

Experience on the use of the DAE mode in industrial power system simulations

OpenModelica Workshop – Linköping – 03/02/2020

K. Abdelhak, B. Bachmann (FH Bielefeld) and F. Rosière, A. Guironnet (RTE)

Outline

- Introduction to power system simulations
- OpenModelica DAE mode
- Examples of DAE mode advantages
- Conclusion

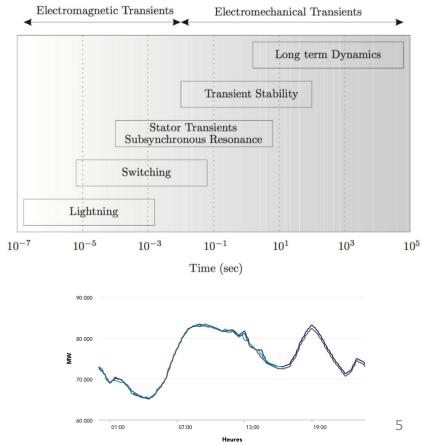
Introduction to power system simulations

Transmission System Operators

- "Entities operating independently from the other electricity market players and responsible for the bulk transmission of electric power on the main high voltage electric network"
 - Non discriminatory and transparent access to the electricity grid
 - Safe operation and maintenance of the system
 - Grid infrastructure development
- RTE French Transmission System Operator
 - In charge of the largest European network (100 000 kms of EHV and HV lines 400 to 63 kV, 2 600 substations, peak load served > 100 GW).
 - Ensuring a stable and secure grid operation means:
 - ✤ Adequacy Acceptable steady-state (thermal overload, voltage values for materials)
 - Stability Stable and possible transition between different operating points
 - Dynamic stability (transient, voltage, small-signal, frequency, etc.) ensured by
 - time-domain simulations

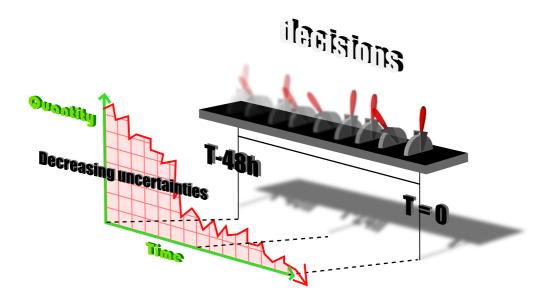
Time-domain simulations

- Analysis of the system evolution during transitions
 - Triggered by the normal evolution of the system (load change, production scheduled change, etc.) or by sudden change (generator tripping, short-circuit, etc.)
 - > Refer to a large range of phenomena with different time constants
- Two main domains:
 - > Electromagnetic transients (known as EMT):
 - Time constants from 1 ns to 1 ms
 - ✤ No dynamics neglegted
 - ✤ All the components have differential equations
 - Electromechanical transients (known as TS):
 - Time constants from 1 ms to several minutes
 - Fast dynamics (in particular in the network) are neglegted
 - Phasor approximation, no dynamic in the network



Large-scale industrial simulations

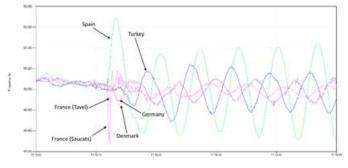
- Phasor or TS simulations are done frequently and on large scale networks
 - Voltage and transient stability studies are run automatically with real time data and hours, days and week-aheads on different scenarios
 - > Dynamic security assessment: simulate all network contingency every 15'
 - Switch from a physically-driven network to a software-based network will even reinforce the pressure on the simulations to be done.



Large-scale industrial simulations

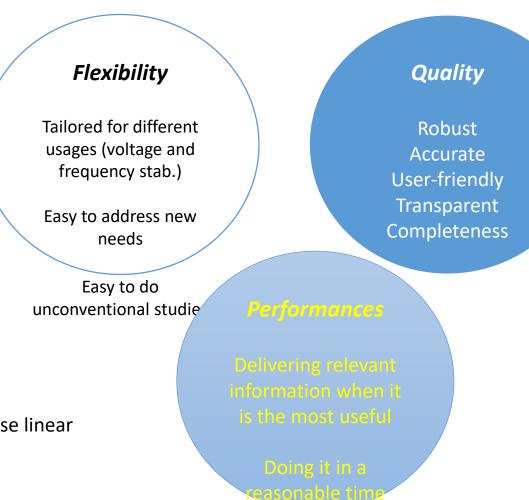
- Large-scale phasor simulations complexity
 - Spatial: from regional to panEuropean studies (interarea oscillations)
 - (10 000 electrical nodes, 3 000 generators -> 130 000 variables)
 - Temporal: from electromechanical phenomena (~1 ms) to slow dynamics (secondary voltage regulation minutes) -> Stiff problems
 - > Hybrid: discontinuities (tap changer change in a transformer, short circuit, etc.)
- \Rightarrow Large set of hybrid sparse stiff semi-explicit index 1 DAE system

