
Simulation of Large-ScaleSimulation of Large-Scale
 Modelica Models with Modelica Models with

 Array-Preserving Technology: Array-Preserving Technology:
Early Results and PerspectivesEarly Results and Perspectives

Francesco CasellaFrancesco Casella
(francesco.casella@polimi.it)(francesco.casella@polimi.it)

2

Outline

• Systems-of-Systems simulation

• Historical Perspective

• Fundamental Problems & Enabling Factors

• Array-Preserving Flattening

• Array-Preserving Structural Analysis & Optimization

• Array-Preserving Code Generation

• Sparse Solvers

• Status and Perspectives with OpenModelica

• Status and Perspectives with Other Tools

• Conclusions & Outlook

3

Systems-of-Systems Systems-of-Systems
SimulationSimulation

4

From Systems to Systems-of-Systems Simulation

5

From Systems to Systems-of-Systems Simulation

6

From Systems to Systems-of-Systems Simulation

7

From Systems to Systems-of-Systems Simulation

8

From Systems to Systems-of-Systems Simulation

9

From Systems to Systems-of-Systems Simulation

10

(My) Historical (My) Historical
PerspectivePerspective

11

The Quest for Larger and Larger EOO Models

• 1980’s: Hilding Elmqvist’s PhD work (100 equations)

12

The Quest for Larger and Larger EOO Models

• 1980’s: Hilding Elmqvist’s PhD work (100 equations)

• 1990’s: Early Modelica models, first multibody library, hybrid drivetrains
 (1000 equations)

13

The Quest for Larger and Larger EOO Models

• 1980’s: Hilding Elmqvist’s PhD work (100 equations)

• 1990’s: Early Modelica models, first multibody library, hybrid drivetrains
 (1000 equations)

• 2000’s: Thermo-Fluid models, Power Plant models (10.000 equations)

14

The Quest for Larger and Larger EOO Models

• 1980’s: Hilding Elmqvist’s PhD work (100 equations)

• 1990’s: Early Modelica models, first multibody library, hybrid drivetrains
 (1000 equations)

• 2000’s: Thermo-Fluid models, Power Plant models (10.000 equations)

• 2007 (?) F. Cellier discusses Modelica electronic circuit models
 (the case of the 16 bit multiplier)

15

The Quest for Larger and Larger EOO Models

• 1980’s: Hilding Elmqvist’s PhD work (100 equations)

• 1990’s: Early Modelica models, first multibody library, hybrid drivetrains
 (1000 equations)

• 2000’s: Thermo-Fluid models, Power Plant models (10.000 equations)

• 2007 (?) F. Cellier discusses Modelica electronic circuit models
 (the case of the 16 bit multiplier)

• 2010’s: More detailed Modelica models (100.000 equations)

16

2015: Paper on Large-Scale Modelica Models

• Introduces ScalableTestSuite library

• Points out need for:

– Sparse solvers

– Multi-rate algorithms

– Multi-rate event-handling

– QSS algorithms

– Exploiting repetitive structures

– Exploiting parallel CPUs

17

2015: Paper on Large-Scale Modelica Models

• Introduces ScalableTestSuite library

• Points out need for:

– Sparse solvers

– Multi-rate algorithms

– Multi-rate event-handling

– QSS algorithms

– Exploiting repetitive structures

– Exploiting parallel CPUs

18

2016-2017 Sparse Solvers introduced in OMC

• Sparse solvers for implicit ODE
integration (IDA)

• Sparse solvers for implicit algebraic
loops (Kinsol/KLU)

• Sparse solvers for daeMode
integration (IDA)

19

2016-2017 Sparse Solvers introduced in OMC

• Sparse solvers for implicit ODE
integration (IDA)

• Sparse solvers for implicit algebraic
loops (Kinsol/KLU)

• Sparse solvers for daeMode
integration (IDA)

• Simulation of systems with 1M
equations becomes possible in OMC

20

2016-2017 Early Experiments with Large Models in OMC

• Successful simulation of power grid
models up to 600.000 equations

• Model build time: 15+ minutes

• Model simulation time: 3 minutes

• Required memory: 72 GB

• Simulation executable size: ~1 GB

21

2016-2017 Early Experiments with Large Models in OMC

• Successful simulation of power grid
models up to 600.000 equations

• Model build time: 15+ minutes

• Model simulation time: 3 minutes

• Required memory: 72 GB

• Simulation executable size: ~1 GB

• Simulation performance OK
(SoA sparse solver)

