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Abstract

State-of-the-art Modelica tools are very effective at
converting  declarative models based on differential-
algebraie equations into ordinary differential equations.
However, when confronted with large-scale models of
distributed systems with a high number of states { 1000 or
more ) or with large algebraic systems of equations (1000
or more unknowns), they face a number of serious effi-
ciency issues, that hamper their practical use for system
design. The paper analyses these issues in detail, points
out strategies for improvement, and alse introduces a li-
brary of scalable test models that can be used Lo as
existing tools, as well as to help developing advanced so-
lution methods for large-scale systems.

Kevwords: Modelica Compilers, Large-Scale Models,
Efficient Simulation

1 Introduction

Adier almost 20 years from the first release of the Mod-
clica language definition 1.0 (The Modelica Associa-
tion, 1997}, the Modelica language is well-established
for system-level madelling tasks in many domains of
engineering. such as automotive, robotics, mechatron-
ics, energy, serospace, in panticular when multi-domain
modelling 15 required.

To the best of the author's knowledge, based on pub-
lished literature and personal experience, the standand
work flow of state-of-the art Modelica tools can be sum-
marised by the following steps, which are described in
detail by Cellier and Kofman (2006).

. (Flartening) The Modelica code is parsed; classes
are expanded and instantated, and  eventually
brought into the so-called flat form, ie., a set
of scalar hybnd differential-algebraie equations -
gether with a set of scalar variables and parameters

=

- (Consafisation)  Structural — analysis — of  the
differential-algebraic equations (DAEs) is per-
formed, in order to solve them efficiently for the
state derivatives and algebraic wvariables.  This

process includes equation ordering (BLT transfor-
miation), may require symbolic index reduction,
and usnally involves extensive symbolic process-
ing, as well as the use of advanced technigues such
as teaning or reshuffling for solving sub-systems
of equations efficiently. In most cases, the use of
numerical salvers for lincar and non-lincar systems
of algebraic equations is required.

3. (Time wmtegration) The code which results from
the previous step is linked 1o some well-tested,
general-purpose dense Ordinary Differennal Egua-
tion (ODE)Y solver, including root-finding  algoe-
rithms 0 handle state events in the case of hybrid
models.

In principle, step 2 i1s not strictly necessary, as DAEs re-
sulting from step 1 could be solved directly using numer-
ical DAE solvers, In practice, this is not standard prac-
tice for two reasons: one is that object-oriented Model-
ica models very often end up having index greater than 1,
that are challenging to solve numerically, the other 1s that
the above-sketched process is wsually more numerically
robust and easier to initialize than the direct solution of
the nonlinear DAEs

As o step 3, most Modelica models end wp being suff,
because the modular way of building the models very of-
ten generates some very fast dynamic phenomena that,
albeit maybe not of interest for the modeller, cannot be
easily removed from the model, because they stem from
the imeraction of equations placed in different compo-
nents.

As a consequence, stiff solvers are usually needed, the
choice usually falling onto DASSL i for multi-step algo-
rithms) and on Radau la (for single-step algonthms),
which implement sophisticated step-size and order adap-
tation with error control. as well as root-finding algo-
rithms for state-event detection,

When explicit solvers are required (e.g_. for real-time
simulation applications )y it is sometimes possible to care-
fully build o modular model so that stiflness is avoided,
But this is not the standard way people build object-
oriented models in most cases, and people usually take
for granted that stiffness will be handled by the solver.
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» Introduces ScalableTestSuite library
* Points out need for:

— Sparse solvers

— Multi-rate algorithms

— Multi-rate event-handling

— Q@SS algorithms

— Exploiting repetitive structures
— Exploiting parallel CPUs
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Abstract

Modelica-based modeling and simulation is becoming in-
creasingly important for the development of high quality
engineering products. Therefore, the system size of in-
terest in a Modelica-based simulation s continuously -
creasing and the traditional way of generating simulation
code, e.g. invelving symbolic fransformations like match-
ing, sorting, and tearing, must be adapted to this situation.
This paper describes recently implemented sparse solver
technigues in OpenModelica in order o effciently com-
pile and simulate large-scale Modelica models. A proof
of concept 15 given by evaluating the performance of se-
lected benchmark problems,

Kevwords:  Modelica. large-scale. sparse solver tech-
HigHes

1 Introduction

The design and safe operation of modern large-scale
cyber-physical systems requires the ability to model and
simulate them efficiently. The Modelica language is op-
timally suited for the modelling task, thanks to the high-
level declarative modelling approach and to the powerful
ohject-oriented features such as inheritance and replace-
able ohjects. On the other hand, as noted i (Casella,
2015). unul recently the development of Modelica wols
has been focused on the modelling of moderate-sized
models, optimizing the simulation code as much as pos-
sible by means of structural analysis and symbolic pro-
cessing of the system of eguations.

Large system models are wsually characterized by a
high degree of sparsity, since each component interacts
oily with a few neighbours. so that each differential-
algebraic equation i the model only depends on a hand-
ful of variables. The availability of reliable open-source
sparse solvers (Hindmarsh et al., 2005: Davis and Natara-
Jan, 20100 and of cheap computing power and memory
even on low-end workstations opens up the possibility of
tackling much large system models, featuring hundreds of
thousands or possibly millions of equations, exploiting the
sparsity of such models for their solution.

In paiticular, the interest in the use of Modelica for
the modelling and simulation of national- and continental-
sized power generation and transmission systems recently

maotivated a first exploratory effort in this direction, using
OpenModelica as a development platform, see (Casella
etal., 2006). The methods implemented for the power sys-
tem studies also allowed w efficiently simulate the cool-
ing blanket of the future DEMO nuclear fusion reactor,
which requires the modelling of thousands of individual
heat-exchanging pipes, see (Froio et al., 2016},

The goal of this paper is threefold: to discuss different
strategics for the simulation of large-scale Modelica mod-
els using sparse solvers; (o describe an implementation
of such strategies in the OpenModelica Compiler { OMC),
using apen-source solvers; finally, to present and dis-
cuss the performance obtained in a number of benchmark
cases. The numerical methods are discussed in Section 2,
The simulation performance is analyzed on three sets of
benchmarks: the ScalubleTesiSuite library { Casella, 2015:
Casella and Sezginer, 2016}, some large power system
models (Casella et al_, 2016), and large high-fidelity mod-
els of the cooling system of the future DEMO nuclear fu-
siom plant (Froio et al., 2017); results are reported in Sec-
tion 3. Finally, Section 4 concludes the paper and gives an
outlook to future work.

2 Solving Modelica Models
2.1 ODE mode
2.1.1  Symbolic Transformation Steps

In common Modelica tools the compile process can be
summanzed with the following steps, which are also ex-
plamed in (Cellier and Kofman, 2006):

Flattening The Modelica model is transformed by the
fromt-end into a flat representation, consisling essen-
tally of lists of vanables, functions, equations and
algorithms.

Pre-Optimization In this phase o basic structural anal-
ysis of the differential-algebraic equations (DAE}Y is
performed. e.g. detectng the potential states and dis-
crete variables, eliminating alias variables,

Causalization This is a basic step in a Modelica Com-
piler, the so-called BLT-Transformation. Matching,
zorting, and index reduction algorithms are applied

[HO1 Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic
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Sparse solvers for implicit ODE
integration (IDA)

Sparse solvers for implicit algebraic
loops (Kinsol/KLU)

Sparse solvers for daeMode
integration (IDA)
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equations becomes possible in OMC
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Abstract

This paper belongs to a long-term research activity on
modelling and simulation of large-size power grids in
Modelica, using the OpenModelica Compiler,  We de-
seribe the present state of the research, its evolution over
the last year, the conclusions we could reach in this pe-
riod in comparison with the initial hypotheses, and some
results. Finally, we outline the future of the presemed ac-
Livity.

