
\text{[---]} \ [SCAL] \ (1) \ x[j] = y[(-1) + j] \ast \sin(\text{time}) \ (\$RES_SIM_5)
\]

\[
\text{[---]} \text{end for;}
\]

slice: \{0, 1, 2, 3, 4, 5, 6, 7, 8\}

BLOCK: Generic Component (status = Solve.EXPLICIT)

Variable: \(y[i]\)

Equation:

\[
\text{[FOR]} (4) (\$RES_SIM_2)
\]

\[
\text{[---]} \text{for} \ i \text{ in} \ 2:5 \text{ loop}
\]

\[
\text{[---]} \ [SCAL] \ (1) \ y[i] = x[(-1) + i] \ (\$RES_SIM_3)
\]

\[
\text{[---]} \text{end for;}
\]

slice: \{0, 1, 2, 3\}
Example: Entwined For-Loops Model
SimCode Structures (-d=dumpSimCode)

INIT

(6) \(x[1] := 1.0 \)
(5) \(y[1] := 2.0 \)

entwined call (4)
(3) single generic call [index 2] \{0, 1, 2, 3, 4, 5, 6, 7, 8\}
(2) single generic call [index 1] \{0, 1, 2, 3\}
(1) single generic call [index 0] \{0, 1, 2, 3, 4\}

Algebraic Partition 1

(12) Alias of 5
(11) Alias of 6

entwined call (10)
(9) single generic call [index 1] \{0, 1, 2, 3\}
(8) single generic call [index 2] \{0, 1, 2, 3, 4, 5, 6, 7, 8\}
(7) single generic call [index 0] \{0, 1, 2, 3, 4\}

Generic Calls

(0) [SNGL]: \{i | start:6, step:1, size: 5\}
\(y[i] = 2.0 \times x[(-1) + i] \)
(1) [SNGL]: \{i | start:2, step:1, size: 4\}
\(y[i] = x[(-1) + i] \)
(2) [SNGL]: \{j | start:2, step:1, size: 9\}
\(x[j] = y[(-1) + j] \times \sin(time) \)
Example: Entwined For-Loops Model

Generated C-Code

```c
void entwine_for1_eqFunction_4(DATA *data, threadData_t *threadData) {
    TRACE_PUSH
    const int equationIndexes[2] = {1, 4};
    int call_indices[3] = {0, 0, 0};
    const int call_order[18] = {2, 1, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0};
    const int idx_lst_2[9] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
    const int idx_lst_1[4] = {0, 1, 2, 3};
    const int idx_lst_0[5] = {0, 1, 2, 3, 4};
    for (int i = 0; i < 18; i++)
    {
        switch (call_order[i])
        {
        case 2:
            genericCall_2(data, threadData, idx_lst_2[call_indices[0]]);
            call_indices[0]++;
            break;
        case 1:
            genericCall_1(data, threadData, idx_lst_1[call_indices[1]]);
            call_indices[1]++;
            break;
        case 0:
            genericCall_0(data, threadData, idx_lst_0[call_indices[2]]);
            call_indices[2]++;
            break;
        default:
            throwStreamPrint(NULL, "Call index %d at pos %d unknown for: ", call_order[i], i);
            break;
        }
    }
    TRACE_POP
}
```
4. Symbolic Simplification
Solving Equations for Variables

Current Implementation

- encoding expressions as a tree
- rewrite rules
- graph of equivalent expressions/equations
- heuristic graph traversal
Solving Equations for Variables

Current Implementation
- encoding expressions as a tree
- rewrite rules
- graph of equivalent expressions/equations
- heuristic graph traversal
Solving Equations for Variables

Current Implementation

- encoding expressions as a tree
- rewrite rules
- graph of equivalent expressions/equations
- heuristic graph traversal
Solving Equations for Variables

Current Implementation

- encoding expressions as a tree
- rewrite rules
- graph of equivalent expressions/equations
- heuristic graph traversal
Expression Trees

```
x + \cos y \cdot 3
```
Expression Trees

\[x + \cos(y) \cdot 3 \]
Expression Trees

\[\text{Expression Tree: } x + \cos(y \cdot 3) \]
Algebra/Rewrite Rules

- Define equivalent terms
- Also possible for arrays and records

\[a \cdot b + a \cdot c \Leftrightarrow a \cdot (b + c) \]
\[(a + b) \cdot (a - b) \Leftrightarrow a^2 - b^2 \]
\[a^m \cdot a^n \Leftrightarrow a^{m+n} \]
\[(AB)^T \Leftrightarrow B^T A^T \]
\[(M^T)^{-1} \Leftrightarrow (M^{-1})^T \]
\[z \bar{w} \Leftrightarrow \bar{(zw)} \]

