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* “Entities operating independently from the other electricity market players and responsible for the
bulk transmission of electric power on the main high voltage electric network”
» Non discriminatory and transparent access to the electricity grid
» Safe operation and maintenance of the system
» Grid infrastructure development

* RTE — French Transmission System Operator

» In charge of the largest European network (100 000 kms of EHV and HV lines — 400 to 63 kV, 2 600 substations, peak
load served > 100 GW). .

» Ensuring a stable and secure grid operation means:

s Adequacy — Acceptable steady-state (thermal overload, voltage values for materials)

+¢ Stability — Stable and possible transition between different operating points
Dynamic stability (transient, voltage, small-signal, frequency, etc.) ensured by
time-domain simulations




FH Bielefeld
A University of
Applied Sciences

Time-domain simulations

* Analysis of the system evolution during transitions

» Triggered by the normal evolution of the system (load change, production scheduled change, etc.) or by sudden change
(generator tripping, short-circuit, etc.)

Electromagnetic Transients Electromechanical Transients

» Refer to a large range of phenomena with different time constants h >< >

Long term Dynamics

* Two main domains: Transient Stability
» Electromagnetic transients (known as EMT): Stator Transients

Subsynchronous Resonance

** Time constants from 1 nsto 1 ms

* No dynamics neglegted i
* All the components have differential equations Lightning

» Electromechanical transients (known as TS): 10-7 10-5 10-3 10-1 10" 108 105
% Time constants from 1 ms to several minutes "t {e)

90 000

¢ Fast dynamics (in particular in the network) are neglegted
¢ Phasor approximation, no dynamic in the network o
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* Phasor or TS simulations are done frequently and on large scale networks

» Voltage and transient stability studies are run automatically with real time data and hours, days and week-aheads on
different scenarios

» Dynamic security assessment: simulate all network contingency every 15’

» Switch from a physically-driven network to a software-based network will even reinforce the pressure on the
simulations to be done.




FH Bielefeld

& i _ o |
@ | Large-scale industrial simulations

* Large-scale phasor simulations complexity

» Spatial: from regional to panEuropean studies (interarea oscillations)
(10 000 electrical nodes, 3 000 generators -> 130 000 variables)

» Temporal: from electromechanical phenomena (~1 ms) to slow dynamics (secondary voltage regulation — minutes) ->
Stiff problems

» Hybrid: discontinuities (tap changer change in a transformer, short circuit, etc.)

—>Large set of hybrid sparse stiff semi-explicit index 1 DAE system
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Challenges and numerical methods

* Finding an acceptable enough trade-off

between performance, flexibility and Flexibility

accuracy Tailored for different

usages (voltage and
frequency stab.)

* Numerical methods optimized for power
Easy to address new

system simulations needs

» Taking advantage of the sparsity structure of the Easy to do

network unconventional studie

» Sticking to an implicit DAE problem
» Controlling accuracy

= Variable time-step with implicit integration methods and sparse linear
solvers are the reference for power system simulations

Quality

Robust
Accurate
User-friendly
Transparent
Completeness

Performances

Delivering relevant
information when it
is the most useful

Doingitina
casonable ti
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* Modelica is promising for power system modelling and simulation
» Models easy to write, share and understand
» Generic and open source language
» Adapted for physical, controls and even multi-system modelling.
= Gaining interest in the power system community and promoting by some actors

* Existing barriers or difficulties for operational large-scale simulations in Modelica with Modelica
tools
» Large system-wide centralized controls
» Dynamic connectivity/topology analysis
» Performances (runtime compilation and simulation time)

¢ Back to 2016: Simulation time on IEEE57 75* slower than real time and compilation on larger networks fails or
takes too much time!

¢ Transformation to ODE and algebraic loops processing is one of the bottleneck

1. R. Viruez, S. Machado, L. M. Zamarrefio, G. Ledn, F. Beaude, S. Petitrenaud, and J.-B. Heyberger, “A Modelica-based Tool for Power System Dynamic
Simulations,” Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017, Jul. 2017.



