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Modelica and Power Systems
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Previous and Related Efforts

• Modelica for power systems was first attempted in the early 2000’s (Wiesmann & Bachmann,
Modelica 2000) - “electro-magnetic transient (EMT) modeling” approach.

– SPOT (Weissman, EPL-Modelon) and its close relative PowerSystems (Franke, 2014);
supports multiple modeling approaches –i.e. 3phase, steady-state, “transient stability”, etc.

• Electro-mechanical modeling or “transient stability” modeling:

– Involves electro-mechanical dynamics, and neglects (very) fast transients

– For system-wide analysis, easier to simulate/analyze - domain specific tools approach

• ObjectStab (Larsson, 2002; Winkler, 2015) adopts transient modeling.

• The PEGASE EU project (2011) developed a small library of components in Scilab, which
where ported to proper Modelica in the FP7 iTesla project (2012-2016).

• The iPSL - iTesla Power Systems Library (Vanfretti et al, Modelica 2014, SoftwareX 2016), was
released during 2015. Most models validated against typical power system tools.

OpenIPSL takes iPSL as a starting point and moves it forward (this presentation).

• F. Casella (OpenModelica 2016, Modelica 2017) presents the challenges of dealing with large
power networks using Modelica, and a dedicated library to investigate them using OM.
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Modelica and Power Systems
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Why another library for power systems?

• Why not use one of the existing Modelica projects?

• There is no technical argument: in principle, either SPOT, PowerSystems, or ObjecStab
could have been used instead of creating a new library (iPSL or OpenIPSL)

Social Aspects (Vanfretti et al, Modelica 2014):

• Resistance to change: irrational and dysfunctional reaction of users

– Users of conventional power system tools are skeptical about any other tools different to the one
they use (or develop), and have concerns about new technologies (lack of knowledge)

• Change agents contribute (+/-) to address resistance through actions and interactions:

– Did not impose the use of a software tool, instead:

– Propose a common math. “description”: use of Modelica for unambiguous model exchange.

• Decrease avoidance forces:

– SW-to-SW validation give quantitatively an similar answer than domain specific tools.

A never-ending effort:
• Our (my) goal has been to bridge the gap between the Modelica and power systems community by

– Addressing resistance to change (see above)

– Interacting with both communities – different levels of success…



• KTH SmarTS Lab (my research team) actively participated in the group or partners 
developing iPSL until the end of the iTesla project (March 2016)

• iPSL is a nice prototype, but we identified the following issues:

• Development: Need for compatibility with OpenModelica, (better) use of object 
orientation and proper use of the Modelica language features.

• Maintenance: poor harmonization, lack of code factorization, etc.

• Human issues: The development workflow was complex, because of

– Different parties with disparate objectives, levels of knowledge, philosophy, etc. 

New research requirements and the experiences from previous effort indicated: 

- a clear need for a different development approach –

one that should address a complex development & maintenance workflow!

• OpenIPSL started as a fork of iPSL

• OpenIPSL is hosted on GitHub at https://github.com/SmarTS-Lab/OpenIPSL

• OpenIPSL is actively developed by SmarTS Lab members and friends, as a 
research and education oriented library for power systems
 it is ok to try things out ! 

The OpenIPSL Project
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Fork: copy of a project going in a 

different development direction

https://github.com/SmarTS-Lab/OpenIPSL


The OpenIPSL Library
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OpenIPSL is an open-source Modelica

library for power systems

• It contains a set of power system 

components for phasor time domain

modeling and simulation

• Models have been validated against a 

number of reference tools

OpenIPSL enables:

• Unambiguous model exchange

• Formal mathematical description of 

models

• Separation of models from IDEs and 

solvers

• Use of object-oriented paradigms

OpenIPSL



The OpenIPSL Project Documentation
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The intention is to have comprehensive 
documentation in the repositories:

• Documentation of the code changes

 Explicit messages in commits
and pull-requests

• Documentation of the project

– Presentation

– User guide 

– Dev. guidelines & How to 
contribute

 The documentation is written in 
reStructuredText (reST) hosted on 
http://openipsl.readthedocs.io/

Note: Model documentation is not 
included, users are referred to the 
proprietary documentations. 
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OpenIPSL



The OpenIPSL Project 
Latest Developments/Contributions
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Some of the latest development in the library: 

• 100% Compatibility with OM (100% Check, 100% Simulation for 
components) through efforts in Continuous Integration adoption

• Change in the models to include inheritance (code factorizing)

• Fixing and validating network models (thanks to CI)

• Component for interfacing OpenIPSL with 3 phase models (aka 
MonoTri)

o For distribution grid (unbalanced) simulations

o Starting point for mixed transmission and distribution network 
simulations

ENTSO-E IOP:

• Proof of concept and test model

• Excitation system and small network model

OpenCPS Models

• Small power network models for analysis of continuous and hybrid 
systems (sampling and discretized AVR model)

• Use case examples being developed will be added soon.
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How to master a complex development workflow?

