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The Quest for Larger and Larger EOO Models

• 1980’s: Hilding Elmqvist’s PhD work (100 equations)

• 1990’s: Early Modelica models, first multibody library, hybrid drivetrains
             (1000 equations)

• 2000’s: Thermo-Fluid models, Power Plant models (10.000 equations)

• 2007 (?) F. Cellier discusses Modelica electronic circuit models 
              (the case of the 16 bit multiplier)

• 2010’s: More detailed Modelica models (100.000 equations)
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– Exploiting parallel CPUs



17

2015: Paper on Large-Scale Modelica Models

• Introduces ScalableTestSuite library

• Points out need for:

– Sparse solvers

– Multi-rate algorithms

– Multi-rate event-handling

– QSS algorithms

– Exploiting repetitive structures

– Exploiting parallel CPUs



18

2016-2017 Sparse Solvers introduced in OMC

• Sparse solvers for implicit ODE 
integration (IDA)

• Sparse solvers for implicit algebraic 
loops (Kinsol/KLU)

• Sparse solvers for daeMode 
integration (IDA)



19

2016-2017 Sparse Solvers introduced in OMC

• Sparse solvers for implicit ODE 
integration (IDA)

• Sparse solvers for implicit algebraic 
loops (Kinsol/KLU)

• Sparse solvers for daeMode 
integration (IDA)

• Simulation of systems with 1M 
equations becomes possible in OMC
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2016-2017 Early Experiments with Large Models in OMC

• Successful simulation of power grid 
models up to 600.000 equations

• Model build time: 15+ minutes

• Model simulation time: 3 minutes

• Required memory: 72 GB

• Simulation executable size: ~1 GB

• Simulation performance OK 
(SoA sparse solver)

• Build time way too long for the user’s 
requirements
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2016-2017 Early Experiments with Large Models in OMC

• Detail thermal model of DEMO fusion 
reactor blanket circuit 
(750.000 equations)

• Build once, run many times

• Good for optimization purposes

• Simulation performance OK 
(SoA sparse solver)

• Very long build time irrelevant in this 
case
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Fundamental Problems in Large-Scale Modelica Models

• The Modelica Specification describes flattening as the reduction of
a Modelica model to scalar equations and variables

– Doable w/o problems up to 100.000-200.000 equations 

– Doable but problematic up to 1.000.000 equations

– Impractical above 1.000.000 equations

• Systems-of-systems models contain many instances of the same model 
and/or large arrays of models and/or large variables arrays within models

• Fundamental problems when flattening to scalars:

– Large amounts of repeated generated code

– Model building process becomes very time-consuming

– Very large size of simulation executable, needs to be read from RAM 
to cache multiple times per step → memory bottleneck
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Enabling Factors

• Array-Preserving Flattening

• Array-Preserving Structural Analysis and Optimization

• Array-Preserving Code Generation

• Sparse Solvers

Status & Perspectives with OpenModelica

Status & Perspectives with other tools
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Array-Preserving Flattening

• All frontend processing done keeping arrays as first class citizens

• Arrays of models are turned into (multi-dimensional) array equations

• Orders of magnitude faster if repeated objects are collected in arrays

• Sets of individual instances of the same model with the same structure of 
modifiers can be automatically collected into arrays
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Array-Preserving Structural Analysis and Optimization

• Matching, Sorting, Tearing, Index reduction, Alias elimination, CSE, 
Over/Underdetermined initialization handling,
Jacobian colouring, Symbolic Jacobians

• Classic E-V graph

– E-node ↔ scalar equation

– V-node ↔ scalar variable

• Array-Preserving E-V graph

– E-node ↔ array equation

– V-node ↔ array variable

• Whole variable arrays in general not matched to whole equation arrays, 
need to consider slices, e.g. x[1:end-1] or x[1:2:end] or x[end:-1:1]

• Minimal-size array preserving is an NP-complete problem!
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• Research group 1: FH Bielefeld, Germany

– OMC New Backend development

– K. Abdelhak, A. Heuermann, P. Hannebohm, B. Bachmann
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Array-Preserving Structural Analysis and Optimization

• Research group 1: FH Bielefeld, Germany

– OMC New Backend development

– K. Abdelhak, A. Heuermann, P. Hannebohm, B. Bachmann

• Research group 2: University of Rosario, Argentina

– Set-based Graph Theory

– E. Kofman, J. F. Fernandez, D. Marzorati

• Research group 3: Politecnico di Milano, Italy
– Array Graph Theory

– M. Fioravanti, D. Cattaneo, F. Terraneo, S. Seva, S. Cherubin, G. 
Agosta, F., A. Leva, M. Scuttari 
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Status with OpenModelica New Backend & Codegen

• Input: flattened, array-preserving Modelica AST

• Array-based pre-optimizations (alias elim., CSE, function inlining, etc.)