• Build time way too long for the user’s
requirements

22

2016-2017 Early Experiments with Large Models in OMC

• Detail thermal model of DEMO fusion
reactor blanket circuit
(750.000 equations)

• Build once, run many times

• Good for optimization purposes

23

2016-2017 Early Experiments with Large Models in OMC

• Detail thermal model of DEMO fusion
reactor blanket circuit
(750.000 equations)

• Build once, run many times

• Good for optimization purposes

• Simulation performance OK
(SoA sparse solver)

• Very long build time irrelevant in this
case

24

Fundamental Fundamental
Problems Problems

&&
 Enabling Enabling
FactorsFactors

25

Fundamental Problems in Large-Scale Modelica Models

• The Modelica Specification describes flattening as the reduction of
a Modelica model to scalar equations and variables

– Doable w/o problems up to 100.000-200.000 equations

– Doable but problematic up to 1.000.000 equations

– Impractical above 1.000.000 equations

26

Fundamental Problems in Large-Scale Modelica Models

• The Modelica Specification describes flattening as the reduction of
a Modelica model to scalar equations and variables

– Doable w/o problems up to 100.000-200.000 equations

– Doable but problematic up to 1.000.000 equations

– Impractical above 1.000.000 equations

• Systems-of-systems models contain many instances of the same model
and/or large arrays of models and/or large variables arrays within models

27

Fundamental Problems in Large-Scale Modelica Models

• The Modelica Specification describes flattening as the reduction of
a Modelica model to scalar equations and variables

– Doable w/o problems up to 100.000-200.000 equations

– Doable but problematic up to 1.000.000 equations

– Impractical above 1.000.000 equations

• Systems-of-systems models contain many instances of the same model
and/or large arrays of models and/or large variables arrays within models

• Fundamental problems when flattening to scalars:

– Large amounts of repeated generated code

– Model building process becomes very time-consuming

– Very large size of simulation executable, needs to be read from RAM
to cache multiple times per step → memory bottleneck

28

Enabling Factors

• Array-Preserving Flattening

• Array-Preserving Structural Analysis and Optimization

• Array-Preserving Code Generation

• Sparse Solvers

29

Enabling Factors

• Array-Preserving Flattening

• Array-Preserving Structural Analysis and Optimization

• Array-Preserving Code Generation

• Sparse Solvers

Status & Perspectives with OpenModelica

Status & Perspectives with other tools

30

Array-Preserving Flattening: the New Frontend (2016-2021)

31

Array-Preserving Flattening: the New Frontend (2016-2021)

32

Array-Preserving Flattening: the New Frontend (2016-2021)

33

Array-Preserving Flattening

• All frontend processing done keeping arrays as first class citizens

• Arrays of models are turned into (multi-dimensional) array equations

• Orders of magnitude faster if repeated objects are collected in arrays

34

Array-Preserving Flattening

• All frontend processing done keeping arrays as first class citizens

• Arrays of models are turned into (multi-dimensional) array equations

• Orders of magnitude faster if repeated objects are collected in arrays

• Sets of individual instances of the same model with the same structure of
modifiers can be automatically collected into arrays

35

Non-Scalarized Flat Modelica: Example 1

36

Non-Scalarized Flat Modelica: Example 1

37

Non-Scalarized Flat Modelica: Example 1

38

Non-Scalarized Flat Modelica: Example 2

39

Non-Scalarized Flat Modelica: Example 2

40

Non-Scalarized Flat Modelica: Example 2

41

Non-Scalarized Flat Modelica: Example 3

42

Non-Scalarized Flat Modelica: Example 3

43

Non-Scalarized Flat Modelica: Example 3

44

Array-Preserving Structural Analysis and Optimization

• Matching, Sorting, Tearing, Index reduction, Alias elimination, CSE,
Over/Underdetermined initialization handling,
Jacobian colouring, Symbolic Jacobians

