Towards Symbolic Manipulation on Operator Records

Philip Hannebohm Bernhard Bachmann

OpenModelica Annual Workshop 2021
What are Operator Records?

Complex Numbers

Algebraic Structures

Backend
 Solve/Simplify
 Differentiate

More Examples

Open Questions
What are Operator Records?
Informal

Record

- Defines a new type
- Container for grouping data together
- Often used for annotations, parameter sets
Informal

Record

- Defines a new type
- Container for grouping data together
- Often used for annotations, parameter sets

Operator Record

- Similar to `record`, groups data
- Can define operators like `'+', '*', '=='`
- Those operators have algebraic properties
4.6 Specialized Classes

6 Interface or Type Relationships

9.2 Generation of Connection Equations

10.3.4 Reduction Functions and Operators

12.6 Record Constructor Functions

12.7 Declaring Derivatives of Functions

12.9 External Function Interface

14 Overloaded Operators

```plaintext
operator record OpRec
  Real comp1;
  // more components ...
end OpRec;

encapsulated operator Op1
  function f1
    import OpRec;
    // ...
    end f1;
end Op1;

  // more operators ...
end OpRec;
```

https://specification.modelica.org/maint/3.5/ML3.html
Complex Numbers
\(i^2 = -1 \)
\(z = x + iy \)
\[i^2 = -1 \]
\[z = x + iy \]

\[
(x_1 + iy_1) + (x_2 + iy_2) = \]
\[
(x_1 + x_2) + i(y_1 + y_2) \]
\[i^2 = -1 \]
\[z = x + iy \]

\[
(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)
\]

\[
(x_1 + iy_1) \cdot (x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + y_1x_2)
\]
\[i^2 = -1 \]
\[z = x + iy \]

\[
(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)
\]

\[
(x_1 + iy_1) \cdot (x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + y_1x_2)
\]

\[
= r_1 e^{i \theta_1} \cdot r_2 e^{i \theta_2} = (r_1 r_2) e^{i(\theta_1 + \theta_2)}
\]
Modelica Standard Library

Complex.mo
Modelica/ComplexMath.mo
Modelica/ComplexBlocks/*
within Complex "Complex number with overloaded operators"

replaceable Real re "Real part of complex number" annotation(...) ;
replaceable Real im "Imaginary part of complex number" annotation(...) ;

encapsulated operator 'constructor' "Constructor"
function fromReal "Construct Complex from Real"
import Complex ;
input Real re "Real part of complex number" ;
input Real im=0 "Imaginary part of complex number" ;
output Complex result(re=re, im=im) "Complex number" ;
algorithm annotation(...) ;
end fromReal ;
annotation(...) ;
end 'constructor' ;

encapsulated operator function '0' "Zero—element of addition (= Complex(0))"
import Complex ;
output Complex result "Complex(0)" ;
algorithm result := Complex(0) ;
annotation(...) ;
end '0' ;

encapsulated operator '-' "Unary and binary minus"
function negate "Unary minus (multiply complex number by −1)"
import Complex ;
input Complex c1 "Complex number" ;
output Complex c2 "= −c1" ;
algorithm c2 := Complex(−c1.re, −c1.im) ;
annotation(...) ;
end negate ;

function subtract "Subtract two complex numbers"
import Complex ;
input Complex c1 "Complex number 1" ;
input Complex c2 "Complex number 2" ;
output Complex c3 "= c1 − c2" ;
algorithm c3 := Complex(c1.re − c2.re, c1.im − c2.im) ;
annotation(...) ;
end subtract ;
annotation(...) ;
end '-' ;

encapsulated operator '*' "Multiplication"
function multiply "Multiply two complex numbers"
import Complex ;
input Complex c1 "Complex number 1" ;
input Complex c2 "Complex number 2" ;
output Complex c3 "= c1∗c2" ;
algorithm c3 := Complex(c1.re∗c2.re − c1.im∗c2.im, c1.re∗c2.im + c1.im∗c2.re) ;
annotation(...) ;
end multiply ;

function scalarProduct "Scalar product c1∗c2 of two complex vectors"
import Complex ;
input Complex c1[:] "Vector of Complex numbers 1" ;
input Complex c2[size(c1, 1)] "Vector of Complex numbers 2" ;
output Complex c3 "= c1∗c2" ;
algorithm c3 := Complex(0) ;
for i in 1:size(c1, 1) loop
 c3 := c3 + c1[i]∗c2[i] ;
end for ;
annotation(...) ;
end scalarProduct ;
annotation(...) ;
end '*' ;

