
A Library to SupportA Library to Support
 Learning Power Systems Modeling Learning Power Systems Modeling

with OpenModelica and OMEditwith OpenModelica and OMEdit

Francesco CasellaFrancesco Casella
(francesco.casella@polimi.it)(francesco.casella@polimi.it)

Adrien GuironnetAdrien Guironnet
(adrien.guironnet@rte-france.com)(adrien.guironnet@rte-france.com)

2

Scope of the PowerGrids Library

• Modelling of power transmission and distribution systems

• Scale: from small academic examples to full pan-european models

• Quasi-static E/M behaviour of transmission lines → phasors

• Balanced 3-phase systems

3

Scope of the PowerGrids Library

• Modelling of power transmission and distribution systems

• Scale: from small academic examples to full pan-european models

• Quasi-static E/M behaviour of transmission lines → phasors

• Balanced 3-phase systems

• Dynamic phenomena: 0.1 to 10 s
– Inertia of rotating synchronous generators

– Internal electrical dynamics of synchronous generators

– Governors, AVRs, PSSs

– Islanding transients

– Always close to nominal (50/60 Hz) frequency

4

Scope of the PowerGrids Library

• Modelling of power transmission and distribution systems

• Scale: from small academic examples to full pan-european models

• Quasi-static E/M behaviour of transmission lines → phasors

• Balanced 3-phase systems

• Dynamic phenomena: 0.1 to 10 s
– Inertia of rotating synchronous generators

– Internal electrical dynamics of synchronous generators

– Governors, AVRs, PSSs

– Islanding transients

– Always close to nominal (50/60 Hz) frequency

• Full open-source paradigm

– Modelica language

– Open source tools (although commercial ones are also fine)

– Open source solvers

– Full access to all the details, no hidden/secret/proprietary

5

Typical Design Rationale of Modelica Libraries

• Models are written by seasoned Modelica experts,
with many years experience

• Abstraction, replaceable classes, multiple inheritance are used cleverly
– to achieve generality

– to avoid repetitions

– to minimize the Modelica source code size

6

Typical Design Rationale of Modelica Libraries

• Models are written by seasoned Modelica experts,
with many years experience

• Abstraction, replaceable classes, multiple inheritance are used cleverly
– to achieve generality

– to avoid repetitions

– to minimize the Modelica source code size

• End users are normally expected to use the models via a GUI,
not to interact with the model at the source code level.

• Example: PowerSystems library

7

Typical Design Rationale of Modelica Libraries

• Models are written by seasoned Modelica experts,
with many years experience

• Abstraction, replaceable classes, multiple inheritance are used cleverly
– to achieve generality

– to avoid repetitions

– to minimize the Modelica source code size

• End users are normally expected to use the models via a GUI,
not to interact with the model at the source code level.

• Example: PowerSystems library

Libraries are easy to use

Extensive Modelica training
to adapt existing models

or develop new ones

8

Design Rationale of the PowerGrids library – I

• Power systems engineers are fairly conservative, compared to other
sectors of engineering

• They are used to very powerful and mature commercial domain-specific
simulation tools

9

Design Rationale of the PowerGrids library – I

• Power systems engineers are fairly conservative, compared to other
sectors of engineering

• They are used to very powerful and mature commercial domain-specific
simulation tools

• In some cases, they are used to write their own simulation software

– Procedural approach

– Fortran/C/C++ code

– No model-solver separation

– Very hard work, mostly going into low-level details

– Very difficult to understand, develop, and maintain

10

Design Rationale of the PowerGrids library – I

• Power systems engineers are fairly conservative, compared to other
sectors of engineering

• They are used to very powerful and mature commercial domain-specific
simulation tools

• In some cases, they are used to write their own simulation software

– Procedural approach

– Fortran/C/C++ code

– No model-solver separation

– Very hard work, mostly going into low-level details

– Very difficult to understand, develop, and maintain

• Model/solver separation is often a cultural shock

• A few dedicated Modelica enthusiasts are found, but selling Modelica to
the entire community is a very difficult task

• Usually, people have more important things to do than learning Modelica!