Kevwords: Grid Modelling awd Simdation, Large-Scale
Svystenes, Efficiens Simularion.

1 Introduction

The modelling and simulation of large power grids is an
emerging domain of interest for the Modelica language,
as the encountered problems basically consist of large net-
worked systems with decentralized control, where multi-
ple producers and consumers cooperate to the goals of sta-
ble network behaviour, satisfaction of all the load requests,
and systerm optimality.

Although control strategics for such large-scale systems
are usually designed as hierarchical systems. abstracting
low-level behaviours within higher levels, it is sometimes
necessary 1o simulate the entire system, This can be the
case when a full verification of the designed strategy, in-
cluding the interactions among its parts, is in order—and
this is an issue shared by any larpe-scale system.

In the case of electric grids, there is another problem
to address.  For management reasons at the nation- or
continent-wide scale, it is required to periodically assem-
ble a model of the entire system and use it to run numerous
simulations, w verily that the stress expected in the next
time period can be sustained without incurring in stability
problems, o test critical manoeuvres when reguired, and
possibly to take decisions in a view to optimise the oper-
ation. This particular wse of simulation makes a fast code
generation vital.

Ower the last two years, we have been working on
this subject, with the goal of providing an entirely
Modelica-based solution using the open-source Open-
Modelica Compiler (OMC) for code generation. The
problem at hand is one very interesting case of an emerg-
ing class of large-scale models, see (Casella, 2015) for an

Alberto Leva'

Andrea Bartolini®

Infermazione ¢ Bioingegneria, Politecnico di Milano, Italy,

ceasella, alberto, levalBpolimi, it

overall discussion on this topic. Preliminary results were
presented in (Casella et al., 2006), which was mainly ad-
dressed to the power system community. This paper -
cotporates the results of additional work carried out since
then, and presents the current state of the research from
the perspective of the Modelica community.

2 Previous research

In this section we summarise the research context and
the results from which we started, referring the interested
reader o (Casella et al., 2016) for further details.

National grids in Europe are rapidly evolving (ENTSO-
E, 2015, 2014). The penctration of intcrmittent sources
like wind and solar enhances the need for continent-level
integration for countrics to help one another.  Trans-
mission networks are moving from the traditional struc-
ture dominated by large synchronous gencrators and AC
links, toward an mcreasing share of HYDC links and of
medium- and small-scale generators interfaced to the grid
vin AC/DCAC links.  As a consequence, the manage-
ment of transmission grids by national Transmission
tem Operators (TS0s) increasingly reguires knowledge of
the dynamic behaviour of the the system outside the coun-
try houndaries.

Traditionally, well-established domain-specific wals
are used such as PowerFactory, PSS/E, and Eurostag.
These tools come with extensive component libraries, but
the exact formulation of the said models is difficult to ac-
cess, since they are written in low-level languages like
FORTRAN. With commercial waols, the models’ source
code might even be unavailable 1 the end user. This hin-
ders the required interoperability. as models of the same
object in different tools may behave differently. Indeed,
full interoperability would ideally require all European
TS0 1o use the same simulation tool,

Modelica has been already used for the modelling
of elecirical power systems, including detailed machine
madels (Franke and Wiesmann, 2014; Kral and Haumer,
2005), and more recently it has been considered also 1o
midel electro-mechanical transients in high-voltage gen-
eration and transmission system. In this context, an ac-
tivity worth mentioning is the iTesla European FPT re-
search project (Vanfretti et al., 2013, 2004; Zhang et al.,
2015), although the results of the project refer to small- or

Do Proceedings of the 12 International Modelica Conference 27
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Successful simulation of power grid
models up to 600.000 equations

Model build time: 15+ minutes

Model simulation time: 3 minutes
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Simulation executable size: ~1 GB
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code might even be unavailable 1 the end user. This hin-
ders the required interoperability. as models of the same
object in different tools may behave differently. Indeed,
full interoperability would ideally require all European
TS0 1o use the same simulation tool,

Modelica has been already used for the modelling
of elecirical power systems, including detailed machine
madels (Franke and Wiesmann, 2014; Kral and Haumer,
2005), and more recently it has been considered also 1o
mdel electro-mechanical transients in high-voltage gen-
eration and transmission system. In this context, an ac-
tivity worth mentioning is the iTesla European FPT re-
search project (Vanfretti et al., 2013, 2004; Zhang et al.,
2015), although the results of the project refer to small- or
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Successful simulation of power grid
models up to 600.000 equations

Model build time: 15+ minutes
Model simulation time: 3 minutes
Required memory: 72 GB
Simulation executable size: ~1 GB

Network  Nodes Gens Lines Trafos  Equations

GRID_C 751 74 369 583
GRID_E 1817 267 1458 1202
GRID_D 8376 2317 1946 2489
GRID_G 8113 407 6833 2824

56386
157022
579470
593886

Network  Flattening C gen. Compilation  Simulation

GRID_C 24 24 13 12
GRID_E 73 67 35 44
GRID_D 334 315 123 111
GRID_G 318 303 144 186

Simulation performance OK
(SoA sparse solver)

Build time way too long for the user’s

requirements .
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Fig. 1. Blanket segi showing the i ion of the [B1-7 and
0B1-7 BMs (reproduced from [5]).
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Fig. 2. CAD of the rear side of the WCLL OB4 BM, showing the coolant I/0 manifolds.

Pump
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Fig. 3. Schematic of the WCLL cooling circuit model (FW#: First Wall abject; BZ#:
Breeding Zone object; IM: Inlet Manifold: OM: Qutlet Manifold: ID: Inlet Distributor;
MIX: Mixer: HX/SG: Heat eXchanger/Steam Generator).

is included in the FW cooling circuit model by treating the channel
walls as 1D objects in the flow direction, see [2] for details.

The BZ part, whose model is shown in Fig. 5, is cooled by circu-
lar double-wall tubes, which are in contact with the PbLi flowing
in the free space on their outer side. The tubes are arranged in a
modular layout, with a set of elementary cells of 21 tubes (shown
in Fig. 6) ideally stacked in the poloidal direction, with inlet orifices
to control the mass flow rate distribution.

The primary heat sink is the heat exchanger (HX), which can be
a steam generator (SG), if the primary heat is to be directly used to

Detail thermal model of DEMO fusion
reactor blanket circuit
(750.000 equations)

Build once, run many times
Good for optimization purposes
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Fig. 3. Schematic of the WCLL cooling circuit model (FW#: First Wall abject; BZ#:
Breeding Zone object; IM: Inlet Manifold: OM: Qutlet Manifold: ID: Inlet Distributor;
MIX: Mixer: HX/SG: Heat eXchanger/Steam Generator).

is included in the FW cooling circuit model by treating the channel
walls as 1D objects in the flow direction, see [2] for details.

The BZ part, whose model is shown in Fig. 5, is cooled by circu-
lar double-wall tubes, which are in contact with the PbLi flowing
in the free space on their outer side. The tubes are arranged in a
modular layout, with a set of elementary cells of 21 tubes (shown
in Fig. 6) ideally stacked in the poloidal direction, with inlet orifices
to control the mass flow rate distribution.