encapsulated operator function '+' "Add two complex numbers"
import Complex ;
input Complex c1 "Complex number 1" ;
input Complex c2 "Complex number 2" ;
output Complex c3 "= c1 + c2" ;
algorithm c3 := Complex(c1.re + c2.re, c1.im + c2.im) ;
annotation(...) ;
end '+' ;

encapsulated operator function '/' "Divide two complex numbers"
import Complex ;
input Complex c1 "Complex number 1" ;
input Complex c2 "Complex number 2" ;
output Complex c3 "= c1 / c2" ;
algorithm c3 := Complex((+c1.re∗c2.re + c1.im∗c2.im) / (c2.re∗c2.re + c2.im∗c2.im) ,
 (−c1.re∗c2.im + c1.im∗c2.re) / (c2.re∗c2.re + c2.im∗c2.im)) ;
annotation(...) ;
end '/' ;
Components

- listed at the top
- referenced by name

Operators

- functions listed inside operator
- annotations

```plaintext
operator record Complex
  replaceable Real re "Real part";
  replaceable Real im "Imaginary part";
end

encapsulated operator 'constructor'
  function fromReal
    import Complex;
    input Real re;
    input Real im = 0;
    output Complex c(re = re, im = im);
  algorithm
    annotation (Inline = true, ...);
  end fromReal;
end 'constructor';
```
Operators

- **operator function**
- Binary, Unary, Nullary

Nullary

Supposed to be the neutral element for ' +' Can it be deduced from the definition of ' + '?
Inverse Operator

- negate for unary ‘−’
- subtract for binary ‘−’

One of them should be redundant since

\[c_1 - c_2 = c_1 + (-c_2) \]

Can we deduce one from the other?

```plaintext
encapsulated operator '−'
  function negate
    import Complex;
    input Complex c1;
    output Complex c2(re = -c1.re, im = -c1.im);
  end negate;

  function subtract
    import Complex;
    input Complex c1;
    input Complex c2;
    output Complex c3(re = c1.re - c2.re, im = c1.im - c2.im);
  end subtract;
end '−';
```
Multiplication

Similar structure to addition

Scalar Product

- Array operands, scalar result
- Mathematically ambiguous, usually c_1 is conjugated first
Integers

Automatic simplified version for Integer multiple n

$$n \cdot c = \begin{cases} \sum_{k=1}^{n} c, & n > 0 \\
0, & n = 0 \\
|n| \cdot (-c), & n < 0 \end{cases}$$

even if '*' isn't defined explicitly?

```plaintext
encapsulated operator '∗'
function multiply
import Complex;
input Complex c1;
input Complex c2;
output Complex c3(c1.re*c2.re - c1.im*c2.im, c1.re*c2.im + c1.im*c2.re);
end multiply;

function scalarProduct
import Complex;
input Complex c1[ : ];
input Complex c2[size(c1,1)];
output Complex c3;
algorithm
c3 := sum(c1[k]*c2[k] for k in 1:size(c1,1));
end scalarProduct;
end '∗';
```
Reciprocal

- Should be inverse of '*'?
- Simplifications for Real?
Exponentiation

Automatic simplified version for Integer exponent n?

\[
c^n = \begin{cases}
 c \cdot c^{n-1}, & n > 0 \\
 1, & n = 0 \\
 1/c^{-n}, & n < 0
\end{cases}
\]

```plaintext
encapsulated operator function '" \nimport Complex;
input Complex c1;
input Complex c2;
output Complex c3 "= c1^c2";
protected
  Real lnz = 0.5*log(c1.re*c1.re + c1.im*c1.im);
  Real phi = atan2(c1.im, c1.re);
  Real re = lnz*c2.re - phi*c2.im;
  Real im = lnz*c2.im + phi*c2.re;
algorithm
c3 := Complex(exp(re)*cos(im), exp(re)*sin(im));
end '";
```
Comparison

- (\mathbb{C} has no notion of order, i.e. no '$<$', '$>$')
- One of '$==$', '$<>$' is redundant, since

 \[c_1 = c_2 \iff \neg (c_1 \neq c_2) \]