FH Bielefeld

& i . . .
@ | Modelica-based simulations

* Modelica is promising for power system modelling and simulation
» Models easy to write, share and understand
» Generic and open source language
» Adapted for physical, controls and even multi-system modelling.
= Gaining interest in the power system community and promoting by some actors

* Domain-specific tools development enables to bypass some limitations
» Hybrid C++ / Modelica simulation tool, initially developed by RTE — Dynawo (http://dynawo.org)

» Using native DAE sparse solvers formalism (breaking the LS and NLS built by OpenModelica Compiler)
» A few tricks to avoid large algebraic loops (model by model compilation, C++ network)

» Performances similar to current power system simulation tools

» Come to us after the presentation if you want more details

10
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* Modelica is promising for power system modelling and simulation
» Models easy to write, share and understand
» Generic and open source language
» Adapted for physical, controls and even multi-system modelling.
= Gaining interest in the power system community and promoting by some actors

—A strong need for a DAE mode in OpenModelica

¢ For enabling up to medium-size networks simulation in OM in the near future and envision large-size networks
simulation as a possible target

¢ For making it possible for power system actors (in general) to work with Modelica environments

11
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Implementation Overview
Pipeline

Frontend } Ideal DAE-Mode

« Skip the Backend entirely.

Backend ) * Create residual DAE mode equations from

Frontend structure.

Code Generation

~ Problems

Simulation

* [|nitialization
« Event Handling
 Index Reduction

13
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Frontend

Pre-Optimization

Causalization

i [ oot | oae

Post-Optimization

Code Generation

Simulation

Implementation Overview

Pipeline

Applicable DAE-Mode

Causalize and create following systems:
* Initialization (INIT)

» Event Handling (ODE)

 Simulation (DAE)

Advantages

« Tearing only affects INIT and ODE system

* Index Reduction is applied

» All Algebraic Loops are solved in one
Sparse system

14
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0 = F(x(2), x(2), y(), u(t), g(t), Gpre (), p, 1)
0 = F(x(to), x(to), y(to), u(to), 4 (to), p, to) £(6)
i(to) = f(x(to), ulto), gpre (to), P, to) x(1) State
x(to) = $(x(to), u(to), Gpre(to), p, to) y(®) Algebraic Variables
X(to) = g(x(to), ulto), Qpre (to), D, to) u(t) Inputs
q(to) = h(x(to), u(toy), Gpre(to), Do to) q(®) Discrete Variables
Gpre(t) Discrete Pre-Variables
fg% ]f () p Parameters
2(to) = ;(tz) N :;(( )) t Time
at))  \h()
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Simulation System

-
0 = F(x(8), x(8), (), u(®), q(te), gpre(te), p, t)

10 State Derivative
- _){ £(6) = £ (x(©),u(®), (), p, ) “© state
y(@) = g(x(t),ul®), q(©),p, t) y(® Algebraic Variables
q(t) = h(x(t), u(t), qpre(t), p, t) u(®) —
q(te) Discrete Variables
ODE DAE Qpre(te) Discrete Pre-Variables
x(t) £() 4 Parameters
zp(t) = (X(t)> = (g(-)> 0=F(.)—2z(@) t Time
q(t) h(.)
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Bugfixes / Features

Support Removed Equations Updated Auxiliary Variable Handling

« Variables generated from Backend
Modules (e.g. CSE, when/if condition)

* Prevent implicit solving

« Moved to extra section

« Equations without return value (e.qg.
asserts, dumping)
« Extra section outside simulation system

Advantage: Obvious ordering

Disadvantage: Forced ordering Advantage: Faster simulation

Disadvantage: Restrictions on Causalization

17
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=V Compilation failure

* ODE compilation fails with a simplified PV generator model put on a simple network
» Used for simplified time-domain simulations
» When we don’t have enough data to represent the dynamic evolution of the generator

equation

UTRefPu.valus = UPu + LambdaPu * QGenRefPu; <:>__ iiz: : :

when QGenRefPu >= (QMaxPu and pre(gStatus) <> QStatus.absorptionMax then
gStatus = QStatus.AbsorptionMax;
Timeline.logEventl (TimelineReys.GeneratorPVMaxQ) ;

elsewhen QGenRefPu <= QMinPu and pre(gStatus) <> QS5tatus.GenerationMax then
gStatus = QStatus.GenerationMax;
Timeline.logEventl (TimelineReys.GeneratorBPVMing) ;

elsewhen (QGenRefPu < QMaxPu and pre(gStatus) == @QStatus.AbsorpticonMax) or (QGenBRefPu > QMinPu and prel(gStatus) ==
OS8tatus.GenerationMax) then

gStatus = QStatus.Standard;

Timeline.logEventl (TimelineReys.GeneratorPVBackReqgulation) ;
end when;

Figure 1: SMIB system representation

if running.value then
QEenPu = if gStatus == QStatus.AbsorptionMax then QMaxPu else if gStatus == QStatus.GenerationMax then MinPu else
OGenRefPu;
else
QGenPu = 0;
end if;