45

Array-Preserving Structural Analysis and Optimization

• Matching, Sorting, Tearing, Index reduction, Alias elimination, CSE,
Over/Underdetermined initialization handling,
Jacobian colouring, Symbolic Jacobians

• Classic E-V graph

– E-node ↔ scalar equation

– V-node ↔ scalar variable

• Array-Preserving E-V graph

– E-node ↔ array equation

– V-node ↔ array variable

46

Array-Preserving Structural Analysis and Optimization

• Matching, Sorting, Tearing, Index reduction, Alias elimination, CSE,
Over/Underdetermined initialization handling,
Jacobian colouring, Symbolic Jacobians

• Classic E-V graph

– E-node ↔ scalar equation

– V-node ↔ scalar variable

• Array-Preserving E-V graph

– E-node ↔ array equation

– V-node ↔ array variable

• Whole variable arrays in general not matched to whole equation arrays,
need to consider slices, e.g. x[1:end-1] or x[1:2:end] or x[end:-1:1]

• Minimal-size array preserving is an NP-complete problem!

47

Array-Preserving Structural Analysis and Optimization

• Research group 1: FH Bielefeld, Germany

– OMC New Backend development

– K. Abdelhak, A. Heuermann, P. Hannebohm, B. Bachmann

48

Array-Preserving Structural Analysis and Optimization

• Research group 1: FH Bielefeld, Germany

– OMC New Backend development

– K. Abdelhak, A. Heuermann, P. Hannebohm, B. Bachmann

• Research group 2: University of Rosario, Argentina

– Set-based Graph Theory

– E. Kofman, J. F. Fernandez, D. Marzorati

49

Array-Preserving Structural Analysis and Optimization

• Research group 1: FH Bielefeld, Germany

– OMC New Backend development

– K. Abdelhak, A. Heuermann, P. Hannebohm, B. Bachmann

• Research group 2: University of Rosario, Argentina

– Set-based Graph Theory

– E. Kofman, J. F. Fernandez, D. Marzorati

• Research group 3: Politecnico di Milano, Italy
– Array Graph Theory

– M. Fioravanti, D. Cattaneo, F. Terraneo, S. Seva, S. Cherubin, G.
Agosta, F., A. Leva, M. Scuttari

50

Current StatusCurrent Status
With OpenModelicaWith OpenModelica

51

Status with OpenModelica New Backend & Codegen

• Input: flattened, array-preserving Modelica AST

52

Status with OpenModelica New Backend & Codegen

• Input: flattened, array-preserving Modelica AST

• Array-based pre-optimizations (alias elim., CSE, function inlining, etc.)

53

Status with OpenModelica New Backend & Codegen

• Input: flattened, array-preserving Modelica AST

• Array-based pre-optimizations (alias elim., CSE, function inlining, etc.)

• Scalarization

54

Status with OpenModelica New Backend & Codegen

• Input: flattened, array-preserving Modelica AST

• Array-based pre-optimizations (alias elim., CSE, function inlining, etc.)

• Scalarization

• Matching, sorting, index reduction, initial equations, Jacobians

55

Status with OpenModelica New Backend & Codegen

• Input: flattened, array-preserving Modelica AST

• Array-based pre-optimizations (alias elim., CSE, function inlining, etc.)

• Scalarization

• Matching, sorting, index reduction, initial equations, Jacobians

• Solved equations collected again into arrays

56

Status with OpenModelica New Backend & Codegen

• Input: flattened, array-preserving Modelica AST

• Array-based pre-optimizations (alias elim., CSE, function inlining, etc.)

• Scalarization

• Matching, sorting, index reduction, initial equations, Jacobians

• Solved equations collected again into arrays

• Code generation from arrays

– Much faster code generation

– Much faster C-code compilation

– Much leaner generated code

– Codegen time and code size O(1) instead of O(N)
except for matching, sorting, index reduction, initial equations,
Jacobians

57

Status with OpenModelica New Backend & Codegen

• Input: flattened, array-preserving Modelica AST

• Array-based pre-optimizations (alias elim., CSE, function inlining, etc.)