$$\begin{cases} t_{0} \leq t \leq t_{c} \begin{cases} \dot{x}_{t} = f_{a}(x_{t}, y_{t}) \\ g_{a}(x_{t}, y_{t}) = 0 \\ C_{ab}(t_{c}, x_{t_{c}}, y_{t_{c}}) = 0 \\ t > t_{c} \begin{cases} \dot{x}_{t} = f_{b}(x_{t}, y_{t}) \\ g_{b}(x_{t}, y_{t}) = 0 \end{cases} \begin{cases} f_{a}(x_{t_{c}}, y_{t_{c}}) \neq f_{b}(x_{t_{c}}, y_{t_{c}}) \\ g_{a}(x_{t_{c}}, y_{t_{c}}) \neq g_{b}(x_{t_{c}}, y_{t_{c}}) \end{cases}$$



Challenges and numerical methods

- Finding an acceptable enough trade-off between performance, flexibility and accuracy
- Numerical methods optimized for power
 - system simulations
 - Taking advantage of the sparsity structure of the network
 - Sticking to an implicit DAE problem
 - Controlling accuracy
 - \Rightarrow Variable time-step with implicit integration methods and sparse linear solvers are the reference for power system simulations



Modelica-based simulations

- Modelica is promising for power system modelling and simulation
 - Models easy to write, share and understand
 - Generic and open source language
 - Adapted for physical, controls and even multi-system modelling.
 - \Rightarrow Gaining interest in the power system community and promoting by some actors
- Existing barriers or difficulties for operational large-scale simulations in Modelica with Modelica tools
 - Large system-wide centralized controls
 - Dynamic connectivity/topology analysis
 - Performances (runtime compilation and simulation time)
 - Back to 2016: Simulation time on IEEE57 75* slower than real time and compilation on larger networks fails or takes too much time¹
 - Transformation to ODE and algebraic loops processing is one of the bottleneck

Modelica-based simulations

- Modelica is promising for power system modelling and simulation
 - Models easy to write, share and understand
 - Generic and open source language
 - > Adapted for physical, controls and even multi-system modelling.
 - \Rightarrow Gaining interest in the power system community and promoting by some actors
- Domain-specific tools development enables to bypass some limitations
 - > Hybrid C++ / Modelica simulation tool, initially developed by RTE Dynaωo (<u>http://dynawo.org</u>)
 - Using native DAE sparse solvers formalism (breaking the LS and NLS built by OpenModelica Compiler)
 - > A few tricks to avoid large algebraic loops (model by model compilation, C++ network)
 - Performances similar to current power system simulation tools
 - Come to us after the presentation if you want more details

Modelica-based simulations

- Modelica is promising for power system modelling and simulation
 - Models easy to write, share and understand
 - Generic and open source language
 - Adapted for physical, controls and even multi-system modelling.
 - \Rightarrow Gaining interest in the power system community and promoting by some actors

\Rightarrow A strong need for a DAE mode in OpenModelica

- For enabling up to medium-size networks simulation in OM in the near future and envision large-size networks simulation as a possible target
- For making it possible for power system actors (in general) to work with Modelica environments

DAE mode in OpenModelica

Implementation Overview

Pipeline

Frontend

Backend

Code Generation

Simulation

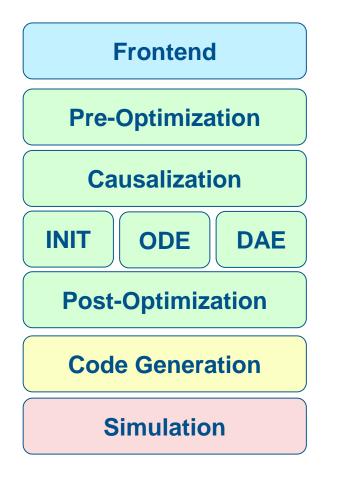
Ideal DAE-Mode

- Skip the Backend entirely.
- Create residual DAE mode equations from *Frontend* structure.