...
Symbolic Simplification

Algebra/Rewrite Rules

- Define equivalent terms
- Also possible for arrays and records

\[
\begin{align*}
 a \cdot b + a \cdot c & \iff a \cdot (b + c) \\
 (a + b) \cdot (a - b) & \iff a^2 - b^2 \\
 a^m \cdot a^n & \iff a^{m+n} \\
 (AB)^T & \iff B^T A^T \\
 (M^T)^{-1} & \iff (M^{-1})^T \\
 z \bar{w} & \iff \overline{zw}
\end{align*}
\]
Symbolic Simplification

Algebra/Rewrite Rules

Rewrite Rules

- Define equivalent terms
- Also possible for arrays and records

\[
\begin{align*}
 a \cdot b + a \cdot c & \iff a \cdot (b + c) \\
 (a + b) \cdot (a - b) & \iff a^2 - b^2 \\
 a^m \cdot a^n & \iff a^{m+n} \\
 (AB)^T & \iff B^T A^T \\
 (M^T)^{-1} & \iff (M^{-1})^T \\
 z\bar{w} & \iff \bar{zw}
\end{align*}
\]

...
Equivalent Expressions

Equivalence Structure
- vertex = expression
- edge = rewrite rule between e_1 and e_2
- conceptually infinite graph
- simplifying = graph search
Symbolic Simplification

Equivalent Expressions

Equivalence Structure
- vertex = expression
- edge = rewrite rule between e_1 and e_2
- conceptually infinite graph
- simplifying = graph search

\[
2 - (x - 1)(x + 1) \rightarrow 2 - x^2 + 1 \rightarrow 3 - x^2.
\]
OMC – Symbolic Simplify

Old Implementation
- destructive rewriting, loses intermediate expressions
- finds only local optima
- rewrites and rewrite order have to be carefully crafted by hand

New Implementation (WIP)
- non-destructive rewriting, potentially infinite
- finds global optima (if e-graph is saturated), cost function can be customized
- all possible rewrites are applied iteratively
- saturated e-graph reusable for next expression
OMC – Symbolic Simplify

Old Implementation
- destructive rewriting, loses intermediate expressions
- finds only local optima
- rewrites and rewrite order have to be carefully crafted by hand

New Implementation (WIP)
- non-destructive rewriting, potentially infinite
- finds global optima (if e-graph is saturated), cost function can be customized
- all possible rewrites are applied iteratively
- saturated e-graph reusable for next expression
E-Graphs and Equality Saturation

- E-Graph structure
- Equality Saturation
- Extraction
- Analysis
Informal Definition

- **e-graph** is a set of e-classes
- **e-class** is a set of e-nodes, has unique id
- **e-node** is (symbol, list of e-class ids)

Example:

\[2x = x + x = x + x + 0 = x + x + 0 + 0 = \ldots \]
E-Graph

Informal Definition

- **e-graph** is a set of e-classes
- **e-class** is a set of e-nodes, has unique id
- **e-node** is (symbol, list of e-class ids)

Example:

\[2x = x + x = x + x + 0 = x + x + 0 + 0 = \ldots \]
E-Graph

Informal Definition

- **e-graph** is a set of e-classes
- **e-class** is a set of e-nodes, has unique id
- **e-node** is (symbol, list of e-class ids)

Example:

\[2x = x + x = x + x + 0 = x + x + 0 + 0 = \ldots\]
Informal Definition

- **e-graph** is a set of e-classes
- **e-class** is a set of e-nodes, has unique id
- **e-node** is (symbol, list of e-class ids)

Example:

\[2x = x + x = x + x + 0 = x + x + 0 + 0 = \ldots \]
E-Graph

Equality Saturation

Input: An expression e

Output: best expression equivalent to e

1. $G \leftarrow$ initial e-graph from e
2. **while** G is not saturated **do**
 3. $M \leftarrow \emptyset$
 4. **for** $(l \rightarrow r) \in R$ **do**
 5. **for** matches (σ, c) of l in G **do**
 6. $M \leftarrow M \cup (r, \sigma, c)$
 7. **for** $(r, \sigma, c) \in M$ **do**
 8. $c' \leftarrow$ add $r[\sigma]$ to G and yield id
 9. merge c and c' in G
 10. rebuild G
3. **return** best expression from G

G is an e-graph

R is a set of rewrite rules

M is a set of matches

c, c' are e-classes

e, l, r are algebraic expressions

σ is a set of variable substitutions
Get an expression out of the e-graph, according to some objective (cost function).