• Scalarization

• Matching, sorting, index reduction, initial equations, Jacobians

• Solved equations collected again into arrays

• Code generation from arrays

– Much faster code generation

– Much faster C-code compilation

– Much leaner generated code

– Codegen time and code size O(1) instead of O(N)
except for matching, sorting, index reduction, initial equations,
Jacobians

Talk later today on New Backend

58

ScalableTestSuite Library

• Developed since 2015 to test the performance of Modelica tools on
models of increasing size

• Test models stress various aspects of the compiler

59

ScalableTestSuite Library

• Developed since 2015 to test the performance of Modelica tools on
models of increasing size

• Test models stress various aspects of the compiler

• Current performance with NF and OB

• Current performance with NF and NB

• Current performance of larger models with NF and NB

https://libraries.openmodelica.org/branches/heavy_tests/ScalableTestSuite_OB/ScalableTestSuite_OB.html
https://libraries.openmodelica.org/branches/heavy_tests/ScalableTestSuite_NB/ScalableTestSuite_NB.html
https://libraries.openmodelica.org/branches/heavy_tests/LargeTestSuite_NB/LargeTestSuite_NB.html

60

Example 1: CascadedFirstOrder

61

Example 1: CascadedFirstOrder

Old Backend New Backend

62

Example 1: CascadedFirstOrder

Old Backend New Backend

Largest model: 400.000 equations, 400.000 states

63

Example 2: HarmonicOscillator

64

Example 2: HarmonicOscillator

Old Backend New Backend

65

Example 2: HarmonicOscillator

Old Backend New Backend

Largest model: 50.000 equations, 50.000 states

66

Example 3: Countercurrent Heat Exchanger

67

Example 3: Countercurrent Heat Exchanger

Old Backend New Backend

68

Example 3: Countercurrent Heat Exchanger

Old Backend New Backend

Largest model: 70.000 equations, 30.000 states

69

Summary: OMC with New FrontEnd & New Backend

• Some interesting results already avaliable with latest nightly build,
just set --newBackend translation flag

70

Summary: OMC with New FrontEnd & New Backend

• Some interesting results already avaliable with latest nightly build,
just set --newBackend translation flag

• Very small flattening time, new frontend complete

• Drastically reduced code generation and compilation time

• Drastically reduced generated code size

71

Summary: OMC with New FrontEnd & New Backend

• Some interesting results already avaliable with latest nightly build,
just set --newBackend translation flag

• Very small flattening time, new frontend complete

• Drastically reduced code generation and compilation time

• Drastically reduced generated code size

• Some parts of structural analysis still carried out on scalarized model
Expected performance O(N), some work yet to be done

72

Summary: OMC with New FrontEnd & New Backend

• Some interesting results already avaliable with latest nightly build,
just set --newBackend translation flag

• Very small flattening time, new frontend complete

• Drastically reduced code generation and compilation time

• Drastically reduced generated code size

• Some parts of structural analysis still carried out on scalarized model
Expected performance O(N), some work yet to be done

• Sparse algebraic solvers don’t work yet (too bad...)

73

Summary: OMC with New FrontEnd & New Backend

• Some interesting results already avaliable with latest nightly build,
just set --newBackend translation flag

• Very small flattening time, new frontend complete

• Drastically reduced code generation and compilation time

• Drastically reduced generated code size

• Some parts of structural analysis still carried out on scalarized model
Expected performance O(N), some work yet to be done

• Sparse algebraic solvers don’t work yet (too bad...)

• O(1) set-graph algorithms could be used for structural analysis, further
improving performance. Currently evaluating with University of Rosario
research group.

74

Summary: OMC with New FrontEnd & New Backend

• Some interesting results already avaliable with latest nightly build,
just set --newBackend translation flag

• Very small flattening time, new frontend complete

• Drastically reduced code generation and compilation time

• Drastically reduced generated code size

• Some parts of structural analysis still carried out on scalarized model
Expected performance O(N), some work yet to be done

• Sparse algebraic solvers don’t work yet (too bad...)

• O(1) set-graph algorithms could be used for structural analysis, further
improving performance. Currently evaluating with University of Rosario
research group.