- Be careful in general with '$==$' on Real

```plaintext
encapsulated operator function '$==$'
  import Complex;
  input Complex c1;
  input Complex c2;
  output Boolean result;
  algorithm
    result := c1.re == c2.re
    and c1.im == c2.im;
  end '$==$';

encapsulated operator function '$<>$
  import Complex;
  input Complex c1;
  input Complex c2;
  output Boolean result;
  algorithm
    result := c1.re <> c2.re
    or c1.im <> c2.im;
  end '$<>$';
```
Algebraic Structures
Groups

Definition

A set G with binary operator $\circ : G \times G \to G$

Rules

\[(a \circ b) \circ c = a \circ (b \circ c)\] associative

\[e \circ a = a \circ e = a\] identity

\[a \circ a^{-1} = a^{-1} \circ a = e\] inverse
Groups

Definition

A set G with binary operator $\circ : G \times G \rightarrow G$

Abelian Group

$a \circ b = b \circ a$ \hspace{1cm} \text{commutative}

Examples

- \mathbb{Z} with $+$, 0, $-n$
- $\mathbb{R} \setminus \{0\}$ with \cdot, 1, $\frac{1}{x}$
- \mathbb{R}^n with $+$, 0, $-v$
- \ldots
Groups

Definition

A set G with binary operator $\circ : G \times G \rightarrow G$

Abelian Group

$a \circ b = b \circ a$ \hspace{5mm} \text{commutative}$

Examples

- \mathbb{Z} with $+$, 0, $-n$
- $\mathbb{R} \setminus \{0\}$ with \cdot, 1, $\frac{1}{x}$
- \mathbb{R}^n with $+$, 0, $-v$
- \ldots
- $\mathbb{C} \setminus \{0\}$ with \cdot, 1, $\frac{1}{x}$
// ...
Complex a, b, c;

```language=cpp
// equation
a*b = c "solved for b";
```

// ...
Complex a, b, c;

equation
a*b = c "solved for b";

Scalarized: loop of size 2

a.re*b.re - a.im*b.im = c.re
a.re*b.im + a.im*b.re = c.im
Complex a, b, c;
equation
a * b = c "solved for b";

Scalarized: loop of size 2
a.re*b.re - a.im*b.im = c.re
a.re*b.im + a.im*b.re = c.im

Kept as record: simple assign
d := 1.0/(a.re*a.re + a.im*a.im)
b.re := (a.re*c.re + a.im*c.im)*d
b.im := (a.re*c.im - a.im*c.re)*d
Rings/Fields

Ring

A set K with two binary operators $+$ (commutative group) and \cdot (associative, identity), where \cdot distributes with \pm.

- integers, polynomials
- products and integer powers
- factoring

Field

Like a ring, but $K\setminus\{0\}$ and \cdot also form a commutative group.

- reals, complex
- nice algebraic rules
- multiplicative inverses
- Galois theory
Ring

A set K with two binary operators $+$ (commutative group) and \cdot (associative, identity), where \cdot distributes with $+$.

- integers, polynomials
- products and integer powers
- factoring

Field

Like a ring, but $K \setminus \{0\}$ and \cdot also form a commutative group.

- reals, complex
- nice algebraic rules
- multiplicative inverses
- Galois theory
Definition

A vector space V over a field F has vector addition \oplus (commutative group) and scalar multiplication \odot.

Rules

\[
\begin{align*}
 a \odot (b \odot v) &= (a \cdot b) \odot v & \text{compatible} \\
 1 \odot v &= v & \text{identity} \\
 a \odot (u \oplus v) &= a \odot u \oplus a \odot v & \text{distribute over } V \\
 (a + b) \odot v &= a \odot v \oplus b \odot v & \text{distribute over } F
\end{align*}
\]
Vector Spaces

Definition
A vector space V over a field F has vector addition \oplus (commutative group) and scalar multiplication \odot.

Examples
- n-dimensional Euclidean space (3D real space)
- $m \times n$ matrix space
- Field extensions (like \mathbb{C})
Vector Spaces

Definition

A vector space V over a field F has vector addition $⊕$ (commutative group) and scalar multiplication $⊙$.