11

Design Rationale of the PowerGrids library – II

Declarative modelling makes life easier

It allows to broaden the scope of modelling
beyond state-of-the-art tools

Models of innovative equipment
Multi-domain modelling possible

12

Design Rationale of the PowerGrids library – II

Declarative modelling makes life easier

It allows to broaden the scope of modelling
beyond state-of-the-art tools

Models of innovative equipment
Multi-domain modelling possible

Modelica should be used to make source code
easy to understand, develop,and maintain

Keep the learning curve for domain experts
as low and smooth as possible

13

Design Rationale of the PowerGrids library – III

Use the power of Modelica
to make the source code

easier to understand
not to make it arcane or obscure!

14

Library design: Quantities

• Use Complex variables for phasors

– The original equations are written using complex numbers

– Modelica tools should handle them with zero performance penalty!

• Use SI units for connectors and basic physical models

– Scaling performed automatically via nominal attribute

– Avoid the confusion of having p.u. vars with multiple base quantities

– Use p.u. locally when textbook equations also do for better clarity
(e.g. synchronous machine models)

15

Library Design: Ports and Base Classes

• PortAC: basic object bound to connector current&voltage

– Contains start values of voltage and P/Q from power flow

– Defines local base quantities, p.u. quantities, and auxiliary variables

– Defined once and for all, used by all models consistently

16

Library Design: Ports and Base Classes

• PortAC: basic object bound to connector current&voltage

– Contains start values of voltage and P/Q from power flow

– Defines local base quantities, p.u. quantities, and auxiliary variables

– Defined once and for all, used by all models consistently

• Base Classes:

– OnePortAC (generators, loads)

– OnePortACdqPU (includes Park transformation and per-uniting)

– TwoPortAC (transmission lines, transformers, phase shifters)

• All low-level details (scaling, initialization, definitions of commonly used
variables, etc.) are handled by the base classes, designed by Modelica
experts

17

Library Design: Ports and Base Classes

• PortAC: basic object bound to connector current&voltage

– Contains start values of voltage and P/Q from power flow

– Defines local base quantities, p.u. quantities, and auxiliary variables

– Defined once and for all, used by all models consistently

• Base Classes:

– OnePortAC (generators, loads)

– OnePortACdqPU (includes Park transformation and per-uniting)

– TwoPortAC (transmission lines, transformers, phase shifters)

• All low-level details (scaling, initialization, definitions of commonly used
variables, etc.) are handled by the base classes, designed by Modelica
experts

Domain experts can focus on
high-level equation-based modelling

with minimal effort

18

Live DemoLive Demo
with OMEditwith OMEdit

https://www.github.com/powergrids

https://www.github.com/powergrids

19

Tutorial on PowerGridsTutorial on PowerGrids
with OMEditwith OMEdit

Tomorrow morning Tomorrow morning
@MODPROD Workshop@MODPROD Workshop

20

Solver Issue: Initialization - I

• Steady-state initialization is required
– Nonlinear equations involved

– Convergence is potentially problematic

21

Solver Issue: Initialization - I

• Steady-state initialization is required
– Nonlinear equations involved

– Convergence is potentially problematic

• Theoretical foundation (Casella, Bachmann 2019, submitted to AMC)
– Only variables influencing the Jacobian of the initialization problem

need to be given a good initial guess

– Other variables get the same value after the first Newton iteration

22

Solver Issue: Initialization - I

• Steady-state initialization is required
– Nonlinear equations involved

– Convergence is potentially problematic

• Theoretical foundation (Casella, Bachmann 2019, submitted to AMC)
– Only variables influencing the Jacobian of the initialization problem

need to be given a good initial guess

– Other variables get the same value after the first Newton iteration

• Library design: all components with nonlinear equations have
– Parameters to set port values obtained from the power flow problem