19
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* ODE compilation fails on a simplified PV generator model
» Used for simplified time-domain simulations
» When we don’t have enough data to represent the dynamic evolution of the generator

e DAE simulation works

* Writing differently the model also works with ODE model

» No obvious reason for a person doing the model to write it differently

if running.wvalue then

QGenPu = if QGenRefPu >= QMaqu then QMaxPu else if QGenRefPu <= QMinPu then QMinPu else QGenRefPu;
else

QGenPu = 0;
end if;

» Addition of a pre() could have impact on the results, depending on the tool solving strategy

if running.value then
NGenPu = if pre(gStatus) == QStatus.AbsorptionMax then QMaxPu else if pre(gStatus) == QStatus.GenerationMax then QMinPu
:xlse QGenBefPu;
else
QEenPu = 0; 20
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Fig. 1: Matrix sparsity patterns

* Power system — A very sparse structure by construction

» Each bus only connected to a few other ones (a bit meshed at the transmission level, generally speaking radial at the
distribution level)

» In transient (= phasor, = electromechanical) simulation, the network part is algebraic and thus all generators see
immediately any change into the system.

» Going from DAE to ODE reduces the Jacobian size but fills it a lot.
< Many years of work to exploit and keep the sparsity in power system and mathematical communities
(Pegase European project, specific linear solver development and insertion into state-of-the-art solvers).

21
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Sparsity
Mode Size d (%)
Tt --7-

Figure 1: SMIB system representation DAE 125 32 *32 12

* Very simple test case -> Single Machine Infinite Bus test case

» Still quite ok with ODE because all the derivatives are on the same part (generator model -> 6 states).

* Let’s make it a bit more complex -> Two Machines Infinite Bus test case
» Adding another generator in parallel to the first one

** 6 more states -> 12 states, most of them related together
- Mode - Size
in ODE mode

< The density remains similar in ODE, decreases by 2 on DAE  ODE 12*12
DAE 212 54 * 54 7.2

22
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* Results on larger test cases -> ScalablePowerGrids library (developed by F. Casella)

N Pover G K w e aw

N 4 M 4 7 696 96 * 96 (1) French EHV with SL 2000 26432 92718 0.013
(2) French EHV with VDL 2000 60236 188666  0.0051
DAE 2138 706 * 706 0.43 (3) F. + one neighbor EHV, SL 3000 47900 205663 0.0089
4) F. + one neighbor EHV, VDL 3000 75300 266938  0.0047
N8M4 ODE 30 752 192 * 192 83 (5 F. + neighb. countries EHV, 5L 7500 70434 267116 0.0054
- - = (a) F. EHV + regional HV, SL 4000 00040 316280  0.0038
DAE 4 330 1426 * 0.21 7 F. EHV + regional HV, VDL 4000 197288 586745 0.0015
1 426 i8) F. + neighb. countries EHV, VDL 7500 220828 693442  0.0014
N8MS8 ODE 122 944 384 * 384 83 TABLE I: Characteristics of squared matrices with size N x N,
K nodes, sorted by nonzeros NNZ, and with density factor
DAE 8778 2882* 0.10 d= INZ - %
2 882 =~y M

L. Razik, L. Schumacher, A. Monti, A. Guironnet, and G. Bureau, “A comparative
analysis of LU decomposition methods for power system simulations,” 2019 IEEE
Milan PowerTech, Jun. 2019.
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Performances

 Time spent in the simulation process decreases as:
e Sparse linear solvers are working in their optimal conditions

* « Light » causalization during compilation time and no need to go through

large algebraic loops

* Results on simple and larger test cases:

* 3 converters network with derivatives variables in the line model (EMT)
* 3 converters network without derivatives variables in the line model (TS)

* Jreland network
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ThreeConv -52%
with derivatives variables
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without derivatives
variables
Ireland network -25%
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Conclusion

* Large-scale power system simulations

>
>
>

>
>

A very large and sparse network connecting components having a dynamic behavior (in TS domain).
Large set of hybrid, stiff and sparse index 1 semi-explicit set of equations
Domain-specific tools have been optimized to take advantage of this property.

Not a classical property for Modelica-based problems
Modelica-based tools not competitive with domain-specific tools

« DAE mode introduction in OpenModelica

>
>
>

>
>
>

Efficient implementation keeps a light causalization process for initialization and event handling
Stick to a DAE approach for the simulation part
Enables to keep the interesting natural properties of the system.

A mature feature - One step towards full Modelica-based tool use for large-scale power system simulations
Widely used into the PowerGrids library
Exclusively used into « Dynawo » (RTE’s industrial Modelica / C++ simulation tool) since this summer -> it works fine!

*  Next steps

>

>

Some additional properties of power system problems could be exploited to speed-up performances
(using the redundancy between components to speed up compilation for example).
Enrich the langage to deal with connectivity analysis during simulation

26
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