
Assoc. Prof. Luigi Vanfretti - luigiv@kth.se https://www.kth.se/profile/luigiv/

Development and Continuous
Integration of the OpenIPSL
Modelica Library for Power Systems Simulation

Maxime Baudette, Tin Rabuzin and Luigi Vanfretti

Annual Workshop

February 6th, 2017

Linköping University, Sweden

This work was supported in part by:

Outline

22017-02-06OPENMODELICA WORKSHOP

• OpenIPSL

• Modelica and Power Systems

• OpenIPSL

• Project Documentation

• Latest Developments

• Continuous Integration

• A Collaborative Workflow

• Toward Continuous Integration

• Continuous Integration Service

• Extensions

• Model Validation

• GitHub Integration

Modelica and Power Systems

3

Previous and Related Efforts

• Modelica for power systems was first attempted in the early 2000’s (Wiesmann & Bachmann,
Modelica 2000) - “electro-magnetic transient (EMT) modeling” approach.

– SPOT (Weissman, EPL-Modelon) and its close relative PowerSystems (Franke, 2014);
supports multiple modeling approaches –i.e. 3phase, steady-state, “transient stability”, etc.

• Electro-mechanical modeling or “transient stability” modeling:

– Involves electro-mechanical dynamics, and neglects (very) fast transients

– For system-wide analysis, easier to simulate/analyze - domain specific tools approach

• ObjectStab (Larsson, 2002; Winkler, 2015) adopts transient modeling.

• The PEGASE EU project (2011) developed a small library of components in Scilab, which
where ported to proper Modelica in the FP7 iTesla project (2012-2016).

• The iPSL - iTesla Power Systems Library (Vanfretti et al, Modelica 2014, SoftwareX 2016), was
released during 2015. Most models validated against typical power system tools.

OpenIPSL takes iPSL as a starting point and moves it forward (this presentation).

• F. Casella (OpenModelica 2016, Modelica 2017) presents the challenges of dealing with large
power networks using Modelica, and a dedicated library to investigate them using OM.

2017-02-06OPENMODELICA WORKSHOP

Modelica and Power Systems

42017-02-06OPENMODELICA WORKSHOP

Why another library for power systems?

• Why not use one of the existing Modelica projects?

• There is no technical argument: in principle, either SPOT, PowerSystems, or ObjecStab
could have been used instead of creating a new library (iPSL or OpenIPSL)

Social Aspects (Vanfretti et al, Modelica 2014):

• Resistance to change: irrational and dysfunctional reaction of users

– Users of conventional power system tools are skeptical about any other tools different to the one
they use (or develop), and have concerns about new technologies (lack of knowledge)

• Change agents contribute (+/-) to address resistance through actions and interactions:

– Did not impose the use of a software tool, instead:

– Propose a common math. “description”: use of Modelica for unambiguous model exchange.

• Decrease avoidance forces:

– SW-to-SW validation give quantitatively an similar answer than domain specific tools.

A never-ending effort:
• Our (my) goal has been to bridge the gap between the Modelica and power systems community by

– Addressing resistance to change (see above)

– Interacting with both communities – different levels of success…

• KTH SmarTS Lab (my research team) actively participated in the group or partners
developing iPSL until the end of the iTesla project (March 2016)

• iPSL is a nice prototype, but we identified the following issues:

• Development: Need for compatibility with OpenModelica, (better) use of object
orientation and proper use of the Modelica language features.

• Maintenance: poor harmonization, lack of code factorization, etc.

• Human issues: The development workflow was complex, because of

– Different parties with disparate objectives, levels of knowledge, philosophy, etc.

New research requirements and the experiences from previous effort indicated:

- a clear need for a different development approach –

one that should address a complex development & maintenance workflow!

• OpenIPSL started as a fork of iPSL

• OpenIPSL is hosted on GitHub at https://github.com/SmarTS-Lab/OpenIPSL

• OpenIPSL is actively developed by SmarTS Lab members and friends, as a
research and education oriented library for power systems
 it is ok to try things out !