Simple cost function (e.g. minimum number of nodes): bottom-up, greedy traversal
Get an expression out of the e-graph, according to some objective (cost function).

Simple cost function (e.g. minimum number of nodes): bottom-up, greedy traversal
Get an expression out of the e-graph, according to some objective (cost function).

Simple cost function (e.g. minimum number of nodes): bottom-up, greedy traversal
E-Graph
Extraction

Get an expression out of the e-graph, according to some objective (cost function).

Simple cost function (e.g. minimum number of nodes): bottom-up, greedy traversal
E-Graph

Extraction

Get an expression out of the e-graph, according to some objective (cost function).

Simple cost function (e.g. minimum number of nodes): bottom-up, greedy traversal
E-Graph
E-Class Analyses

Take some semilattice domain D and associate a value $d_c \in D$ to each e-class c.

- $\text{make}(n) \rightarrow d_c$: construct new e-class
- $\text{join}(d_{c_1}, d_{c_2}) \rightarrow d_c$: merge c_1, c_2 into c
- $\text{modify}(c) \rightarrow c'$: optionally modify c based on d_c

Can be used to
- manipulate the e-graph, e.g. constant folding
- steer rewrites during equality saturation
- determine cost of e-nodes during extraction
E-Graph

E-Class Analyses

Take some semilattice domain D and associate a value $d_c \in D$ to each e-class c.

- **make**(n) $\rightarrow d_c$ construct new e-class
- **join**(d_{c1}, d_{c2}) $\rightarrow d_c$ merge c_1, c_2 into c
- **modify**(c) $\rightarrow c'$ optionally modify c based on d_c

Can be used to
- manipulate the e-graph, e.g. constant folding
- steer rewrites during equality saturation
- determine cost of e-nodes during extraction
E-Graph
E-Class Analyses

Take some semilattice domain D and associate a value $d_c \in D$ to each e-class c.

- $\text{make}(n) \rightarrow d_c$: construct new e-class
- $\text{join}(d_{c_1}, d_{c_2}) \rightarrow d_c$: merge c_1, c_2 into c
- $\text{modify}(c) \rightarrow c'$: optionally modify c based on d_c

Can be used to
- manipulate the e-graph, e.g. constant folding
- steer rewrites during equality saturation
- determine cost of e-nodes during extraction
Symbolic Simplification

E-Graph
Relational E-Matching

Representation

- An e-graph represents a term if any of its e-classes does.
- An e-class \(c \) represents a term if any e-node \(n \in c \) does.
- An e-node \(f(c_1, \ldots, c_k) \) represents a term \(f(t_1, \ldots, t_k) \) if they have the same symbol and \(c_i \) represents \(t_i \) for all \(i \).

Potential Bottleneck:

Pattern matching in the e-graph takes 60 to 90% of computation time!

Solution

Transform e-graph into data base \(\rightarrow \) Conjunctive Queries are fast and can be optimized.
E-Graph

Relational E-Matching

Representation

- An e-graph represents a term if any of its e-classes does.
- An e-class c represents a term if any e-node $n \in c$ does.
- An e-node $f(c_1, \ldots, c_k)$ represents a term $f(t_1, \ldots, t_k)$ if they have the same symbol and c_i represents t_i for all i.

Potential Bottleneck:

Pattern matching in the e-graph takes 60 to 90% of computation time!

Solution

Transform e-graph into database \rightarrow Conjunctive Queries are fast and can be optimized.
E-Graph

Relational E-Matching

Representation

- An e-graph represents a term if any of its e-classes does.
- An e-class c represents a term if any e-node $n \in c$ does.
- An e-node $f(c_1, \ldots, c_k)$ represents a term $f(t_1, \ldots, t_k)$ if they have the same symbol and c_i represents t_i for all i.

Potential Bottleneck:

Pattern matching in the e-graph takes 60 to 90% of computation time!