The primary heat sink is the heat exchanger (HX), which can be
a steam generator (SG), if the primary heat is to be directly used to

Detail thermal model of DEMO fusion
reactor blanket circuit
(750.000 equations)

Build once, run many times
Good for optimization purposes

Simulation performance OK
(SoA sparse solver)

Very long build time irrelevant in this
case
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Fundamental Problems in Large-Scale Modelica Models

« The Modelica Specification describes flattening as the reduction of
a Modelica model to scalar equations and variables

— Doable w/o problems up to 100.000-200.000 equations
— Doable but problematic up to 1.000.000 equations
— Impractical above 1.000.000 equations
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Fundamental Problems in Large-Scale Modelica Models

« The Modelica Specification describes flattening as the reduction of
a Modelica model to scalar equations and variables

— Doable w/o problems up to 100.000-200.000 equations
— Doable but problematic up to 1.000.000 equations
— Impractical above 1.000.000 equations

+ Systems-of-systems models contain many instances of the same model
and/or large arrays of models and/or large variables arrays within models
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Fundamental Problems in Large-Scale Modelica Models

« The Modelica Specification describes flattening as the reduction of
a Modelica model to scalar equations and variables

— Doable w/o problems up to 100.000-200.000 equations
— Doable but problematic up to 1.000.000 equations
— Impractical above 1.000.000 equations

+ Systems-of-systems models contain many instances of the same model
and/or large arrays of models and/or large variables arrays within models

* Fundamental problems when flattening to scalars:

— Large amounts of repeated generated code
— Model building process becomes very time-consuming

— Very large size of simulation executable, needs to be read from RAM
to cache multiple times per step — memory bottleneck
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Enabling Factors

* Array-Preserving Flattening
« Array-Preserving Structural Analysis and Optimization
» Array-Preserving Code Generation

« Sparse Solvers
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Enabling Factors

* Array-Preserving Flattening
« Array-Preserving Structural Analysis and Optimization
» Array-Preserving Code Generation

« Sparse Solvers

. Status & Perspectives with OpenModelica

. Status & Perspectives with other tools
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Array-Preserving Flattening: the New Frontend (2016-2021)

A Mew OpenModelica Compiler High Performance Frontend
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Abstract

The equation-based object-onented Modelica language al-
lows easy composition of models from components. It
is very easy Lo create very large parametrized models us-
ing component arrays of models. Current open-source and
commercial Modelica waols can with ease handle models
with a hundred thousamd equations and a thousand states.
However, when the system size goes above half a mil-
lion (or more) equations the tols begin o have problems
with scalability. This paper presents the new frontend of
the Openblodelica compiler, designed with scalability in
mind, The new OpenModelica frontend can handle much
larger systems than the current one with better time and
memory performance. The new frontend was validated
ugainst large models from the ScalableTestSuite library
and Modelica Standard Library, with good results,

Kevwords: OpenModelica, compiler flatiening, froniend,
modelling, simulation, equation-based, scalability

1 Introduction and Motivation

System-level dy i delling and simulation is a key
activity in modemn system engineering design. In paral-
lel to the detailed component design, which is performed
using advanced 3D CAD, CFD and FEM software tools,
system-level modelling, usually including systems of sys-
tems and large numbers of interacting components, allows
predicting the dynamic performance of complex systems,
which emerges from the interaction of its components.
The Modelica language (Maodelica Association, 2017;
Fritzson, 2015) is a standardized tool-independent non-
proprictary equation-based object-orented modeling lan-
guage, which was introduced 20 years ago by the non-
profit Modelica Association, with strong links to industry
und academia. This language, and the related eco-system
of tools, model libraries and the FMI standard (Blochwitz
etal., 20117, is ideally suited 1w system-level modeling of
complex, heterogenous and multi-domain cyber-physi
systems. It has become a de-facto standard in many 1
dustries, most notably the awtomotive one. The Model-
ica language is currently supported by about 10 different
miedeling and simulation software tools: one of them. in
particular, the open-source OpenModelica software suite
(Fritzson et al., 20018}, is the only Modelica tool owned

und maintained by a non-profit organization — the Open
Source Modelica Consortium (OSMC),

The main applications of Modelica tools so far have
heen the study of individual systems, such as a car's driv-
etrain and active suspension and steering control system,
a single industnal robot, a single power plant, a single
HVDC power link, the air conditioning system of a car,
ete, Existing Modelica wols employ strategies and algo-
rithms that are optimized for such system models, whose
typical complexity lies in the range of 1000-50000 equa-
ticins and up o o few thousand state variables, The advent
of the internet-of-things paradigm is now fostering the de-
velopment of innovative very large-scale cyber-physical
systems, for example smart grids, or fleets of autonomous
vehicles. Itis also sparking a renewed interest at the mod-
ernization of traditional large-scale systems. A first exam-
ple is continental-size high-voltage power generation and
transimission, which is facing increasing challenges due
to the introduction of power electronics equipment and to
the increased penetration of intermittent renewable energy
sources, A second example is district heating, possibly
integrated with heat pumps and distributed power genera-
tion in an integrated electrical and thermal smart grid. See
(Casella. 2015) for further examples and motivation.

Unfortunately, when Modelica s used o tackle the
modelling of large-scale systems with sizes exceeding the
ones mentioned above, currently available simulation soft-
ware that support Modelica fall short at providing ade-
quate performance, The time required to compile the mod-
els vastly exceeds what end users typically expect for sys-
tem level studies, i.e., a few minutes at most. The size of
the generated code and the memory requirements for com-
pilers vastly exceed what is normally available on laptops
and workstations used for daily work (8-16 GB).

In the last couple of vears there have been some pio-
neering attempis at pushing the boundary of the size of
Modelica models that can be handled with reasonable tme
amd effort. In particular, some of our published papers
have demonstrated the feasibility of Modelica models of
high-voltage power generation and transmission systems
(Braun et al., 2007; Casella et al. 2007} and of detailed
models of key system components of future nuclear fusion
reactors, see (Froio et al., 2007, The size of the largest
maodels handled so far is about 750000 equations, which
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The equation-based object-onented Modelica language al-
lows easy composition of models from components. It
is very easy Lo create very large parametrized models us-
ing component arrays of models. Current open-source and
commercial Modelica waols can with ease handle models
with a hundred thousamd equations and a thousand states.
However, when the system size goes above half a mil-
lion (or more) equations the tols begin o have problems
with scalability. This paper presents the new frontend of
the Openblodelica compiler, designed with scalability in
mind, The new OpenModelica frontend can handle much
larger systems than the current one with better time and
memory performance. The new frontend was validated
ugainst large models from the ScalableTestSuite library
and Modelica Standard Library, with good results,
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1 Introduction and Motivation

System-level dy i delling and simulation is a key
activity in modemn system engineering design. In paral-
lel to the detailed component design, which is performed
using advanced 3D CAD, CFD and FEM software tools,
system-level modelling, usually including systems of sys-
tems and large numbers of interacting components, allows
predicting the dynamic performance of complex systems,
which emerges from the interaction of its components.
The Modelica language (Maodelica Association, 2017;
Fritzson, 2015) is a standardized tool-independent non-
proprictary equation-based object-orented modeling lan-
guage, which was introduced 20 years ago by the non-
profit Modelica Association, with strong links to industry
und academia. This language, and the related eco-system
of tools, model libraries and the FMI standard (Blochwitz
etal., 20117, is ideally suited 1w system-level modeling of
complex, heterogenous and multi-domain cyber-physi
systems. It has become a de-facto standard in many 1
dustries, most notably the awtomotive one. The Model-
ica language is currently supported by about 10 different
miedeling and simulation software tools: one of them. in
particular, the open-source OpenModelica software suite
(Fritzson et al., 20018}, is the only Modelica tool owned

und maintained by a non-profit organization — the Open
Source Modelica Consortium (OSMC),

The main applications of Modelica tools so far have
heen the study of individual systems, such as a car's driv-
etrain and active suspension and steering control system,
a single industnal robot, a single power plant, a single
HVDC power link, the air conditioning system of a car,
ete, Existing Modelica wols employ strategies and algo-
rithms that are optimized for such system models, whose
typical complexity lies in the range of 1000-50000 equa-
ticins and up o o few thousand state variables, The advent
of the internet-of-things paradigm is now fostering the de-
velopment of innovative very large-scale cyber-physical
systems, for example smart grids, or fleets of autonomous
vehicles. Itis also sparking a renewed interest at the mod-
ernization of traditional large-scale systems. A first exam-
ple is continental-size high-voltage power generation and
transimission, which is facing increasing challenges due
to the introduction of power electronics equipment and to
the increased penetration of intermittent renewable energy
sources, A second example is district heating, possibly
integrated with heat pumps and distributed power genera-
tion in an integrated electrical and thermal smart grid. See
(Casella. 2015) for further examples and motivation.