Modelica Arrays

Declarations

Real[3] x, y, z;

Equations

$z = -2*y$;
$y = 3*x + 5*z$;
Backend
Affected Modules

- simplify
- events/states
- alias sets
- partition
- causalize
- initialize
- tearing
- Jacobian
- solve
Affected Modules

- simplify
- events/states
- alias sets
- partition
- causalize
- initialize
- tearing
- Jacobian
- solve
Solve/Simplify
Solving Equations for Variables

- encoding expressions as a tree
Solving Equations for Variables

- encoding expressions as a tree
- rewrite rules
Solving Equations for Variables

- encoding expressions as a tree
- rewrite rules
- graph of equivalent expressions/equations
Solving Equations for Variables

- encoding expressions as a tree
- rewrite rules
- graph of equivalent expressions/equations
- (efficient) graph traversal
Expression Trees

\[x + \cos y \cdot 3 \]
Expression Trees

$\begin{array}{c}
\text{Expression Trees} \\
\begin{align*}
x + \cos(y) \cdot 3 \\
\end{align*}
\end{array}$
Expression Trees

\[x + \cos(y \cdot 3) \]

Diagram:

```
  +
 x   cos
    /   *
   /     /
  y     3
```

Binary

$x + y + z + w$
Binary

\[x + (y + (z + w)) \]
$x + ((y + z) + w)$
Binary

\[(x + y) + (z + w)\]
Multary

\[x + y + z + w \]
Multary

\[x - y - z + w \]
$x + w - (y + z)$
Algebra/Rewrite Rules

\[U \ast V + U \ast W \iff U \ast (V + W) \]

\[(U + V) \cdot (U - V) \iff U^2 - V^2 \]

\[\frac{U^k}{U^n} \cdot U^m \iff U^{k+m-n} \]

\[a \cdot \frac{c}{d} \cdot \frac{e}{f} \iff \frac{a \cdot c \cdot e \cdot g}{b \cdot d \cdot f} \]

\[\ldots \]
SOLVING SYMBOLIC EQUATIONS WITH PRESS

by
Leon Sterling, Alan Bundy, Lawrence Byrd,
Richard O'Keefe, and Bernard Silver
Department of Artificial Intelligence
University of Edinburgh

Abstract

We outline a program, PRESS (PROlog Equation Solving System) for solving symbolic, transcendental, non-differential equations. The methods used for solving equations are described, together with the service facilities. The principal technique, meta-level inference, appears to have applications in the broader field of symbolic and algebraic manipulation.

Acknowledgements

This work was supported by SERC grants GR/B/29252 and GR/B/73989 and various studentships.

Keywords

equation solving, rewrite rules, meta-level inference, logic programming

1. Introduction

The PRESS program was originally developed with two aims in mind. The first aim was to use the program as a vehicle to explore some ideas about controlling search in mathematical reasoning using meta-level descriptions and strategies. The other aim was to serve as the equation solving module for the MESH2 project [Bundy et al 79].
Meta heuristics (PRESS)

isolatesolve at single occurrence

\[0 = \ln x - 2 \]
\[+2 \]
\[2 = \ln x \]
\[x > 0 \text{ inverse function} \]
\[x = e^2 = 7.3890 \ldots \]
Meta heuristics (PRESS)

- isolate solve at single occurrence
- polysolve solve polynomials

\[
8x = 2x^3 + \frac{6}{x}
\]

\[
x \neq 0 \quad \text{normal form}
\]

\[
0 = x^4 - 4x^2 + 3
\]

\[
x^2 \in \{1, 3\}
\]

\[
\downarrow \quad \text{isolate}
\]

\[
\ldots
\]
Meta heuristics (PRESS)

- **isolate**: solve at single occurrence
- **polysolve**: solve polynomials
- **collect**: reduce occurrences

\[
2 = (e^x + 1) \cdot (e^x - 1)
\]

\[
(U + V) \cdot (U - V) \rightarrow U^2 - V^2
\]

\[
2 = (e^x)^2 - 1
\]

\[
\text{isolate}
\]

\[
\ldots
\]
Meta heuristics (PRESS)

- **isolate**: solve at single occurrence
- **polysolve**: solve polynomials
- **collect**: reduce occurrences
- **attract**: bring occurrences closer

\[
4 = e^x \cdot e^{2x}
\]

\[
e^U \cdot e^V \rightarrow e^{U+V}
\]

\[
4 = e^{x+2x}
\]

\[
\downarrow \text{collect}
\]

\[
\ldots
\]
Meta heuristics (PRESS)

