
John Tinnerholm1 & Adrian Pop1

Language extensions to
Simulate Variable Structured
Systems in Modelica

ELLIITLARGEDYN OpenModelica

Agenda

• Background and challenges

• Language extension for explicit variable structured systems

• Language extensions for implicit variable structured systems

• Performance and scaling

• Current proposal, draft + demo

2022-02-02 2

Modeling Highly Dynamic systems using
Modelica
• Handling of models that dramatically change during simulation

• Number of equations and variables changes

• Needs efficient

✓Just-in-time compilation

✓Symbolic manipulation

✓Interpretation

✓Caching

2022-02-02 3

• Recent theses

• Equation-based modeling of
variable-structure systems1

• First-class models: On a
noncausal language for higher-
order and structurally dynamic
modelling and simulation,
Höger2

• Compiling Modelica : about the
separate translation of models
from Modelica to OCaml and its
impact on variable-structure
modeling3

• Techniques

✓Interpretation

✓DSL, embedded language

✓Focus on demonstrating
techniques

✓Formal language specification
& focus on formal semantics,
not performance

✓Useful theoretical contributions

➢Not standard compliant

➢Not Modelica “Compilers”

➢Small models

2Giorgidze, George (2012). “First-class models: On a
noncausal language for
higher-order and structurally dynamic modelling and
simulation.” PhD
thesis. University of Nottingham.

3Höger, Christoph (2019). “Compiling Modelica : about the separate
trans-
lation of models from Modelica to OCaml and its impact on variable-
structure modeling.” Doctoral Thesis. Berlin: Technische Universität
Berlin. doi: 10.14279/depositonce-8354. url: http://dx.doi.org/
10.14279/depositonce-8354.

1Zimmer, Dirk (2010). “Equation-
based modeling of variable-
structure sys-
tems.” PhD thesis. ETH Zürich.

• How do we achieve standard
compatibility?

• Translating the High performance
OpenModelica frontend into Julia

• A Modelica compiler in Julia

• SciML ecosystem

• ModelingToolkit.jl (MTK)

• DifferentialEquations.jl

• Scientific machine learning (SCiML)

• Composable framework

• Library interchange

• Easily extendable

• …

1For OpenModelica IDA with DAE-mode was used. At the time of the experiment TSIT5

was not available in the OpenModelica backend and similar Runge-Kutta method was

not supported for this particular problem.

Mean simulation time when using
the Tsit5 solver option of
ModelingToolkit. The MTK
backend manages to beat the OMC
when using the TSIT5 solver1

Generating Flat Modelica

• Possible to generate flat
Modelica

• Efficient implementation
via MTK

multipleinheritanceconnect = (ConnectTests.MultipleInheritanceConnect
, "MultipleInheritanceConnect"
, "./Connectors/MutipleInheritanceConnect.mo")

flatModelica = flattenFM("MultipleInheritanceConnect",
"./Connectors/MutipleInheritanceConnect.mo")

res = OMFrontend.toString(first(flatModelica))
@test res == ConnectTests.MultipleInheritanceConnect

class MultipleInheritanceConnect
Real e.port.p;
flow Real e.port.f;
Real e.d.port.p;
flow Real e.d.port.f;

equation
e.port.p = e.d.port.p;
e.port.f = 0.0;
e.d.port.f - e.port.f = 0.0;
e.d.port.f = e.d.port.p;

end MultipleInheritanceConnect;

connector Conn
Real p "potential Variable";
flow Real f "flow Variable";

end Conn;

partial model A
Conn port;

end A;

partial model B
extends A;

end B;

partial model C
extends A;

end C;

model D
extends B;
extends C;

equation
port.f = port.p;
end D;

model E
Conn port;
D d;

equation
connect(d.port, port);

end E;

model MultipleInheritanceConnect
E e;

end MultipleInheritanceConnect;

1This example is based on the following test in the OpenModelica testsuite
https://github.com/OpenModelica/OpenModelica/blob/master/testsuite/flattening/modelica/connectors/MultipleInheritanceConnect.
mo

Result

Scripting in OpenModelica.jl

2022-02-02 6

• Handling of models that
dramatically change during
simulation

• Number of equations and
variables changes

• Needs efficient

• Just-in-time compilation

• Symbolic manipulation

• Interpretation

• Caching

𝜃

Language extensions
for explicit Variable
Structured Systems
Explicit variable structured systems

Bounded number of
variables/equations

Modelica needs:

Syntax and semantics to capture
changes in the equations and variables
during simulation

Solution

Inspiration from existing state
machine syntax

“Continuous state machines”

New keywords

initialStructuralState

structuralTransistion

Restriction

The set of common variables

2022-02-02 8

Representing the
breaking pendulum
• Possible in standard Modelica

• Requires manual intervention by the
modeler

• Complex models…

• Extensions using statemachines

• Advantages

• Visual representation is obvious

• Statecharts…

• Minor extension to the flat Modelica
representation

• Compilation, can be done ahead of time

• Disadvantages

• The total number of variables and
equations is bounded

• Boilerplate

• Causal representation

2022-02-02 9

• The flat model is extended
with a list of flat models.