Problems

- Initialization
- Event Handling
- Index Reduction

Pipeline



FH Bielefeld University of Applied Sciences

Re

Applicable DAE-Mode

Causalize and create following systems:

- Initialization (INIT)
- Event Handling (ODE)
- Simulation (DAE)

Advantages

- Tearing only affects INIT and ODE system
- Index Reduction is applied
- All Algebraic Loops are solved in one sparse system

Causalization

Initial System

 $\begin{aligned} 0 &= F(\underline{\dot{x}}(t), \underline{x}(t), \underline{y}(t), \underline{u}(t), \underline{q}(t), \underline{q}_{pre}(t), \underline{p}, t) \\ 0 &= \hat{F}(\underline{\dot{x}}(t_0), \underline{x}(t_0), \underline{y}(t_0), \underline{u}(t_0), \underline{q}(t_0), \underline{p}, t_0) \\ & \underline{\dot{x}}(t_0) &= \hat{f}(\underline{x}(t_0), \underline{u}(t_0), \underline{q}_{pre}(t_0), \underline{p}, t_0) \\ & \underline{x}(t_0) &= \hat{s}(\underline{x}(t_0), \underline{u}(t_0), \underline{q}_{pre}(t_0), \underline{p}, t_0) \\ & \underline{y}(t_0) &= \hat{g}(\underline{x}(t_0), \underline{u}(t_0), \underline{q}_{pre}(t_0), \underline{p}, t_0) \\ & \underline{q}(t_0) &= \hat{h}(\underline{x}(t_0), \underline{u}(t_0), \underline{q}_{pre}(t_0), \underline{p}, t_0) \end{aligned}$

$$\boxed{\mathbf{INIT}} \quad \underline{z}(t_0) = \begin{pmatrix} \underline{\dot{x}}(t_0) \\ \underline{x}(t_0) \\ \underline{y}(t_0) \\ \underline{q}(t_0) \end{pmatrix} = \begin{pmatrix} \hat{f}(.) \\ \hat{s}(.) \\ \hat{g}(.) \\ \hat{h}(.) \end{pmatrix}$$

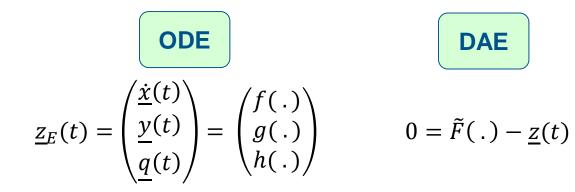
Variables	Description
$\underline{\dot{x}}(t)$	State Derivative
$\underline{x}(t)$	State
$\underline{y}(t)$	Algebraic Variables
$\underline{u}(t)$	Inputs
$\underline{q}(t)$	Discrete Variables
$\underline{q}_{pre}(t)$	Discrete Pre-Variables
\underline{p}	Parameters
t	Time

Causalization

Simulation System

$$0 = F(\underline{\dot{x}}(t), \underline{x}(t), \underline{y}(t), \underline{u}(t), \underline{q}(t_e), \underline{q}_{pre}(t_e), \underline{p}, t)$$

$$\underline{z}(t) = \tilde{F}(.) \begin{cases} \underline{\dot{x}}(t) = f(\underline{x}(t), \underline{u}(t), \underline{q}(t), \underline{p}, t) \\ \underline{y}(t) = g(\underline{x}(t), \underline{u}(t), \underline{q}(t), \underline{p}, t) \\ q(t) = h(\underline{x}(t), \underline{u}(t), q_{pre}(t), p, t) \end{cases}$$



Variables	Description
$\underline{\dot{x}}(t)$	State Derivative
$\underline{x}(t)$	State
$\underline{y}(t)$	Algebraic Variables
$\underline{u}(t)$	Inputs
$\underline{q}(t_e)$	Discrete Variables
$\underline{q}_{pre}(t_e)$	Discrete Pre-Variables
<u>p</u>	Parameters
t	Time

Updates

Bugfixes / Features

Support Removed Equations

- Equations without return value (e.g. asserts, dumping)
- Extra section outside simulation system

Advantage: Obvious ordering Disadvantage: Forced ordering

Updated Auxiliary Variable Handling

- Variables generated from *Backend Modules* (e.g. *CSE*, when/if condition)
- Prevent implicit solving
- Moved to extra section