Solution

Transform e-graph into database → Conjunctive Queries are fast and can be optimized.
Relational e-matching allows fast lookups on pre-saturated e-graphs:

1. Generate set of "training" expressions
2. Saturate an e-graph on that set
3. Store database representation of e-graph
4. During compilation, perform queries
Relational e-matching allows fast lookups on pre-saturated e-graphs:

1. Generate set of "training" expressions
2. Saturate an e-graph on that set
3. Store database representation of e-graph
4. During compilation, perform queries
Relational e-matching allows fast lookups on pre-saturated e-graphs:

1. Generate set of "training" expressions
2. Saturate an e-graph on that set
3. Store database representation of e-graph
4. During compilation, perform queries
Relational e-matching allows fast lookups on pre-saturated e-graphs:

1. Generate set of "training" expressions
2. Saturate an e-graph on that set
3. Store data base representation of e-graph
4. During compilation, perform queries
Relational e-matching allows fast lookups on pre-saturated e-graphs:

1. Generate set of "training" expressions
2. Saturate an e-graph on that set
3. Store data base representation of e-graph
4. During compilation, perform queries
E-Graph
Current Status

- Experimental version in MetaModelica (Bugs included)
- Attempts to incorporate E-Graph implementation in Rust
E-Graph
Current Status

- Experimental version in MetaModelica (Bugs included)
- Attempts to incorporate E-Graph implementation in Rust
First approach:

\[L = R \iff L - R = 0 \]

BUT

Equations have a broader set of rewrite rules than expressions, i.e. equivalence transformations.

View equation as tuple of two expressions

\[L = R \mapsto (L, R) \]

Then e.g.

\[(L, R) \equiv (L + a, R + a) \]

Q: reusability?
E-Graph
Next Step – Solving Equations with E-Graphs

First approach:

\[L = R \iff L - R = 0 \]

BUT

Equations have a broader set of rewrite rules than expressions, i.e. equivalence transformations.

View equation as tuple of two expressions

\[L = R \rightarrow (L, R) \]

Then e.g.

\[(L, R) \equiv (L + a, R + a) \]

Q: reusability?
E-Graph
Next Step – Solving Equations with E-Graphs

First approach:

\[L = R \iff L - R = 0 \]

BUT

Equations have a broader set of rewrite rules than expressions, i.e. equivalence transformations.

View equation as tuple of two expressions

\[L = R \iff (L, R) \]

Then e.g.

\[(L, R) \equiv (L + a, R + a) \]

Q: reusability?
E-Graph
Next Step – Solving Equations with E-Graphs

First approach:

\[L = R \iff L - R = 0 \]

BUT

Equations have a broader set of rewrite rules than expressions, i.e. equivalence transformations.

View equation as tuple of two expressions

\[L = R \iff (L, R) \]

Then e.g.

\[(L, R) \equiv (L + a, R + a) \]

Q: reusability?
E-Graph
Rewrite Rule Inference Using Equality Saturation

Compared to a similar tool built on CVC4, Ruler synthesizes $5.8 \times$ smaller rulesets $25 \times$ faster without compromising on proving power. In an end-to-end case study, we show Ruler-synthesized rules which perform as well as those crafted by domain experts, and addressed a longstanding issue in a popular open source tool.

More systematic than heuristics

Instead of defining the rewrite rules by hand, let equality saturation do the job of finding the optimal rewrites.
5. Summary
Summary

Recent Development

- 2-Step Sorting
- Generalized For-Loops
- Jacobians and Sparsity Patterns

Current Development

- Generalized When, If and Array Equations
- Enable Sparse Solvers
- E-Graph based Symbolic Simplification in MetaModelica and Rust

Upcoming Plans

- Pseudo-Array Index Reduction
- E-Graph based Symbolic Solving
Summary

Recent Development
- 2-Step Sorting
- Generalized For-Loops
- Jacobians and Sparsity Patterns

Current Development
- Generalized When, If and Array Equations
- Enable Sparse Solvers
- E-Graph based Symbolic Simplification in MetaModelica and Rust

Upcoming Plans
- Pseudo-Array Index Reduction
- E-Graph based Symbolic Solving
Summary

Recent Development
- 2-Step Sorting
- Generalized For-Loops
- Jacobians and Sparsity Patterns

Current Development
- Generalized When, If and Array Equations
- Enable Sparse Solvers
- E-Graph based Symbolic Simplification in MetaModelica and Rust

Upcoming Plans
- Pseudo-Array Index Reduction
- E-Graph based Symbolic Solving

Thank you for your attention!