
The New OpenModelica Instance-Based API

Per Östlund Adeel Asghar

Santa Anna Institute

OpenModelica Annual Workshop February 6, 2023

The Problem

Many old issues that have been hard to solve, for example:

#2081 Conditional connectors not handled by OMEdit
#2891 Hierarchical editing of models
#6111 Support for ”visible” attribute missing in OMEdit
#7826 Modifier of redeclared classes should be available

through parameter dialog

The Common Issue

• OMEdit uses the OpenModelica Compiler (OMC) to get
information about models:

OMC OMEdit
Scripting API

• The scripting API is mostly based on the abstract syntax
tree.

• Hard to deal with dynamic model changes from e.g.
modifiers.

Old API Example

model A
parameter Boolean isVisible;

annotation(Icon(
graphics = {Rectangle(

visible = isVisible,
...)}));

end A;

model B
extends A(isVisible = true);

end B;

> getIconAnnotation(B)
{}

> getInheritedClasses(B)
{A}

> getIconAnnotation(A)
{-,-,-,-,-,,{Rectangle(isVisible, ...)}}

Issues With The Old API

• The old API doesn’t instantiate models, because the old
frontend was too slow.

• OMEdit needs a lot of API calls to get the information it
needs.

• The scripting API mostly returns poorly documented
lists of values.

The Solution

• The new frontend is fast enough to make instantiation
feasible.

• One call to get all the information OMEdit needs from
the instantiated model.

• Return JSON instead of a list of values.

New API Example

model A
parameter Boolean isVisible;

annotation(Icon(
graphics = {Rectangle(

visible = isVisible,
...)}));

end A;

model B
extends A(isVisible = true);

end B;

> getModelInstance(B)
{

"name": "B",
"restriction": "model",
"extends": [

{
"baseClass": {

"name": "A",
"annotation": {

"Icon": {
"graphics": [

{
"$kind": "record",
"name": "Rectangle",
"elements": [

{
"$kind": "cref",
"parts": [{ "name": "isVisible" }]

},
...

},
"components": [

{
"name": "isVisible",
"type": "Boolean",
"value": { "binding": true }

}
]

Challenges

• Avoid unnecessary frontend work that’s not neeed by
the instance API.

• Keep information that the frontend normally throws
away.

• Get information from erroneous models.