The OpenIPSL Project

5
Fork: copy of a project going in a

different development direction

https://github.com/SmarTS-Lab/OpenIPSL

The OpenIPSL Library

OPENMODELICA WORKSHOP 62017-02-06

OpenIPSL is an open-source Modelica

library for power systems

• It contains a set of power system

components for phasor time domain

modeling and simulation

• Models have been validated against a

number of reference tools

OpenIPSL enables:

• Unambiguous model exchange

• Formal mathematical description of

models

• Separation of models from IDEs and

solvers

• Use of object-oriented paradigms

OpenIPSL

The OpenIPSL Project Documentation

9

The intention is to have comprehensive
documentation in the repositories:

• Documentation of the code changes

 Explicit messages in commits
and pull-requests

• Documentation of the project

– Presentation

– User guide

– Dev. guidelines & How to
contribute

 The documentation is written in
reStructuredText (reST) hosted on
http://openipsl.readthedocs.io/

Note: Model documentation is not
included, users are referred to the
proprietary documentations.

2017-02-06OPENMODELICA WORKSHOP

OpenIPSL

The OpenIPSL Project
Latest Developments/Contributions

10

Some of the latest development in the library:

• 100% Compatibility with OM (100% Check, 100% Simulation for
components) through efforts in Continuous Integration adoption

• Change in the models to include inheritance (code factorizing)

• Fixing and validating network models (thanks to CI)

• Component for interfacing OpenIPSL with 3 phase models (aka
MonoTri)

o For distribution grid (unbalanced) simulations

o Starting point for mixed transmission and distribution network
simulations

ENTSO-E IOP:

• Proof of concept and test model

• Excitation system and small network model

OpenCPS Models

• Small power network models for analysis of continuous and hybrid
systems (sampling and discretized AVR model)

• Use case examples being developed will be added soon.

2017-02-06OPENMODELICA WORKSHOP

11

How to master a complex development workflow?

Continuous Integration

New research requirements and the experiences from previous effort indicated a clear need for a different

development approach - one that should address a complex development and maintenance workflow!

A Collaborative Workflow

12

We adopted the pull-request workflow (or GitHub workflow):

• Participants fork the repository and work in their repository

• Changes are submitted to the main repository as pull-requests

• The pull-requests are reviewed by “admin” members of the repository

o upon validation the changes are merged in the code of the repository

2017-02-06OPENMODELICA WORKSHOP

• Mistakes can be made by members of our team, we

are still learning!

• The Git workflow adopted allows to minimize the

impact of these errors.

• Increased library quality!

Toward Continuous Integration

13

• The previous workflow was used by only few
people and resulted in no control over the code
quality, even though DVCS was being used.

• The newly adopted workflow turned suitable for
the development team, but generated a strong
burden for the code review

2017-02-06OPENMODELICA WORKSHOP

This sparked the idea of implementing a Continuous Integration

workflow:

 Focus on “lighter”, more frequent pull-requests, containing less code

change, all related to a single feature to facilitate the code validation

 Implement a CI service to automate recurring code validation tests, to

liberate “admin” resources.

Continuous Integration (CI) Service

14

A CI service was implemented and integrated to the repository. The

Modelica support was achieved with the following architecture:

• Travis as CI service provider

• Docker as the “virtualization” architecture

• DockerHub to host a Docker image with Python & OpenModelica

The CI performs automated syntax checks on the library.New changes

are submitted as

a new pull

request to the

master branch

The pull

request triggers

the Travis CI

The tailored

Docker image

is pulledThe

reference

traces are

pulled from a

dedicated

server

The latest version of

the library containing

the changes is

pulled from GitHub

The Docker is

instantiated to

create a

replicable

environment

where the tests

are carried out

The pass / fail

flag from the

tests on Travis

is sent to Github

2017-02-06OPENMODELICA WORKSHOP

OPENMODELICA WORKSHOP 152017-02-06

Go to the OpenIPSL Github repo: https://github.com/SmarTS-Lab/OpenIPSL, see runTest.py

Click to see the IO from Travis

https://github.com/SmarTS-Lab/OpenIPSL

Extension of the CI Service

16

The first implementation eliminated parts of the ‘rebarbative’ tasks by
automating the code checks:

• Avoid error propagation in the library, models “out-of-sync”

• Implementation entirely based on OpenModelica
 100% OM Compatibility achieved !