– Binding/initial equations to compute all other required start values

23

Solver Issue: Initialization - I

• Steady-state initialization is required
– Nonlinear equations involved

– Convergence is potentially problematic

• Theoretical foundation (Casella, Bachmann 2019, submitted to AMC)
– Only variables influencing the Jacobian of the initialization problem

need to be given a good initial guess

– Other variables get the same value after the first Newton iteration

• Library design: all components with nonlinear equations have
– Parameters to set port values obtained from the power flow problem

– Binding/initial equations to compute all other required start values

Guarantee of convergence once
power flow solution is known

24

Solver Issue: Initialization - II

• The convergence can be destroyed by tearing!
– Linear variable is selected as tearing variable

– It has no meaningful value

– Some nonlinear variables are computed in the torn section
as a function of it

25

Solver Issue: Initialization - II

• The convergence can be destroyed by tearing!
– Linear variable is selected as tearing variable

– It has no meaningful value

– Some nonlinear variables are computed in the torn section
as a function of it

BOOM!

26

Solver Issue: Initialization - II

• The convergence can be destroyed by tearing!
– Linear variable is selected as tearing variable

– It has no meaningful value

– Some nonlinear variables are computed in the torn section
as a function of it

• Solution 1: No tearing at all (+ sparse solver)

• Solution 2: “Smart” tearing
– Take into account indirect influence of tearing variabes on torn

variables

– Avoid the loss of strategic nonlinear variable start values

27

Solver Issue: Initialization - II

• The convergence can be destroyed by tearing!
– Linear variable is selected as tearing variable

– It has no meaningful value

– Some nonlinear variables are computed in the torn section
as a function of it

• Solution 1: No tearing at all (+ sparse solver)

• Solution 2: “Smart” tearing
– Take into account indirect influence of tearing variabes on torn

variables

– Avoid the loss of strategic nonlinear variable start values

• Open problems
– How to make sure the correct solver setup is automatically obtained?

– Are new standarized annotations required?

28

Solver Issue: DAE mode

• The DAEs describing power systems with phasors are sparse
(local connections)

• The corresponding ODEs instead are dense
(acceleration of each generator instantaneously depends on the angle of
all other generators)

• Causalization and solution with an ODE solver is not a good idea

29

Solver Issue: DAE mode

• The DAEs describing power systems with phasors are sparse
(local connections)

• The corresponding ODEs instead are dense
(acceleration of each generator instantaneously depends on the angle of
all other generators)

• Causalization and solution with an ODE solver is not a good idea

DAE mode should be automatically selected
when this structure is detected

30

Solver Issue: DAE mode

• The DAEs describing power systems with phasors are sparse
(local connections)

• The corresponding ODEs instead are dense
(acceleration of each generator instantaneously depends on the angle of
all other generators)

• Causalization and solution with an ODE solver is not a good idea

DAE mode should be automatically selected
when this structure is detected

Efficient event detection and handling
(currently based on causalized equations)

needs new research

31

Conclusions

• The PowerGrids library allows to perform phasor-based power system
simulation using OMC-OMEdit

• The toolchain is complete, including power flow and graphical editor
and is 100% open source free software

32

Conclusions

• The PowerGrids library allows to perform phasor-based power system
simulation using OMC-OMEdit

• The toolchain is complete, including power flow and graphical editor
and is 100% open source free software

• Excellent for teaching purposes

• The source code of component models is easily understood and written
also by Modelica novices

33

Conclusions

• The PowerGrids library allows to perform phasor-based power system
simulation using OMC-OMEdit

• The toolchain is complete, including power flow and graphical editor
and is 100% open source free software

• Excellent for teaching purposes

• The source code of component models is easily understood and written
also by Modelica novices

• Could also be expanded for serious use on large-scale systems
when better support for such systems is provided by OpenModelica

34

Thank you for your
 kind attention!

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34