• Scalarization

• Matching, sorting, index reduction, initial equations, Jacobians

• Solved equations collected again into arrays

• Code generation from arrays

– Much faster code generation 

– Much faster C-code compilation

– Much leaner generated code

– Codegen time and code size O(1) instead of O(N)
except for matching, sorting, index reduction, initial equations, 
Jacobians

Talk later today on New Backend
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• Developed since 2015 to test the performance of Modelica tools on 
models of increasing size
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ScalableTestSuite Library

• Developed since 2015 to test the performance of Modelica tools on 
models of increasing size

• Test models stress various aspects of the compiler

• Current performance with NF and OB

• Current performance with NF and NB

• Current performance of larger models with NF and NB

https://libraries.openmodelica.org/branches/heavy_tests/ScalableTestSuite_OB/ScalableTestSuite_OB.html
https://libraries.openmodelica.org/branches/heavy_tests/ScalableTestSuite_NB/ScalableTestSuite_NB.html
https://libraries.openmodelica.org/branches/heavy_tests/LargeTestSuite_NB/LargeTestSuite_NB.html
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Example 1: CascadedFirstOrder

Old Backend New Backend

Largest model: 400.000 equations, 400.000 states
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Example 2: HarmonicOscillator

Old Backend New Backend

Largest model: 50.000 equations, 50.000 states
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Example 3: Countercurrent Heat Exchanger

Old Backend New Backend

Largest model: 70.000 equations, 30.000 states
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Summary: OMC with New FrontEnd & New Backend

• Some interesting results already avaliable with latest nightly build,
just set --newBackend translation flag

• Very small flattening time, new frontend complete

• Drastically reduced code generation and compilation time

• Drastically reduced generated code size

• Some parts of structural analysis still carried out on scalarized model
Expected performance O(N), some work yet to be done

• Sparse algebraic solvers don’t work yet (too bad...)

• O(1) set-graph algorithms could be used for structural analysis, further 
improving performance. Currently evaluating with University of Rosario 
research group.

• Still very early stage, needs 2-3 more years of development to reach 
maturity

• Some classes of models (e.g. large power grid models) expected
to work by the end of 2023
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The MARCO Compiler

• MARCO (Modelica Advanced Research COmpiler) is under development 
at Politecnico di Milano since 2019

• Goal: provide fastest possible compilation and simulation for a selected 
subset of Modelica models

• Main features:

– Written in C++

– Based on LLVM infrastructure (the same of clang)

– Input: Flat non-scalarized Modelica code from OMC

– Generates LLVM-IR code (instead of C): more room for optimization

– No runtime garbage collection, statically allocated memory

• Currently supports:

– Continuous-time models

– Records, arrays, functions

– Explicit Euler with closed-form solution of strong components

– daeMode integration with IDA
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Example: ThermalChipOO

• Simulated transient: response to applied thermal power on half of the active 
surface, explicit fixed-time step Euler

• CPU: i9-12900KF

• OS: Ubuntu 20.04 LTS
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Conclusions

• Systems-of-systems modelling can play a crucial role supporting the design 
and deployment of innovative distributed cyber-physical systems.

• Modelica is ideally suited for this task: high-level, declarative, modular.

• Modelica compiler technology needs a quantum leap to support array-
preserving code generation to support these applications.

• OpenModelica development is heading in this direction since 2015.

• The New Backend will play a pivotal role in making OMC usable in this 
area.

• Early results seem very promising, more will come in 2023, 
probably 2-3 years until maturity

• Other tools such as MARCO can also benefit from OMC technology, 
advancing in this area with somewhat different perspective and goals
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Thank you for yourThank you for your
 kind attention! kind attention!
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