Unfortunately, when Modelica s used o tackle the
modelling of large-scale systems with sizes exceeding the
ones mentioned above, currently available simulation soft-
ware that support Modelica fall short at providing ade-
quate performance, The time required to compile the mod-
els vastly exceeds what end users typically expect for sys-
tem level studies, i.e., a few minutes at most. The size of
the generated code and the memory requirements for com-
pilers vastly exceed what is normally available on laptops
and workstations used for daily work (8-16 GB).

In the last couple of vears there have been some pio-
neering attempis at pushing the boundary of the size of
Modelica models that can be handled with reasonable tme
amd effort. In particular, some of our published papers
have demonstrated the feasibility of Modelica models of
high-voltage power generation and transmission systems
(Braun et al., 2007; Casella et al. 2007} and of detailed
models of key system components of future nuclear fusion
reactors, see (Froio et al., 2007, The size of the largest
maodels handled so far is about 750000 equations, which
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The equation-based object-onented Modelica language al-
lows easy composition of models from components. It
is very easy Lo create very large parametrized models us-
ing component arrays of models. Current open-source and
commercial Modelica waols can with ease handle models
with a hundred thousamd equations and a thousand states.
However, when the system size goes above half a mil-
lion (or more) equations the tols begin o have problems
with scalability. This paper presents the new frontend of
the Openblodelica compiler, designed with scalability in
mind, The new OpenModelica frontend can handle much
larger systems than the current one with better time and
memory performance. The new frontend was validated
ugainst large models from the ScalableTestSuite library
and Modelica Standard Library, with good results,

Kevwords: OpenModelica, compiler flatiening, froniend,
modelling, simulation, equation-based, scalability

1 Introduction and Motivation

System-level dy i delling and simulation is a key
activity in modemn system engineering design. In paral-
lel to the detailed component design, which is performed
using advanced 3D CAD, CFD and FEM software tools,
system-level modelling, usually including systems of sys-
tems and large numbers of interacting components, allows
predicting the dynamic performance of complex systems,
which emerges from the interaction of its components.
The Modelica language (Maodelica Association, 2017;
Fritzson, 2015) is a standardized tool-independent non-
proprictary equation-based object-orented modeling lan-
guage, which was introduced 20 years ago by the non-
profit Modelica Association, with strong links to industry
und academia. This language, and the related eco-system
of tools, model libraries and the FMI standard (Blochwitz
etal., 20117, is ideally suited 1w system-level modeling of
complex, heterogenous and multi-domain cyber-physi
systems. It has become a de-facto standard in many 1
dustries, most notably the awtomotive one. The Model-
ica language is currently supported by about 10 different
miedeling and simulation software tools: one of them. in
particular, the open-source OpenModelica software suite
(Fritzson et al., 20018}, is the only Modelica tool owned

und maintained by a non-profit organization — the Open
Source Modelica Consortium (OSMC),

The main applications of Modelica tools so far have
heen the study of individual systems, such as a car's driv-
etrain and active suspension and steering control system,
a single industnal robot, a single power plant, a single
HVDC power link, the air conditioning system of a car,
ete, Existing Modelica wols employ strategies and algo-
rithms that are optimized for such system models, whose
typical complexity lies in the range of 1000-50000 equa-
ticins and up o o few thousand state variables, The advent
of the internet-of-things paradigm is now fostering the de-
velopment of innovative very large-scale cyber-physical
systems, for example smart grids, or fleets of autonomous
vehicles. Itis also sparking a renewed interest at the mod-
ernization of traditional large-scale systems. A first exam-
ple is continental-size high-voltage power generation and
transimission, which is facing increasing challenges due
to the introduction of power electronics equipment and to
the increased penetration of intermittent renewable energy
sources, A second example is district heating, possibly
integrated with heat pumps and distributed power genera-
tion in an integrated electrical and thermal smart grid. See
(Casella. 2015) for further examples and motivation.

Unfortunately, when Modelica s used o tackle the
modelling of large-scale systems with sizes exceeding the
ones mentioned above, currently available simulation soft-
ware that support Modelica fall short at providing ade-
quate performance, The time required to compile the mod-
els vastly exceeds what end users typically expect for sys-
tem level studies, i.e., a few minutes at most. The size of
the generated code and the memory requirements for com-
pilers vastly exceed what is normally available on laptops
and workstations used for daily work (8-16 GB).

In the last couple of vears there have been some pio-
neering attempis at pushing the boundary of the size of
Modelica models that can be handled with reasonable tme
amd effort. In particular, some of our published papers
have demonstrated the feasibility of Modelica models of
high-voltage power generation and transmission systems
(Braun et al., 2007; Casella et al. 2007} and of detailed
models of key system components of future nuclear fusion
reactors, see (Froio et al., 2007, The size of the largest
maodels handled so far is about 750000 equations, which
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Array-Preserving Flattening

. All frontend processing done keeping arrays as first class citizens
» Arrays of models are turned into (multi-dimensional) array equations

« Orders of magnitude faster if repeated objects are collected in arrays
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Array-Preserving Flattening

All frontend processing done keeping arrays as first class citizens
Arrays of models are turned into (multi-dimensional) array equations
Orders of magnitude faster if repeated objects are collected in arrays

Sets of individual instances of the same model with the same structure of
modifiers can be automatically collected into arrays
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Non-Scalarized Flat Modelica: Example 1

model A
input Real u:
parameter Real p = 1;
Real x:

equation
X=p * u;

end A;
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Non-Scalarized Flat Modelica: Example 1

model A model C
input Real u; parameter Integer N =

parameter Eeal p[N]

parameter Real p = 1;

Real =x: A a-[N-] (p = p];
equation equation .

