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Scope of the PowerGrids Library

• Modelling of power transmission and distribution systems

• Scale: from small academic examples to full pan-european models

• Quasi-static E/M behaviour of transmission lines → phasors

• Balanced 3-phase systems
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Scope of the PowerGrids Library

• Modelling of power transmission and distribution systems

• Scale: from small academic examples to full pan-european models

• Quasi-static E/M behaviour of transmission lines → phasors

• Balanced 3-phase systems

• Dynamic phenomena: 0.1 to 10 s
– Inertia of rotating synchronous generators

– Internal electrical dynamics of synchronous generators

– Governors, AVRs, PSSs

– Islanding transients

– Always close to nominal (50/60 Hz) frequency

• Full open-source paradigm

– Modelica language

– Open source tools (although commercial ones are also fine)

– Open source solvers

– Full access to all the details, no hidden/secret/proprietary
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Typical Design Rationale of Modelica Libraries

• Models are written by seasoned Modelica experts, 
with many years experience

• Abstraction, replaceable classes, multiple inheritance are used cleverly
– to achieve generality

– to avoid repetitions

– to minimize the Modelica source code size
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Typical Design Rationale of Modelica Libraries

• Models are written by seasoned Modelica experts, 
with many years experience

• Abstraction, replaceable classes, multiple inheritance are used cleverly
– to achieve generality

– to avoid repetitions

– to minimize the Modelica source code size

• End users are normally expected to use the models via a GUI,
not to interact with the model at the source code level.

• Example: PowerSystems library

Libraries are easy to use

Extensive Modelica training 
to adapt existing models 

or develop new ones
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Design Rationale of the PowerGrids library – I

• Power systems engineers are fairly conservative, compared to other 
sectors of engineering

• They are used to very  powerful and mature commercial domain-specific 
simulation tools
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Design Rationale of the PowerGrids library – I

• Power systems engineers are fairly conservative, compared to other 
sectors of engineering

• They are used to very  powerful and mature commercial domain-specific 
simulation tools

• In some cases, they are used to write their own simulation software

– Procedural approach

– Fortran/C/C++ code

– No model-solver separation

– Very hard work, mostly going into low-level details

– Very difficult to understand, develop, and maintain

• Model/solver separation is often a cultural shock

• A few dedicated Modelica enthusiasts are found, but selling Modelica to 
the entire community is a very difficult task

• Usually, people have more important things to do than learning Modelica!
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Design Rationale of the PowerGrids library – II

Declarative modelling makes life easier

It allows to broaden the scope of modelling 
beyond state-of-the-art tools

Models of innovative equipment
Multi-domain modelling possible
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Design Rationale of the PowerGrids library – II

Declarative modelling makes life easier

It allows to broaden the scope of modelling 
beyond state-of-the-art tools

Models of innovative equipment
Multi-domain modelling possible

Modelica should be used to make source code 
easy to understand, develop,and maintain

Keep the learning curve for domain experts
as low and smooth as possible
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Design Rationale of the PowerGrids library – III

Use the power of Modelica
to make the source code

easier to understand
not to make it arcane or obscure!
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Library design: Quantities

• Use Complex variables for phasors

– The original equations are written using complex numbers

– Modelica tools should handle them with zero performance penalty!

• Use SI units for connectors and basic physical models

– Scaling performed automatically via nominal attribute

– Avoid the confusion of having p.u. vars with multiple base quantities

– Use p.u. locally when textbook equations also do for better clarity
(e.g. synchronous machine models)



15

Library Design: Ports and Base Classes

• PortAC: basic object bound to connector current&voltage

– Contains start values of voltage and P/Q from power flow

– Defines local base quantities, p.u. quantities, and auxiliary variables

– Defined once and for all, used by all models consistently
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– OnePortACdqPU (includes Park transformation and per-uniting)
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• All low-level details (scaling, initialization, definitions of commonly used 
variables, etc.) are handled by the base classes, designed by Modelica 
experts
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Library Design: Ports and Base Classes

• PortAC: basic object bound to connector current&voltage

– Contains start values of voltage and P/Q from power flow

– Defines local base quantities, p.u. quantities, and auxiliary variables

– Defined once and for all, used by all models consistently

• Base Classes:

– OnePortAC (generators, loads)

– OnePortACdqPU (includes Park transformation and per-uniting)

– TwoPortAC (transmission lines, transformers, phase shifters)