• That is the flat model may
itself contain other flat
models and so on…

• Each flat model is compiled
in separation before code
generation

Structural change

In this model the free fall model is replaced with a bouncing ball model instead. That is

when the pendulum breaks the model behaves like a bouncing ball. The graph show the

change in height (y).

Implicit Variable
Structure Systems

• With the explicit approach the user
need to specify each state/change
explicitly

• Enable compiling during simulation

• Just in time compilation

• Simulation might trigger
recompilation

• The recompilation keyword

• Triggers a recompilation during an
event

• Allows adjustments of the parameters
of the model when a structural change
occurs

2022-02-02 12

• Change the conditional
component during simulation

• Enables a variable set of:

• Number of variables

• Number of equations

• Number of components

• ….

• Minor change in syntax

• Combine with conditional
components

• Compilation during simulation

What does this cost?

• Explicit VSS

• Minor costs

• Restart integration

• Mapping variables

• …

• Implicit

• Currently, requires recompiling the entire model

• Optimization possible

• Compiling to machine code + machine code optimization by LLVM is
expensive

2022-02-02 17

Some initial numbers for the breaking
pendulum

2022-02-02 18

Generating FlatModelica

0.033579 seconds (55.00 k allocations: 3.002 MiB)

Generating backend code
0.010235 seconds (9.87 k allocations: 485.242 KiB,

0.00% compilation time)

Recompiling the model due to the structural change

0.163508 seconds (330.05 k allocations: 19.279 MiB,
75.93% compilation time)

4.535383 seconds (11.39 M allocations: 747.197 MiB,
4.32% gc time, 98.48% compilation time)

Compiling to LLVM + Simulating the model

1Numbers generated by Julias buildin profiler.

• Compiling to machine code
+ machine code
optimization by LLVM is
expensive

• Recompilation step
expensive but only a small
part

What about larger models?

2022-02-02 19

What about larger models?

• Increase the change from 100 to 200 variables + equations

• Generating FlatModelica

• 0.038404 seconds (87.40 k allocations: 3.540 MiB, 0.70% compilation time)

• Generating backend code

• 0.092079 seconds (247.91 k allocations: 11.983 MiB, 0.01% compilation time)

• Compiling to LLVM + Simulating the model

• Recompiling the model due to the structural change

• 3.390860 seconds (2.37 M allocations: 121.405 MiB, 90.43% compilation time)

• 11.580225 seconds (14.56 M allocations: 976.074 MiB, 1.67% gc time, 94.11% compilation time)

• Increase the change from 200 to 250 variables + equations

• Generating FlatModelica

• 0.056116 seconds (154.05 k allocations: 5.902 MiB)

• Generating backend code

• 0.212804 seconds (809.03 k allocations: 38.524 MiB, 0.01% compilation time)

• Compiling to LLVM + Simulating the model

• Recompiling the model due to the structural change

• 13.841762 seconds (6.11 M allocations: 316.432 MiB, 0.41% gc time, 93.73% compilation time)

• 29.652287 seconds (19.70 M allocations: 1.255 GiB, 1.25% gc time, 91.27% compilation time)

2022-02-02 20

Not scalarizing arrays is the key.
Memory is a bottleneck!

• Support for bounded VSS does not require Just-in-time compilation

• VSS support can be added with minimal modifcation to existing syntax

• Requirement on tools

• Explicit VSS requires separate flattening and tight solver integration

• Implicit VSS requires Just-in-time compilation

• The simulation need to call the compiler during simulation…

• Performance improvements are possible

Future work
• New translator written in Julia

• Support for more Modelica constructs in the
backend

• Higher coverage for the MSL in the frontend

• Efficient Just-in-time compilation

• Compilation to machine code is
expensive

• Not scalarizing arrays is the key

• Incremental/Separate
compilation

• Calculate the impact and minimize the
ammount of new code generated for the
structural change?

• Abysmal improvements

• … This Photo by Unknown Author is licensed under CC BY

2022-02-02 22

https://www.scienceimage.csiro.au/tag/caterpillar/i/2767/cocoon-of-the-wanderer-butterfly/monarch-butterfly/
https://creativecommons.org/licenses/by/3.0/