X =p * u; all]l.u = time:;
end A: for i in Z2:N loop

alil.u = a[i - 1].x:
end for;
end C;

3;
{1.0,

1.5,

2.0}
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Non-Scalarized Flat Modelica: Example 1

model A model C

input Real u; parameter Integer N = 3;

parameter Real p = 1; parameter Real p[N] = {1.0, 1.5, 2.0};

Real x; A a[N](p = p)s
equation equation _

x =p * u; all]l.u = time:;
end A: for i in Z2:N loop

alil.u = a[i - 1].x:
end for;
end C;

class 'C!
parameter Integer 'N' = 3;
parameter Real [3] .
Eeal[3] 'a.x':
parameter Real [3]
Eeal[3] 'a.u':

equation
for '5il' in 1:3 loop
Ia_xi[I$ili] — Ia-pI[I:?"ilI] + Ia-uI[I:?"ilI];
end for;
'a.u'[1l] = time;
for 'i' in 2:3 loop
'la-u'l 'li'l] — 'la-x'l 'li'l — l];
end for;



Non-Scalarized Flat Modelica: Example 2

model B
parameter Integer N = 3;
parameter Real p = 1;
Real x[N]:
input Real u:
equation
z[1] = u:
for 1 in 2:N loop
x[i] = x[1 - 1] + p:
end for;
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Non-Scalarized Flat Modelica: Example 2

model B model D
parameter Integer N = 3; parameter Integer N = 3;
parameter Real p = 1; parameter Real p[N] = {1.0, 1.5, 2.0}:
Real x[N]: B b[N](p = p, esach N = 4);
input Real u: equation
equation b[l]l.u = time;
z[1] = u: for i in 2:N loop
for i in 2:N loop b[il.u = b[i - 1].x[end]:
2[i] = =x[1 - 1] + p: end for:
end for; end D;
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Non-Scalarized Flat Modelica: Example 2

model B
parameter Integer N = 3;
parameter Real p = 1;
Real x[N]:
input Real u:
equation
z[1] = u:
for 1 in 2:N loop
x[i] = x[1 - 1] + p:
end for;

class 'D"
parameter Intege
parameter Real[3
Real[3] 'b.u':
Real[3, 4] 'b.x'
parameter Real[3

parameter Integer[3] 'b.N'
equation
'b.x'[:,1] = 'b.u'[:]:
for '"$il" in 1:3 loop
for "i' in 2:4 loop
'box'['5il','1i'] = 'b.x'['$il"',"i" - 1] + 'b.p'['$il']:
end for:;
end for:;
'b.u'[1l] = time:;
for "i' in 2:3 loop
'bou'['i'] = 'b.x'['i' - 1,47:
end for:;

model D
parameter Integer N = 3;
parameter Real p[N] = {1.

B b[N](p = p, =ach N =
equation
b[l]l.u = time;

for i in 2:N loop
b[i].u = b[i - 1].x[end]:
end for:;

end D;
r 'N' = 3:
1 'p' = {1.0, 1.5, 2.0}:

*
r
T

] rb_pr = 'p

T

[2]1:
4;



Non-Scalarized Flat Modelica: Example 3

model A
parameter Real p = 1;
input Real u:
Real y:
Real x:
equation
der(z) = -p*xtu:;
y = 2*p*x;
end A;
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Non-Scalarized Flat Modelica: Example 3

model A model B
parameter Real p = 1;

- arameter Eeal = 1;:
input Real u: b 4

input Real u:

Real y: output Real y:
Real x; A aa(p = q*2);
equation _ .
A ab(p = g*3):
der(z) = -p*xtu:; .
equation
y = 2*p*x;
3 A aa.u = u;
en ; ab.u = aa.y:
y = ab.y:

end B:



Non-Scalarized Flat Modelica: Example 3

model A
parameter Real p = 1;
input Real u:
Real y:
Real x:
equation
der(z) = -p*xtu:;
y = 2*p*x;
end A;
class 'B'
parameter Real 'g' = 1.0;
input Eeal 'u';
output Real 'y';
Real[2] 'sAl.x"';
Real[2] 'sAl.y':
Real[2] 'sAl.u':
parameter Real[2] 'sAl.p' = {'g"
equation
for '"$il" in 1:2 loop
der('sAl.x"['sil']) =
end for:;
for '"$il" in 1:2 loop
'"SsAl.y'['5il1'] = 2.0 *
end for:;

'sal.u'[1] a':
'sAl.u'[2] = 'sSAl.y'[1]:
'y' = "SRAl.y'[2]:

end "B':

(="sAl.p'['5il"] *

'SAl.p"['Si1'] *

model B
parameter Real g = 1;
input Real u:
output Real y:
A aa(p = g*2):

A ab(p = g*3):
equation
aa.u = u;
ab.u = aa.y:
y = ab.y:
end B;
* 2.0, '"g' * 3.0}:

'SAl.x'"['5il1']) +

'SAl.x'"['5il1']»

'SAl.u'['5il1"]»
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Array-Preserving Structural Analysis and Optimization

* Matching, Sorting, Tearing, Index reduction, Alias elimination, CSE,
Over/Underdetermined initialization handling,
Jacobian colouring, Symbolic Jacobians
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Array-Preserving Structural Analysis and Optimization

* Matching, Sorting, Tearing, Index reduction, Alias elimination, CSE,
Over/Underdetermined initialization handling,
Jacobian colouring, Symbolic Jacobians

« Classic E-V graph

— E-node < scalar equation
— V-node «< scalar variable

* Array-Preserving E-V graph

— E-node < array equation
— V-node < array variable
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Array-Preserving Structural Analysis and Optimization

Matching, Sorting, Tearing, Index reduction, Alias elimination, CSE,
Over/Underdetermined initialization handling,

Jacobian colouring, Symbolic Jacobians

Classic E-V graph

— E-node < scalar equation
— V-node «< scalar variable

Array-Preserving E-V graph

— E-node < array equation
— V-node < array variable

Whole variable arrays in general not matched to whole equation arrays,
need to consider slices, e.g. x[1:end-1] or x[1:2:end] or x[end:-1:1]

Minimal-size array preserving is an NP-complete problem!
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Array-Preserving Structural Analysis and Optimization

 Research group 1: FH Bielefeld, Germany

— OMC New Backend development
— K. Abdelhak, A. Heuermann, P. Hannebohm, B. Bachmann
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Array-Preserving Structural Analysis and Optimization

 Research group 1: FH Bielefeld, Germany

— OMC New Backend development
— K. Abdelhak, A. Heuermann, P. Hannebohm, B. Bachmann

» Research group 2: University of Rosario, Argentina

— Set-based Graph Theory
— E. Kofman, J. F. Fernandez, D. Marzorati
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Array-Preserving Structural Analysis and Optimization

 Research group 1: FH Bielefeld, Germany

— OMC New Backend development
— K. Abdelhak, A. Heuermann, P. Hannebohm, B. Bachmann

» Research group 2: University of Rosario, Argentina

— Set-based Graph Theory
— E. Kofman, J. F. Fernandez, D. Marzorati

 Research group 3: Politecnico di Milano, Italy
— Array Graph Theory

— M. Fioravanti, D. Cattaneo, F. Terraneo, S. Seva, S. Cherubin, G.

Agosta, F., A. Leva, M. Sculttari
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Current Status
With OpenModelica



Status with OpenModelica New Backend & Codegen

* Input: flatténed, array-preserving Modelica AST
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Status with OpenModelica New Backend & Codegen

* Input: flatténed, array-preserving Modelica AST

« Array-based pre-optimizations (alias elim., CSE, function inlining, etc.)
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Status with OpenModelica New Backend & Codegen

* Input: flatténed, array-preserving Modelica AST
« Array-based pre-optimizations (alias elim., CSE, function inlining, etc.)

 Scalarization
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Status with OpenModelica New Backend & Codegen

* Input: flatténed, array-preserving Modelica AST
« Array-based pre-optimizations (alias elim., CSE, function inlining, etc.)
« Scalarization

* Matching, sorting, index reduction, initial equations, Jacobians
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Status with OpenModelica New Backend & Codegen

Input: flatténed, array-preserving Modelica AST

Array-based pre-optimizations (alias elim., CSE, function inlining, etc.)
Scalarization

Matching, sorting, index reduction, initial equations, Jacobians

Solved equations collected again into arrays
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Status with OpenModelica New Backend & Codegen

* Input: flatténed, array-preserving Modelica AST

« Array-based pre-optimizations (alias elim., CSE, function inlining, etc.)