• Still very early stage, needs 2-3 more years of development to reach
maturity

• Some classes of models (e.g. large power grid models) expected
to work by the end of 2023

75

Current Status with Current Status with
MARCOMARCO

76

The MARCO Compiler

• MARCO (Modelica Advanced Research COmpiler) is under development
at Politecnico di Milano since 2019

• Goal: provide fastest possible compilation and simulation for a selected
subset of Modelica models

77

The MARCO Compiler

• MARCO (Modelica Advanced Research COmpiler) is under development
at Politecnico di Milano since 2019

• Goal: provide fastest possible compilation and simulation for a selected
subset of Modelica models

• Main features:

– Written in C++

– Based on LLVM infrastructure (the same of clang)

– Input: Flat non-scalarized Modelica code from OMC

– Generates LLVM-IR code (instead of C): more room for optimization

– No runtime garbage collection, statically allocated memory

78

The MARCO Compiler

• MARCO (Modelica Advanced Research COmpiler) is under development
at Politecnico di Milano since 2019

• Goal: provide fastest possible compilation and simulation for a selected
subset of Modelica models

• Main features:

– Written in C++

– Based on LLVM infrastructure (the same of clang)

– Input: Flat non-scalarized Modelica code from OMC

– Generates LLVM-IR code (instead of C): more room for optimization

– No runtime garbage collection, statically allocated memory

• Currently supports:

– Continuous-time models

– Records, arrays, functions

– Explicit Euler with closed-form solution of strong components

– daeMode integration with IDA

79

Example: ThermalChipOO

80

Example: ThermalChipOO

81

Example: ThermalChipOO

82

Example: ThermalChipOO

83

Example: ThermalChipOO

• Simulated transient: response to applied thermal power on half of the active
surface, explicit fixed-time step Euler

• CPU: i9-12900KF

• OS: Ubuntu 20.04 LTS

84

Example: ThermalChipOO

• Simulated transient: response to applied thermal power on half of the active
surface, explicit fixed-time step Euler

• CPU: i9-12900KF

• OS: Ubuntu 20.04 LTS

85

ConclusionsConclusions
& &

OutlookOutlook

86

Conclusions

• Systems-of-systems modelling can play a crucial role supporting the design
and deployment of innovative distributed cyber-physical systems.

• Modelica is ideally suited for this task: high-level, declarative, modular.

87

Conclusions

• Systems-of-systems modelling can play a crucial role supporting the design
and deployment of innovative distributed cyber-physical systems.

• Modelica is ideally suited for this task: high-level, declarative, modular.

• Modelica compiler technology needs a quantum leap to support array-
preserving code generation to support these applications.

88

Conclusions

• Systems-of-systems modelling can play a crucial role supporting the design
and deployment of innovative distributed cyber-physical systems.

• Modelica is ideally suited for this task: high-level, declarative, modular.

• Modelica compiler technology needs a quantum leap to support array-
preserving code generation to support these applications.

• OpenModelica development is heading in this direction since 2015.

• The New Backend will play a pivotal role in making OMC usable in this
area.

89

Conclusions

• Systems-of-systems modelling can play a crucial role supporting the design
and deployment of innovative distributed cyber-physical systems.

• Modelica is ideally suited for this task: high-level, declarative, modular.

• Modelica compiler technology needs a quantum leap to support array-
preserving code generation to support these applications.

• OpenModelica development is heading in this direction since 2015.

• The New Backend will play a pivotal role in making OMC usable in this
area.

• Early results seem very promising, more will come in 2023,
probably 2-3 years until maturity

90

Conclusions

• Systems-of-systems modelling can play a crucial role supporting the design
and deployment of innovative distributed cyber-physical systems.

• Modelica is ideally suited for this task: high-level, declarative, modular.

• Modelica compiler technology needs a quantum leap to support array-
preserving code generation to support these applications.

• OpenModelica development is heading in this direction since 2015.

• The New Backend will play a pivotal role in making OMC usable in this
area.

• Early results seem very promising, more will come in 2023,
probably 2-3 years until maturity

• Other tools such as MARCO can also benefit from OMC technology,
advancing in this area with somewhat different perspective and goals

91

Thank you for yourThank you for your
 kind attention! kind attention!

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91