- **isolate**: solve at single occurrence
- **polysolve**: solve polynomials
- **collect**: reduce occurrences
- **attract**: bring occurrences closer
- **homogenize**: change of unknown

\[
0 = e^x + e^{3x}
\]

reduce to \(e^x \)

\[
0 = e^x + (e^x)^3
\]

\(y \geq 0 \) substitute \(y = e^x \)

\[
0 = y + y^3
\]

polysolve

\[
\ldots
\]
Meta heuristics (PRESS)

- **isolate**: solve at single occurrence
- **polysolve**: solve polynomials
- **collect**: reduce occurrences
- **attract**: bring occurrences closer
- **homogenize**: change of unknown
- **swap fn**: transform functions

\[
1 - x = \sqrt{3x - x^2}
\]

\[
1 - x \geq 0 \quad \text{swap } \sqrt{x} \text{ for } x^2
\]

\[
(1 - x)^2 = 3x - x^2
\]

\[
\ldots
\]
Equivalent Equations

Graph structure

- vertex = equation
- edge for each rewrite rule between eqn_1 and eqn_2
- infinite graph

$2 = (x - 1) \cdot (x + 1)$

$3 = x^2$
Equivalent Equations

Graph structure

- vertex = equation
- edge for each rewrite rule between eqn_1 and eqn_2
- infinite graph
- solving = graph search

$2 = (x - 1) \cdot (x + 1)$

$3 = x^2$

$3 - x^2 = 0$

$\pm \sqrt{3} = x$

$2 = x^2 - 1$

$2 = x^2 + x - x - 1$
Differentiate
Consider $w = f(z)$, where $w, z \in \mathbb{C}$. Decomposing with $z = x + iy$, $w = u + iv$ leads to

\[
\begin{align*}
\dot{u} &= \partial_x u \cdot \dot{x} + \partial_y u \cdot \dot{y} \\
\dot{v} &= \partial_x v \cdot \dot{x} + \partial_y v \cdot \dot{y}
\end{align*}
\]

(*)
Consider $w = f(z)$, where $w, z \in \mathbb{C}$. Decomposing with $z = x + iy, w = u + iv$ leads to

\[
\begin{align*}
\dot{u} &= \partial_x u \cdot \dot{x} + \partial_y u \cdot \dot{y} \\
\dot{v} &= \partial_x v \cdot \dot{x} + \partial_y v \cdot \dot{y}
\end{align*}
\]

(*)

We would like to write

\[w = \partial_z w \cdot \dot{z} \]
Differentiating Operator Records

So suppose $\partial_z w = J = J_1 + iJ_2$ for some $J_1, J_2 \in \mathbb{R}$. Then

$$\partial_z w \cdot \dot{z} = (J_1 + iJ_2) \cdot (\dot{x} + i\dot{y})$$

$$= (J_1 \cdot \dot{x} - J_2 \cdot \dot{y}) + i(J_2 \cdot \dot{x} + J_1 \cdot \dot{y})$$

Together with (*) this results in

$$\dot{u} = \partial_x u \cdot \dot{x} + \partial_y u \cdot \dot{y} = J_1 \cdot \dot{x} - J_2 \cdot \dot{y}$$

$$\dot{v} = \partial_x v \cdot \dot{x} + \partial_y v \cdot \dot{y} = J_2 \cdot \dot{x} + J_1 \cdot \dot{y}$$

(**)
Demanding that \((**) \) holds for any \(\dot{z} \), we finally arrive at the Cauchy-Riemann equations

\[
J_1 = \frac{\partial}{\partial x} u = \frac{\partial}{\partial y} v
\]
\[
J_2 = \frac{\partial}{\partial x} v = -\frac{\partial}{\partial y} u
\]

And so \(J = \frac{\partial}{\partial x} w \), which is the same as symbolically taking \(J = \frac{\partial}{\partial z} w \) and treating \(z \) as a real variable.
Differentiating Operator Records