 Scalarization

* Matching, sorting, index reduction, initial equations, Jacobians

* Solved equations collected again into arrays

« Code generation from arrays

Much faster code generation
Much faster C-code compilation
Much leaner generated code

Codegen time and code size O(1) instead of O(N)
except for matching, sorting, index reduction, initial equations,
Jacobians
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Status with OpenModelica New Backend & Codegen

* Input: flatténed, array-preserving Modelica AST

« Array-based pre-optimizations (alias elim., CSE, function inlining, etc.)

 Scalarization

* Matching, sorting, index reduction, initial equations, Jacobians

* Solved equations collected again into arrays

« Code generation from arrays

Much faster code generation
Much faster C-code compilation
Much leaner generated code

Codegen time and code size O(1) instead of O(N)
except for matching, sorting, index reduction, initial equations,
Jacobians

. Talk later today on New Backend
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ScalableTestSuite Library

. Developed—since 2015 to test the performance of Modelica tools on
models of increasing size

« Test models stress various aspects of the compiler
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ScalableTestSuite Library

. Developed—since 2015 to test the performance of Modelica tools on
models of increasing size

« Test models stress various aspects of the compiler
* Current performance with NF and OB
* Current performance with NF and NB

« Current performance of larger models with NF and NB
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https://libraries.openmodelica.org/branches/heavy_tests/ScalableTestSuite_OB/ScalableTestSuite_OB.html
https://libraries.openmodelica.org/branches/heavy_tests/ScalableTestSuite_NB/ScalableTestSuite_NB.html
https://libraries.openmodelica.org/branches/heavy_tests/LargeTestSuite_NB/LargeTestSuite_NB.html

Example 1: CascadedFirstOrder

model CascadedFirstOrder
parameter Integer N = 10 "Order of the system";
parameter Modelica.Units.STI.Time T=1 "System delay";
final parameter Modelica.Units.S5I.Time tau=T/N;

Eeal x[N] ( sach start = 0, each fixed = true):
equation
tau*der (x[1]) =1 - x[1]:
for 1 in Z2:N loop
tau*der(x[i]) = x[i-1] - x[i]:
end for:

end CascadedFirstOrder:
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Example 1: CascadedFirstOrder

model CascadedFirstOrder
parameter Integer N = 10 "Order of the system";
parameter Modelica.Units.STI.Time T=1 "System delay";
final parameter Modelica.Units.S5I.Time tau=T/N;

Eeal x[N] ( sach start = 0, each fixed = true):
equation
tau*der (x[1]) =1 - x[1]:
for 1 in Z2:N loop
tau*der(x[i]) = x[i-1] - x[i]:
end for:

end CascadedFirstOrder:

Old Backend New Backend
Simulate Total buildModel . Simulate Total buildModel |

CascadedFiurstOrder N 100 (sim)
CascadedFiurstOrder N 200 (sim)
CascadedFirstOrder N 400 (sim)
CascadedFiurstOrder N 800 (sim)
CascadedFirstOrder N 1600 (sim)
CascadedFirstOrder N 3200 (sim)
CascadedFirstOrder N 6400 (sim)

LascadedFirstOrder N 12800 (sim) -_
LascadedFirstOrder N 25600 (sim) 3497 3955
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Example 1: CascadedFirstOrder

model CascadedFirstOrder
parameter Integer N = 10 "Order of the system";
parameter Modelica.Units.STI.Time T=1 "System delay";
final parameter Modelica.Units.S5I.Time tau=T/N;

Eeal x[N] ( sach start = 0, each fixed = true):
equation
tau*der (x[1]) =1 - x[1]:
for 1 in Z2:N loop
tau*der(x[i]) = x[i-1] - x[i]:
end for:
end CascadedFirstOrder: Old Backend New Backend
Simulate Total buildModel . Simulate Total buildModel

CascadedFiurstOrder N 100 (sim)
CascadedFiurstOrder N 200 (sim)
CascadedFirstOrder N 400 (sim)
CascadedFiurstOrder N 800 (sim)
CascadedFirstOrder N 1600 (sim)
CascadedFirstOrder N 3200 (sim)
CascadedFirstOrder N 6400 (sim)

CascadedFirstOrder N 12800 (sim) -_
CascadedFirstOrder N 25600 (sim) -_

CascadedFirstOrder N 12800 (sim)
CascadedFirstOrder N 25600 (sim)
CascadedFirstOrder N 51200 (sim)
CascadedFirstOrder N 102400 (sim)
CascadedFirstOrder N 204800 (sim)
CascadedFirstOrder N 409600 (sim)

S S 3S
RS
= O Lh
= = L

Largest model: 400.000 equations, 400.000 states



Example 2: HarmonicOscillator

model HarmonicOscillator
import S5Tunits = Modelica.Units.S5I;

parameter Integer N = 2 "Number of masses in the system";
parameter STunits.Mass m = 1 "Mass of each node";
parameter STunits.TranslationalSpringConstant k = 10;

STunits.Position x[N] "Positions of the masses":
STunits.Velocity v[N] "Velocity of the masses";

equation
for i in 1:N loop
der(x[1i]) = v[i]:
end for;
m*der(v[1]) = k*(x[2]-x[1])~

for i in 2:N - 1 loop
m*der (v[i]) = k¥ (x[i-1] - x[i]) + k*¥(x[i+1l] - x[di]):
end for;
m*der (v[N]) = k¥ (2x[N-1]-x[N]):
initial equation
x[1] = N;:
v[l] = 0;
for i in Z2:N loop
x[i] = 0
v[i] = 0
end for;
end HarmonicOscillator:

LT

63



Example 2: HarmonicOscillator

HarmonicOscillator N 100 (sim)
HarmonicOscillator N 200 (sim)
HarmonicOscillator N 400 (sim)
HarmonicOscillator N800 (sim)
HarmonicOscillator N 1600 (sim)
HarmonicOscillator N 3200 (sim)

Old Backend

Simulate Total buildModel |

New Backend
Simulate Total buildModel .
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Example 2: HarmonicOscillator

Old Backend

Simulate Total buildModel |

HarmonicOscillator N 100 (sim)
HarmonicOscillator N 200 (sim)
HarmonicOscillator N 400 (sim)
HarmonicOscillator N800 (sim)
HarmonicOscillator N 1600 (sim)
HarmonicOscillator N 3200 (sim)

HarmonicOscillator N 3200 (sim)
HarmonicOscillator N 6400 (sim)
HarmonicOscillator N 12800 (sim)
HarmonicOscillator N 25600 (sim)

Largest model: 50.000 equations, 50.000 states

New Backend
Simulate Total buildModel .
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Example 3: Countercurrent Heat Exchanger

model CounterCurrentHeatExzchangerEquations
import SIunits = Mcodelica.Units.SI:;
parameter SIunits.Length L;
parameter Integer N = 2;
parameter SIunits.MassFlowRate wB;
parameter SIunits.Area areald;
parameter SIunits.Area areaB:
parameter STunits.Density rhoA;
parameter SIunits.Density rhoB;
parameter SIunits.SpecificHeatCapacity cph:
parameter STunits.SpecificHeatCapacity cpB:
parameter SIunits.SpecificHeatCapacity cpW:
parameter SIunits.CoefficientOfHeatTransfer gammal;
parameter SIunits.CoefficientOfHeatTransfer gammaB;
parameter SIunits.Length omegar
final parameter SIunits.Length 1 =L / (N - 1)