From this successful implementation, an extension was investigated to include
model validation into the CI service:

• Model validation tests were carried out “offline” during
the model development stages
 We did it before!

• Automated model validation (aka regression testing),
ensures code changes won’t affect existing models
 Library integrity guaranteed

2017-02-06OPENMODELICA WORKSHOP

Model Validation Workflow (SW-to-SW) (1/2)

17

In the original implementation of the models of the OpenIPSL, a software-

to-software validation workflow was designed and carried out “offline”:

• Models are implemented from several reference programs

• PSAT, domain specific tool in MATLAB/Simulink by F. Milano

• PSS/E, domain specific tool from Siemens PTI

• Modelica models were validated using small scale power network

• The traces from the Modelica models were qualitatively and

quantitatively assessed: compared to the reference traces

2017-02-06OPENMODELICA WORKSHOP

 Gives confidence to users having a long

experience with these reference software …

Model Validation Workflow (SW-to-SW) (2/2)

18

Power Flow

Calculations

Time-domain

simulation

Graphical and

Quantitative

Assessment

Reference SW Tool Modelica Model

Time-domain

simulation

𝑅𝑀𝑆𝐸 =
1

𝑛

𝑖=1

𝑛

𝑥𝑖 − 𝑦𝑖
2

2017-02-06OPENMODELICA WORKSHOP

Continuous Integration (CI)
Full workflow implementation

19

Workflow Summary:

• A two-stage process

– Modelica syntax check

– Model validation check

• Fully automated through online

CI services

 Diagnostic help to the developers

to locate the error

2017-02-06OPENMODELICA WORKSHOP

Continuous Integration (CI)
GitHub Integration

20

OR

Syntax Error

Model Error

Merging Blocked

2017-02-06OPENMODELICA WORKSHOP

All OK !
Merging Allowed

Questions?

OPENMODELICA WORKSHOP 212017-02-06

Main Take Away(s)

The implementation of Continuous Integration

services allows to:

• Systematically check the code syntax

• Systematically check the integrity of the library

(through SW-to-SW validation)

 Easier collaboration with more developers

 Easier to diagnostic potential errors

 Better code quality

Other existing Modelica libraries could adopt CI:

 Better compatibility with OM and

 Modelica language version(s).

The OpenIPSL library can be found online: https://github.com/SmarTS-Lab/OpenIPSL

Come to the MODPROD Tutorial 3 to learn to use OpenIPSL!

https://github.com/SmarTS-Lab/OpenIPSL

Our work on OpenIPSL has been published

in the SoftwareX Journal:
• http://dx.doi.org/10.1016/j.softx.2016.05.001

Luigi Vanfretti Tin RabuzinAchour

Amazouz

Mohammed

Ahsan Adib

Murad

Francisco

José Gómez

Jan Lavenius Le Qi Maxime

Baudette
Mengjia

Zhang
Tetiana

Bogodorova

Giusseppe

Laera

Joan Russiñol

Mussons

The OpenIPSL can be found online
• https://github.com/SmarTS-Lab/OpenIPSL

RaPId, a system identification software

that uses OpenIPSL can be found at:

• https://github.com/SmarTS-Lab/iTesla_RaPId

• http://dx.doi.org/10.1016/j.softx.2016.07.004

Thanks to all current and

former students and

developers at

http://dx.doi.org/10.1016/j.softx.2016.05.001
https://github.com/SmarTS-Lab/OpenIPSL
https://github.com/SmarTS-Lab/iTesla_RaPId
http://dx.doi.org/10.1016/j.softx.2016.07.004