Advantage: Faster simulation Disadvantage: Restrictions on Causalization

Example of DAE mode advartages

Compilation failure

- ODE compilation fails with a simplified PV generator model put on a simple network
 - Used for simplified time-domain simulations
 - > When we don't have enough data to represent the dynamic evolution of the generator

equation

```
URefPu.value = UPu + LambdaPu * OGenRefPu;
  when QGenRefPu >= QMaxPu and pre(qStatus) <> QStatus.AbsorptionMax then
    gStatus = QStatus.AbsorptionMax;
                                                                                          Figure 1: SMIB system representation
    Timeline.logEvent1(TimelineKeys.GeneratorPVMaxQ);
  elsewhen QGenRefPu <= QMinPu and pre(gStatus) <> QStatus.GenerationMax then
    gStatus = QStatus.GenerationMax;
    Timeline.logEvent1(TimelineKeys.GeneratorPVMinQ);
  elsewhen (QGenRefPu < QMaxPu and pre(gStatus) == QStatus.AbsorptionMax) or (QGenRefPu > QMinPu and pre(gStatus) ==
QStatus.GenerationMax) then
    gStatus = QStatus.Standard;
    Timeline.logEvent1(TimelineKeys.GeneratorPVBackRegulation);
  end when;
  if running.value then
    QGenPu = if qStatus == QStatus.AbsorptionMax then QMaxPu else if qStatus == QStatus.GenerationMax then QMinPu else
QGenRefPu;
  else
    OGenPu = 0;
  end if:
```


Compilation failure

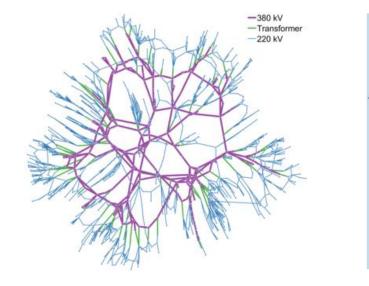
- ODE compilation fails on a simplified PV generator model
 - Used for simplified time-domain simulations
 - > When we don't have enough data to represent the dynamic evolution of the generator
- DAE simulation works
- Writing differently the model also works with ODE model
 - > No obvious reason for a person doing the model to write it differently

```
if running.value then
   QGenPu = if QGenRefPu >= QMaxPu then QMaxPu else if QGenRefPu <= QMinPu then QMinPu else QGenRefPu;
else
   QGenPu = 0;
end if;</pre>
```

> Addition of a pre() could have impact on the results, depending on the tool solving strategy

```
if running.value then
    QGenPu = if pre(qStatus) == QStatus.AbsorptionMax then QMaxPu else if pre(qStatus) == QStatus.GenerationMax then QMinPu
else
else
```


Sparsity



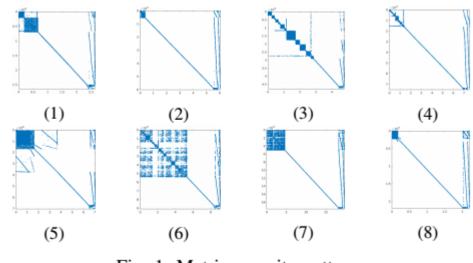


Fig. 1: Matrix sparsity patterns

- Power system A very sparse structure by construction
 - Each bus only connected to a few other ones (a bit meshed at the transmission level, generally speaking radial at the distribution level)
 - In transient (= phasor, = electromechanical) simulation, the network part is algebraic and thus all generators see immediately any change into the system.
 - Going from DAE to ODE reduces the Jacobian size but fills it a lot.
 - Many years of work to exploit and keep the sparsity in power system and mathematical communities (Pegase European project, specific linear solver development and insertion into state-of-the-art solvers).

Sparsity

∞	

Figure 1: SMIB system representation

Mode	NNZ	Size	d (%)
ODE	32	6 * 6	89
DAE	125	32 *32	12

• Very simple test case -> Single Machine Infinite Bus test case

Still quite ok with ODE because all the derivatives are on the same part (generator model -> 6 states).

- Let's make it a bit more complex -> Two Machines Infinite Bus test case
 - > Adding another generator in parallel to the first one
 - ✤ 6 more states -> 12 states, most of them related together
 - in ODE mode
 - The density remains similar in ODE, decreases by 2 on DAE

	Mode	NNZ	Size	d (%)
-	ODE	122	12 * 12	84
	DAE	212	54 * 54	7.2

Sparsity

• Results on larger test cases -> ScalablePowerGrids library (developed by F. Casella)

Case	Mode	NNZ	Size	d (%)
N_4_M_4	ODE	7 696	96 * 96	83
	DAE	2 138	706 * 706	0.43
N_8_M_4	ODE	30 752	192 * 192	83
	DAE	4 330	1 426 * 1 426	0.21
N_8_M_8	ODE	122 944	384 * 384	83
	DAE	8 778	2 882 * 2 882	0.10