SIunits.MassFlowRate wA; initial equation

SIunits.HeatFlowRate QA[N - 1]: for i in 1:N - 1 loop
SIunits.HeatFlowRate QB[N - 1]; TAtilde[i] = 300:
SIunits.Temperature TA[N];: TBtilde[i] = 300;
STunits.Temperature TB[N]; TW[i] = 300;
SIunits.Temperature TAtilde[N - 1]; end for;

. : _ 17. edquation
SlunitsTemperature Totilde N - 10 *THHT- ie cime < 6 <hon 30 e1oe 301
STunits.HeatFlowRate QtotA:; O;A}iinz %hti?gg[i - 17
STunits.HeatFlowRate QtotB: and for:
TB[N] = 310;
for i in 1:N - 1 loop
TB[i] = TBtilde[i]:
end for;
wA = if time < 15 then 1 elsze 1.1;
for i in 1:N - 1 loop
rhoR * 1 * areaB * cpA * der(TAtilde[i]) =

WA * cpA * TA[i] - wA * cpA * TA[i + 1] + QA[i]:
rhoB * 1 * areaB * cpB * der (TBtilde[N - i]) =
wB * cpB * TB[N - 1 + 1] - wB * cpB * TB[N - i] - QB[N - il;
QA[i] = (TW[i] - (TA[i] + TA[i + 1]1) / 2) *gammaA*omega*1l;
QB[N - i] = ((TB[N - i + 1] + TB[N - i]) / 2 - TW[N - i])*gammaB*omega*1l;
cpW / (N - 1) * der(IW[i]) = (-QA[i]) + QB[i];
end for;

QtotA = sum(QA);
QtotB = =sum(QB) ;
end CounterCurrentHeatExchangerEquations;



Example 3: Countercurrent Heat Exchanger

CounterCurrentHeatExchangerEquations N 10 (sim)
CounterCurrentHeatExchangerEquations N 20 (sim)
CounterCurrentHeatExchangerEquations N 40 (sim)
CounterCurrentHeatExchangerEquations N 80 (sim)
CounterCurrentHeatExchangerEquations N 160 (sim)
CounterCurrentHeatExchangerEquations N 320 (sim)
CounterCurrentHeatExchangerEquations N 640 (sim)
CounterCurrentHeatExchangerEquations N 1280 (sim)

Old Backend

Simulate Total buildModel |

New Backend

Simulate Total buildModel -
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Example 3: Countercurrent Heat Exchanger

Old Backend

Simulate Total buildModel |

CounterCurrentHeatExchangerEquations N 10 (sim)
CounterCurrentHeatExchangerEquations N 20 (sim)
CounterCurrentHeatExchangerEquations N 40 (sim)
CounterCurrentHeatExchangerEquations N 80 (sim)
CounterCurrentHeatExchangerEquations N 160 (sim)
CounterCurrentHeatExchangerEquations N 320 (sim)
CounterCurrentHeatExchangerEquations N 640 (sim)
CounterCurrentHeatExchangerEquations N 1280 (sim)

CounterCurrentHeatExchangerEquations N 1280 (s1m)
CounterCurrentHeatExchangerEquations N 2560 (s1m)
CounterCurrentHeatExchangerEquations N 5120 (s1m)
CounterCurrentHeatExchangerEquations N 10240 (sim)

Largest model: 70.000 equations, 30.000 states

New Backend

Simulate Total buildModel -
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Summary: OMC with New FrontEnd & New Backend

« Some inter—esting results already avaliable with latest nightly build,
just set --newBackend translation flag
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Summary: OMC with New FrontEnd & New Backend

« Some inter—esting results already avaliable with latest nightly build,
just set --newBackend translation flag

* Very small flattening time, new frontend complete
* Drastically reduced code generation and compilation time

« Drastically reduced generated code size
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Summary: OMC with New FrontEnd & New Backend

« Some inter—esting results already avaliable with latest nightly build,
just set --newBackend translation flag

* Very small flattening time, new frontend complete
* Drastically reduced code generation and compilation time
« Drastically reduced generated code size

« Some parts of structural analysis still carried out on scalarized model
Expected performance O(N), some work yet to be done
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Summary: OMC with New FrontEnd & New Backend

« Some inter—esting results already avaliable with latest nightly build,
just set --newBackend translation flag

* Very small flattening time, new frontend complete
* Drastically reduced code generation and compilation time
« Drastically reduced generated code size

« Some parts of structural analysis still carried out on scalarized model
Expected performance O(N), some work yet to be done

« Sparse algebraic solvers don’t work yet (too bad...)
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Summary: OMC with New FrontEnd & New Backend

« Some inter—esting results already avaliable with latest nightly build,
just set --newBackend translation flag

* Very small flattening time, new frontend complete
* Drastically reduced code generation and compilation time
« Drastically reduced generated code size

« Some parts of structural analysis still carried out on scalarized model
Expected performance O(N), some work yet to be done

« Sparse algebraic solvers don’t work yet (too bad...)

« O(1) set-graph algorithms could be used for structural analysis, further
improving performance. Currently evaluating with University of Rosario
research group.
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Summary: OMC with New FrontEnd & New Backend

« Some inter—esting results already avaliable with latest nightly build,
just set --newBackend translation flag

* Very small flattening time, new frontend complete
* Drastically reduced code generation and compilation time
« Drastically reduced generated code size

« Some parts of structural analysis still carried out on scalarized model
Expected performance O(N), some work yet to be done

« Sparse algebraic solvers don’t work yet (too bad...)

« O(1) set-graph algorithms could be used for structural analysis, further
improving performance. Currently evaluating with University of Rosario
research group.

« Still very early stage, needs 2-3 more years of development to reach
maturity

« Some classes of models (e.g. large power grid models) expected
to work by the end of 2023
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Current Status with
MARCO



The MARCO Compiler

« MARCO (Modelica Advanced Research COmpiler) is under development
at Politecnico di Milano since 2019

» Goal: provide fastest possible compilation and simulation for a selected
subset of Modelica models
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The MARCO Compiler

« MARCO (Modelica Advanced Research COmpiler) is under development
at Politecnico di Milano since 2019

» Goal: provide fastest possible compilation and simulation for a selected
subset of Modelica models

 Main features:

Written in C++

Based on LLVM infrastructure (the same of clang)

Input: Flat non-scalarized Modelica code from OMC

Generates LLVM-IR code (instead of C): more room for optimization
No runtime garbage collection, statically allocated memory
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The MARCO Compiler

« MARCO (Modelica Advanced Research COmpiler) is under development
at Politecnico di Milano since 2019

» Goal: provide fastest possible compilation and simulation for a selected
subset of Modelica models

 Main features:

Written in C++

Based on LLVM infrastructure (the same of clang)

Input: Flat non-scalarized Modelica code from OMC

Generates LLVM-IR code (instead of C): more room for optimization
No runtime garbage collection, statically allocated memory

» Currently supports:

Continuous-time models

Records, arrays, functions

Explicit Euler with closed-form solution of strong components
daeMode integration with IDA
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Example: ThermalChipOO

model Volume

parameter Types.ThermalConductivity lambda

"Thermal conductivity of silicon";

parameter Types.Density rho = 2329 "Density of silicon";

parameter Types.SpecificHeatCapacity c = 700 "Specific heat capacity of silicon":
273.15 + 40;

parameter Types.Temperature Tstart =

parameter Types.ThermalCapacitance C "Thermal capacitance of a volume";
parameter Types.ThermalConductance Gx "Thermal conductance of half a volume,x direction":
parameter Types.ThermalConductance Gy "Thermal conductance of half a volume,y direction";

parameter Types.ThermalConductance Gz

Interfaces.HeatPort upper "Upper surface thermal port":
Interfaces.HeatPort lower "Lower surface thermal port":
Interfaces.HeatPort left "Left surface thermal port";