Summary

• multiplication needs to be defined
• Ansatz: there is a J s.t. $\dot{w} = J \cdot \dot{z}$
• generalized Cauchy-Riemann conditions on f
• results in possibility to use chain rule
More Examples
Split-Complex Numbers

\[j^2 = 1 \quad (j \notin \mathbb{R}) \]

\[z = x + jy \]
Split-Complex Numbers

\[j^2 = 1 \quad (j \notin \mathbb{R}) \]

\[z = x + jy \]

\[(x_1 + jy_1) \cdot (x_2 + jy_2) = (x_1x_2 + y_1y_2) + j(x_1y_2 + y_1x_2)\]
Split-Complex Numbers

\[j^2 = 1 \quad (j \not\in \mathbb{R}) \]

\[z = x + jy \]

\[
(x_1 + jy_1) \cdot (x_2 + jy_2) = (x_1x_2 + y_1y_2) + j(x_1y_2 + y_1x_2)
\]
Split-Complex Numbers

\[j^2 = 1 \ (j \not\in \mathbb{R}) \]
\[z = x + jy \]

\[(x_1 + jy_1) \cdot (x_2 + jy_2) = (x_1x_2 + y_1y_2) + j(x_1y_2 + y_1x_2) \]

- not a field, unlike \(\mathbb{C} \)
- zero-divisors \((1 + j) \cdot (1 - j) = 0 \)
- Minkowski space, Lorenz boost
- online dating adjacency matrices
Quaternions

\[i^2 = j^2 = k^2 = ijk = -1 \]

\[q = a + bi + cj + dk = (r, \mathbf{v}) \]
Quaternions

\[i^2 = j^2 = k^2 = ijk = -1 \]

\[q = a + bi + cj + dk \]
\[= (r, \mathbf{v}) \]

\[(r_1, \mathbf{v}_1) \cdot (r_2, \mathbf{v}_2) \]
\[= (r_1r_2 - \mathbf{v}_1 \cdot \mathbf{v}_2, \]
\[r_1 \mathbf{v}_2 + r_2 \mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2) \]
Quaternions

\[i^2 = j^2 = k^2 = ijk = -1 \]

\[q = a + bi + cj + dk \]

\[= (r, \mathbf{v}) \]

For \(q = (\cos(\theta), \sin(\theta) \cdot \hat{n}) \) and \(v = (0, \mathbf{v}) \) the product

\[q \cdot v \cdot \bar{q} \]

is a rotation of \(\mathbf{v} \) about \(\hat{n} \) by \(2\theta \).
Quaternions

\[i^2 = j^2 = k^2 = ijk = -1 \]

\[q = a + bi + cj + dk = (r, v) \]

- rotations in 3D space
- not commutative:

\[\frac{dq^2}{dt} = q \cdot \frac{dq}{dt} + \frac{dq}{dt} \cdot q \]
Dual Numbers

\[\varepsilon^2 = 0 \quad (\varepsilon \neq 0) \]
\[z = x + \varepsilon y \]
Dual Numbers

\[\varepsilon^2 = 0 \quad (\varepsilon \neq 0) \]
\[z = x + \varepsilon y \]

\[(x_1 + \varepsilon y_1) \cdot (x_2 + \varepsilon y_2) = (x_1 x_2) + \varepsilon(x_1 y_2 + y_1 x_2) \]
Dual Numbers

\[\varepsilon^2 = 0 \quad (\varepsilon \neq 0) \]
\[z = x + \varepsilon y \]
\[(x_1 + \varepsilon y_1) \cdot (x_2 + \varepsilon y_2) = (x_1 x_2) + \varepsilon (x_1 y_2 + y_1 x_2) \]

- Galilean transform/shear mapping
- kinematic synthesis
- automatic differentiation
\[f(x + \varepsilon y) = f(x) + \varepsilon y f'(x) \]
Open Questions
• How do we tell the compiler what rules to apply without too much hard coding?
• Should we modify the language? Are annotations enough?
• How do we tell the compiler what rules to apply without too much hard coding?
• Should we modify the language? Are annotations enough?
• Who uses operator records and for what?
• What are current problems that should be fixed?
• How do we tell the compiler what rules to apply without too much hard coding?
• Should we modify the language? Are annotations enough?
• Who uses operator records and for what?
• What are current problems that should be fixed?
• What are the difficult steps in the backend?
• What else can be optimized?
Contact

OpenModelica

https://openmodelica.org/

gitHub.com/OpenModelica

or create a <trac ticket>

Prof. Dr. phil., Dipl.-Math.
Bernhard Bachmann
bbachmann@fh-bielefeld.de

Philip Hannebohm
phannebohm@fh-bielefeld.de