Continuous Integration

New research requirements and the experiences from previous effort indicated a clear need for a different 

development approach - one that should address a complex development and maintenance workflow!



A Collaborative Workflow 
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We adopted the pull-request workflow  (or GitHub workflow): 

• Participants fork the repository and work in their repository

• Changes are submitted to the main repository as pull-requests

• The pull-requests are reviewed by “admin” members of the repository 

o upon validation the changes are merged in the code of the repository
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• Mistakes can be made by members of our team, we 

are still learning!

• The Git workflow adopted allows to minimize the 

impact of these errors.

• Increased library quality!



Toward Continuous Integration
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• The previous workflow was used by only few 
people and resulted in no control over the code 
quality, even though DVCS was being used. 

• The newly adopted workflow turned suitable for 
the development team, but generated a strong 
burden for the code review
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This sparked the idea of implementing a Continuous Integration 

workflow:

 Focus on “lighter”, more frequent pull-requests, containing less code

change, all related to a single feature to facilitate the code validation

 Implement a CI service to automate recurring code validation tests, to 

liberate “admin” resources. 



Continuous Integration (CI) Service

14

A CI service was implemented and integrated to the repository. The 

Modelica support was achieved with the following architecture:

• Travis as CI service provider

• Docker as the “virtualization” architecture

• DockerHub to host a Docker image with Python & OpenModelica

The CI performs automated syntax checks on the library.New changes 

are submitted as 

a new pull 

request to the 

master branch 

The pull 

request triggers 

the Travis CI

The tailored 

Docker image 

is pulledThe 

reference 

traces are 

pulled from a 

dedicated 

server

The latest version of 

the library containing 

the changes is 

pulled from GitHub

The Docker is 

instantiated to 

create a 

replicable 

environment 

where the tests 

are carried out

The pass / fail 

flag from the 

tests on Travis 

is sent to Github

2017-02-06OPENMODELICA WORKSHOP
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Go to the OpenIPSL Github repo: https://github.com/SmarTS-Lab/OpenIPSL, see runTest.py

Click to see the IO from Travis

https://github.com/SmarTS-Lab/OpenIPSL


Extension of the CI Service
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The first implementation eliminated parts of the ‘rebarbative’ tasks by 
automating the code checks:

• Avoid error propagation in the library, models “out-of-sync” 

• Implementation entirely based on OpenModelica
 100% OM Compatibility achieved !

From this successful implementation, an extension was investigated to include
model validation into the CI service:

• Model validation tests were carried out “offline” during 
the model development stages
 We did it before! 

• Automated model validation (aka regression testing), 
ensures code changes won’t affect existing models
 Library integrity guaranteed
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Model Validation Workflow (SW-to-SW) (1/2)
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In the original implementation of the models of the OpenIPSL, a software-

to-software validation workflow was designed and carried out “offline”: 

• Models are implemented from several reference programs

• PSAT, domain specific tool in MATLAB/Simulink by F. Milano

• PSS/E, domain specific tool from Siemens PTI

• Modelica models were validated using small scale power network

• The traces from the Modelica models were qualitatively and 

quantitatively assessed: compared to the reference traces
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 Gives confidence to users having a long 

experience with these reference software …



Model Validation Workflow (SW-to-SW) (2/2)
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Continuous Integration (CI)
Full workflow implementation
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Workflow Summary:

• A two-stage process

– Modelica syntax check

– Model validation check

• Fully automated through online 

CI services

 Diagnostic help to the developers 

to locate the error
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Continuous Integration (CI)
GitHub Integration
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OR

Syntax Error

Model Error

Merging Blocked
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All OK !
Merging Allowed



Questions?
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Main Take Away(s)

The implementation of Continuous Integration 

services allows to: 

• Systematically check the code syntax

• Systematically check the integrity of the library 

(through SW-to-SW validation)

 Easier collaboration with more developers

 Easier to diagnostic potential errors

 Better code quality 

Other existing Modelica libraries could adopt CI:

 Better compatibility with OM and 

 Modelica language version(s).

The OpenIPSL library can be found online: https://github.com/SmarTS-Lab/OpenIPSL

Come to the MODPROD Tutorial 3 to learn to use OpenIPSL!

https://github.com/SmarTS-Lab/OpenIPSL


Our work on OpenIPSL has been published 

in the SoftwareX Journal:
• http://dx.doi.org/10.1016/j.softx.2016.05.001
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The OpenIPSL can be found online
• https://github.com/SmarTS-Lab/OpenIPSL

RaPId, a system identification software 

that uses OpenIPSL can be found at:

• https://github.com/SmarTS-Lab/iTesla_RaPId

• http://dx.doi.org/10.1016/j.softx.2016.07.004

Thanks to all current and 

former students and 

developers at

http://dx.doi.org/10.1016/j.softx.2016.05.001
https://github.com/SmarTS-Lab/OpenIPSL
https://github.com/SmarTS-Lab/iTesla_RaPId
http://dx.doi.org/10.1016/j.softx.2016.07.004