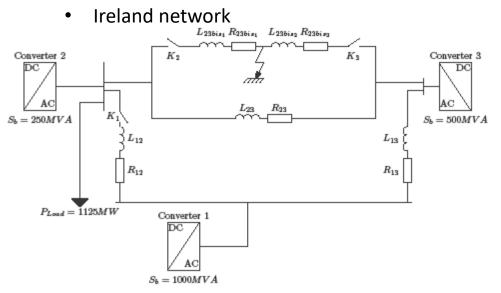
No.	Power Grid	K	N	NNZ	d [%]
(1)	French EHV with SL	2000	26432	92718	0.013
(2)	French EHV with VDL	2000	60236	188666	0.0051
(3)	F. + one neighbor EHV, SL	3000	47900	205663	0.0089
(4)	F. + one neighbor EHV, VDL	3000	75300	266958	0.0047
(5)	F. + neighb. countries EHV, SL	7500	70434	267116	0.0054
(6)	F. EHV + regional HV, SL	4000	90940	316280	0.0038
(7)	F. EHV + regional HV, VDL	4000	197288	586745	0.0015
(8)	F. + neighb. countries EHV, VDL	7500	220828	693442	0.0014

TABLE I: Characteristics of squared matrices with size $N \times N$, K nodes, sorted by nonzeros NNZ, and with density factor $d = \frac{NNZ}{N \cdot N}$ in %

L. Razik, L. Schumacher, A. Monti, A. Guironnet, and G. Bureau, "A comparative analysis of LU decomposition methods for power system simulations," 2019 IEEE Milan PowerTech, Jun. 2019.

Performances

- Time spent in the simulation process decreases as:
 - Sparse linear solvers are working in their optimal conditions
 - « Light » causalization during compilation time and no need to go through large algebraic loops
- Results on simple and larger test cases:
 - 3 converters network with derivatives variables in the line model (EMT)
 - 3 converters network without derivatives variables in the line model (TS)

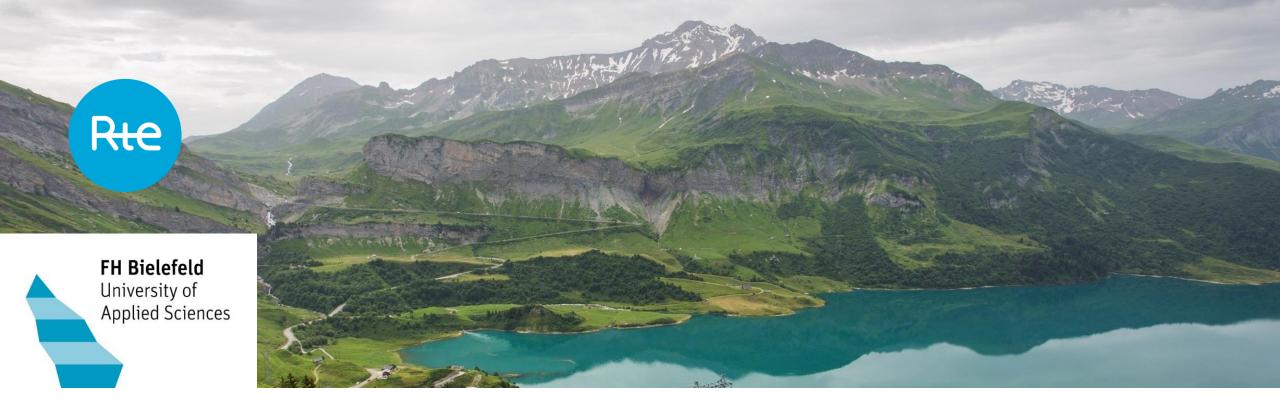


Case	Simulation time gain ODE -> DAE (%)
ThreeConv with derivatives variables	-52%
ThreeConv without derivatives variables	-54%
Ireland network	-25%

Conclusion

Conclusion

- Large-scale power system simulations
 - > A very large and sparse network connecting components having a dynamic behavior (in TS domain).
 - Large set of hybrid, stiff and sparse index 1 semi-explicit set of equations
 - Domain-specific tools have been optimized to take advantage of this property.
 - Not a classical property for Modelica-based problems
 - Modelica-based tools not competitive with domain-specific tools
- DAE mode introduction in OpenModelica
 - > Efficient implementation keeps a light causalization process for initialization and event handling
 - Stick to a DAE approach for the simulation part
 - Enables to keep the interesting natural properties of the system.
 - > A mature feature One step towards full Modelica-based tool use for large-scale power system simulations
 - Widely used into the PowerGrids library
 - Exclusively used into « Dynaωo » (RTE's industrial Modelica / C++ simulation tool) since this summer -> it works fine!
- Next steps
 - Some additional properties of power system problems could be exploited to speed-up performances (using the redundancy between components to speed up compilation for example).
 - > Enrich the langage to deal with connectivity analysis during simulation



Q&A?