• All low-level details (scaling, initialization, definitions of commonly used 
variables, etc.) are handled by the base classes, designed by Modelica 
experts

Domain experts can focus on 
high-level equation-based modelling

with minimal effort
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Live DemoLive Demo
with OMEditwith OMEdit

https://www.github.com/powergrids

https://www.github.com/powergrids
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Tutorial on PowerGridsTutorial on PowerGrids
with OMEditwith OMEdit

Tomorrow morning Tomorrow morning 
@MODPROD Workshop@MODPROD Workshop
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Solver Issue: Initialization - I

• Steady-state initialization is required
– Nonlinear equations involved

– Convergence is potentially problematic
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– Other variables get the same value after the first Newton iteration



22

Solver Issue: Initialization - I

• Steady-state initialization is required
– Nonlinear equations involved

– Convergence is potentially problematic

• Theoretical foundation (Casella, Bachmann 2019, submitted to AMC)
– Only variables influencing the Jacobian of the initialization problem

need to be given a good initial guess

– Other variables get the same value after the first Newton iteration

• Library design: all components with nonlinear equations have
– Parameters to set port values obtained from the power flow problem

– Binding/initial equations to compute all other required start values



23

Solver Issue: Initialization - I

• Steady-state initialization is required
– Nonlinear equations involved

– Convergence is potentially problematic

• Theoretical foundation (Casella, Bachmann 2019, submitted to AMC)
– Only variables influencing the Jacobian of the initialization problem

need to be given a good initial guess

– Other variables get the same value after the first Newton iteration

• Library design: all components with nonlinear equations have
– Parameters to set port values obtained from the power flow problem

– Binding/initial equations to compute all other required start values

Guarantee of convergence once 
power flow solution is known 
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Solver Issue: Initialization - II

• The convergence can be destroyed by tearing!
– Linear variable is selected as tearing variable

– It has no meaningful value

– Some nonlinear variables are computed in the torn section
as a function of it
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Solver Issue: Initialization - II

• The convergence can be destroyed by tearing!
– Linear variable is selected as tearing variable

– It has no meaningful value

– Some nonlinear variables are computed in the torn section
as a function of it

BOOM!



26

Solver Issue: Initialization - II

• The convergence can be destroyed by tearing!
– Linear variable is selected as tearing variable

– It has no meaningful value

– Some nonlinear variables are computed in the torn section
as a function of it

• Solution 1: No tearing at all (+ sparse solver)

• Solution 2: “Smart” tearing
– Take into account indirect influence of tearing variabes on torn 

variables

– Avoid the loss of strategic nonlinear variable start values
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Solver Issue: Initialization - II

• The convergence can be destroyed by tearing!
– Linear variable is selected as tearing variable

– It has no meaningful value

– Some nonlinear variables are computed in the torn section
as a function of it

• Solution 1: No tearing at all (+ sparse solver)

• Solution 2: “Smart” tearing
– Take into account indirect influence of tearing variabes on torn 

variables

– Avoid the loss of strategic nonlinear variable start values

• Open problems
– How to make sure the correct solver setup is automatically obtained?

– Are new standarized annotations required?
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Solver Issue: DAE mode

• The DAEs describing power systems with phasors are sparse
(local connections)

• The corresponding ODEs instead are dense
(acceleration of each generator instantaneously depends on the angle of 
all other generators)

• Causalization and solution with an ODE solver is not a good idea
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Solver Issue: DAE mode

• The DAEs describing power systems with phasors are sparse
(local connections)

• The corresponding ODEs instead are dense
(acceleration of each generator instantaneously depends on the angle of 
all other generators)

• Causalization and solution with an ODE solver is not a good idea

DAE mode should be automatically selected 
when this structure is detected

Efficient event detection and handling 
(currently based on causalized equations) 

needs new research
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Conclusions

• The PowerGrids library allows to perform phasor-based power system 
simulation using OMC-OMEdit

• The toolchain is complete, including power flow and graphical editor
and is 100% open source free software
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• The source code of component models is easily understood and written
also by Modelica novices
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Conclusions

• The PowerGrids library allows to perform phasor-based power system 
simulation using OMC-OMEdit

• The toolchain is complete, including power flow and graphical editor
and is 100% open source free software

• Excellent for teaching purposes

• The source code of component models is easily understood and written
also by Modelica novices

• Could also be expanded for serious use on large-scale systems
when better support for such systems is provided by OpenModelica
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Thank you for your
 kind attention!
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