Interfaces.HeatPort right "Right surface thermal port";

Interfaces.HeatPort top "Top surface thermal port";

Interfaces.HeatPort bottom "Bottom surface thermal port™;
Interfaces.HeatPort center "Volume center thermal port";

Types.Temperature T (start = Tstart, fixed = true)
equation

C*der (T) =

upper.Q = Gx* (upper.T - T):

lower.Q = Gx*(lower.T - T):

left.Q = Gy* (left.T - T):

right.Q = Gy*{(right.T - T):

top.Q = Gz* (top.T - T):

bottom.Q = Gz* (bottom.T - T);

center.T = T

end Volume;

"Volume temperature";

upper.Q + lower.Q + left.Q + right.Q + top.Q + bottom.Q + center.g:;

model PowerSource
Interfaces.HeatPort port:
Types.PowerInput Qs

equation
port.Q = -Q;

end PowerScurce:

model TemperatureSource
Interfaces.HeatPort port:

Types.Temperature T = 298.15;

equation
port.T = T:
end TemperatureSource:

"Thermal conductance of half a volume,z direction™:
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Example: ThermalChipOO

partial model BaseThermalChip

parameter Integer N = 4 "Number of volumesin the x direction";
parameter Integer M = 4 "Number of volumesin the y direction";
parameter Integer P = 4 "Number of volumesin the z direction";

parameter Types.Length L = 12e-3 "Chip lengthin the x direction" annotation( [...); |

parameter Types.length W = 12e-3 "Chip widthin the vy direction" annotation( [...];:

parameter Types.length H = 4e-3 "Chip heightin the z direction" annotation( [...];:

parameter Types.ThermalConductivity lambda = 148 "Thermal conductivity of silicon" annotation( [...];:
parameter Types.Density rho = 2329 "Density of silicon" annotation( [...];:

parameter Types.SpecificHeatCapacity c¢ = 700 "Specific heat capacity of silicon" annotation( [ ...); |
parameter Types.Temperature Tstart = 273.15 + 40;

final parameter Types.length 1 = L / N "Chip lengthin the x direction";

final parameter Types.length w = W / M "Chip widthin the y direction";

final parameter Types.Length h H / P "Chip heightin the z direction";

parameter Types.Temperature Tt 273.15 + 40 "Prescribed temperature of the top surface" annotation( [ ...); |
final parameter Types.ThermalCapacitance C = rho*c*1*w*h "Thermal capacitance of a volume";

final parameter Types.ThermalConductance Gx = lambda*w*h/l1 "Thermal conductance of a volume,x direction";
final parameter Types.ThermalConductance Gy lambda*1*h/w "Thermal conductance of a volume,y direction";
final parameter Types.ThermalConductance Gz lambda*1*w/h "Thermal conductance of a volume,z direction";

Volume vol[N,M,P]feach T(start = Tstart, fixed = true),

each C = C,
= 2*Gx, each Gy = 2*Gy, each Gz = 2*Gz):
TemperatureSourcel Tsource [N,M]each T = Tt):;
output Types.Temperature Tctl = vol[l,1,1]1.T "Top layer corner volume temperature";
output Types.Temperature Tct2 = wol[l,N,1].T "Top layer corner volume temperature";

output Types.Temperature Tct3 = vol[N,N,1].T "Top layer corner volume temperature";
output Types.Temperature Tctd vol[N,1,1].T "Top layer corner volume temperature";
output Types.Temperature Tcbl vol[l,1,P].T "Bottom layer corner volume temperature";
output Types.Temperature TcbZ vol[l,N,P].T "Bottom layer corner volume temperature";
output Types.Temperature Tch3 vol[N,N,P].T "Bottom layer corner volume temperature";
output Types.Temperature Tcb4 = vol[N,1,P].T "Bottom layer corner volume temperature":
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Example: ThermalChipOO

equation
// Connections in the z direction
for i in 1:N loop
for j in 1:M loop
connect(vel[i,j,1l].top, Tsourcel[i,]j].port):
for k in 1:P-1 loop
connect(vol[i,j,k].bottom, voll[i,],k+1].top):
end for;
end for;
end for;

// Connections in the y direction
for i in 1:N loop
for k in 1:P loop
for j in 1:M-1 locop
connect(vol[i,j,k]l.right, veoll[i,j+1,k].left):
end for;
end for;
end for;

// Connections in the x direction
for j in 1:M loop
for k in 1:P loop
for i in 1:N-1 lcop
connect(vol[i,],k].lower, vol[i+l, ], k].upper):
end for;
end for;
end for;
end BaseThermalChip;
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Example: ThermalChipOO

equation

// Connections in the z direction

for i in 1:N loop

for j in 1:M loop
connect (vel[i,j,1].top,
for k in 1:P-1 loop

Tsource[i,]j].port);

connect(vol[i,j,k].bottom, voll[i,],k+1].top):

end for;
end for:
end for;

// Connections in the y direction

for i in 1:N loop

for k in 1:P loop
for j in 1:M-1 locop

connect(vol[i,j,k]l.right, veoll[i,j+1,k].left):

end for;
end for;
end for;

// Connections in the x direction

for j in 1:M loop

for k in 1:P loop
for i in 1:N-1 lcop

connect(vol[i,],k].lower, vol[i+l, ], k].upper):

end for;
end for;
end for;
end BaseThermalChip;

model ThermalChipSimpleBoundary
extends BaseThermalChip;
parameter Types.Power Ptot = 100 "Total power consumption";
final parameter Types.Power Pv = Ptot / (N * M / 2):
PowerSource Qsource[N,div(M,2)] (each Q = Pv):

equation
connect (Qsource.port, wvol[:, l:div(M,2), P].center):

end ThermalChipSimpleBoundarvy;



Example: ThermalChipOO

. Simulated transient: response to applied thermal power on half of the active
surface, explicit fixed-time step Euler

e CPU: i9-12900KF
e OS: Ubuntu 20.04 LTS
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Example: ThermalChipOO

. Simulated transient: response to applied thermal power on half of the active
surface, explicit fixed-time step Euler

e CPU: i9-12900KF
e OS: Ubuntu 20.04 LTS

Compile Compile Run )
. . . RunTime
Name Vars States Time Time Time M
OMC MARCO OMC arco
ThermalChipSimpleBoundaryOO
~1k 64 1367 0.390 0.063 0.012
N=4 M=4, P=4 > > > >
I b S e e s OOM
ermalChipSimpleBoundary
~IM  ~64k  after5 0.492 N/A 2.696
N=40, M=40, P=40 arter-om > / >
34.814s
ThermalChipSimpleBoundaryOO
ermaf-hipsimplesodndary ~16M  ~TM  N/A 1.108s N/A 28 6405

N=100, M=100, P=100
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Conclusions

Systems-of-systems modelling can play a crucial role supporting the design
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« Systems-of-systems modelling can play a crucial role supporting the design
and deployment of innovative distributed cyber-physical systems.

* Modelica is ideally suited for this task: high-level, declarative, modular.

* Modelica compiler technology needs a quantum leap to support array-
preserving code generation to support these applications.

« OpenModelica development is heading in this direction since 2015.

 The New Backend will play a pivotal role in making OMC usable in this
area.

» Early results seem very promising, more will come in 2023,
probably 2-3 years until maturity

« Other tools such as MARCO can also benefit from OMC technology,
advancing in this area with somewhat different perspective and goals
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