TECHNISCHE
@ UNIVERSITAT
DRESDEN

Center for Information Services and High Performance Computing — TU Dresden

Willi Braun, Kshitij Kulshreshtha and Martin Flehmig

OpenModelica Workshop 2017, 06.02.2017

<l
E-Mail: martin.flehmig@tu-dresden.de Zg | H

Center for Information Services &
High Performance Computing


mailto:martin.flehmig@tu-dresden.de

Partners

PRRADOM

SIEMENS & UNIVERSITAT PADERBORN Rexroth

Bosch Group

FH Bielefeld

A University of
A 1D D 7Sl Lm . TECHNISCHE
mpp - DRESDEN

Simulation GmbH
SPONSORED BY THE

& Federal Ministry
of Education

and Research

e
TECHNISCHE H
UNIVERSITAT Z I
DRESDEN 2/19 TR Poctormones Computeas.




Motivation |

Change in Generation of Electricity

P
TECHNISCHE Z I H
@ UNIVERSITAT e

DRESDEN 3/19 High Periormance Computing



In Former Times

@ Classically large power plants with predetermined plans of action

Brown coal power station in Janschwalde (Germany), guentherhh, CC BY 2.0 e

@ B ZIH

DRESDEN 4/19 e o)



https://www.flickr.com/photos/guenterhh/4724828014
http://creativecommons.org/licenses/by/2.0/

Today and in Future

@ Many distributed small power producers (technologies: solar power, wind
energy, biogas, etc.)
@ Conventional power stations ensure basic demand and peaks

e

Challenges
@ Combine small producers and conventional power plants into virtual
power plants
@ Real time optimization of all producers, i.e., flexible adaption to denﬁgds

=

TECHNISCHE 2 H
UNIVERSITA'T I o
o oo Compuion

DRESDEN 5/19




Motivation |l

Optimal Control and Model Predictive Control

e
TECHNISCHE Z I H
@ UNIVERSITAT e

DRESDEN 6/19 High Periormance Computing



Motivation |l

Optimal Control

@ Measured data of the real process
are automatically transfered to the
HPC-system

@ Controller triggers a dynamic
optimization at defined time ©Bosch Rexroth
@ Optimization is executed on HPC-system

@ Adaption to changed production conditions

Model Predictive Control
@ Predictive control basing on a model

@ Dynamic optimization problem is solved in
every controller cycle

@ Real-time requirements

@ High-performance multi-core control
hardware (©Bosch Rexroth =

@ B ZIH

DRESDEN 7/19 High Periormance Computing




Round-up of Motivation

Tasks
@ Modelling of the energy-related facilities and their components
@ Simulation and Optimization

o Components and processes
o Performance of products in applications

@ Online optimization to allow flexible adaption to demands and conditions

Challenges
@ Rapidly increasing systems
@ More and more comprehensive and complex models

@ Limits of available optimization technologies will be reached in near
future

P
TECHNISCHE Z I H
@ UNIVERSITAT et

DRESDEN 8/19 High Periormance Computing



Computation of Derivatives

The considered simulations and optimizations fundamentally base on the
efficient computation of first and higher order derivatives.

How to obtain derivatives?
@ Hand Coded

o Implement analytical expression for the derivatives
o Finite Differences

o Approximation of the derivatives by difference quotients, e.g.,
fl(X) ~ f(x+h21—f(x)

@ Symbolic Differentiation

o Make use of computer algebra systems

9/19

—
TECHNISCHE H

UNIVERSITAT Z I ervices
DRESDEN

e
High Performance Computing



Computation of Derivatives

The considered simulations and optimizations fundamentally base on the
efficient computation of first and higher order derivatives.

How to obtain derivatives?
@ Hand Coded

o Implement analytical expression for the derivatives
o Finite Differences

o Approximation of the derivatives by difference quotients, e.g.,
fl(X) ~ f(x+h21—f(x)

@ Symbolic Differentiation

o Make use of computer algebra systems

Well know downsides.

But, can we do better?

9/19

—
TECHNISCHE H

UNIVERSITAT Z I ervices
DRESDEN

e
High Performance Computing



Computation of Derivatives

The considered simulations and optimizations fundamentally base on the
efficient computation of first and higher order derivatives.

How to obtain derivatives?
@ Hand Coded

o Implement analytical expression for the derivatives
o Finite Differences

o Approximation of the derivatives by difference quotients, e.g.,
fl(X) ~ f(x+h21—f(x)

@ Symbolic Differentiation

o Make use of computer algebra systems

Well know downsides.
But, can we do better?

Yes, we can!

—
TECHNISCHE H

UNIVERSITAT Z I ervices
DRESDEN

9/19

e
High Performance Computing



Computation of Derivatives

Algorithmic Differentiation (AD)

o Computing analytic derivatives of functions present in source code
@ Exact derivatives within machine precision
@ Low overhead

Basic idea

@ Function present in source code is can be seen as a sequence of
elementary arithmetic operations and functions

@ Analytic differentiation of elementary functions 4+ propagation by chain
rule

Two basic modes: Forward and reverse

P
TECHNISCHE H
UNIVERSITAT Z I ervices &
DRESDEN

10/19

High Performance Computing



AD forward by Example

y = f(x1, X2, x3) = sin(x1x0)x3

@ Decompose original function f into intrinsic functions

Vi X1X2

vo = sin(v)
V3 = Vo X3

y V3

TECHNISCHE
@ UNIVERSITAT
DRESDEN

ZIH

11/19

High Performance Computing



AD forward by Example

y = f(x1, X2, x3) = sin(x1x0)x3

@ Decompose original function f into intrinsic functions

@ Associate each intermediate variable v with a derivative v =

@ Apply chain rule

Vi X1X2

vo = sin(v)
V3 = X3

y V3

TECHNISCHE
@ UNIVERSITAT
DRESDEN

av;

Ox

Vi X1X2 + X1X0
\'/2 = COS( %1 ) \./1

Vg = V2X3 + V2X3
y V3

11/19

ZIH

High Performance Computing



AD forward by Example

y = f(x1, X2, x3) = sin(x1x2)x3,

What is %’1 at (1,3,7)?

@ Chose x; as only independent variable, thus x; =1, x, =0 and x3 =0

Vi X1 X0 3

i = xx+xx = 3

vo = sin(v) = 0.14112

vo = cos(vi)vy = —2.96997
Vi = X3 = 0.98784

Vi =  \WhXx3+ VX3 —20.78984
y = v = 0.98784

y = = —20.78984

TECHNISCHE
@ UNIVERSITAT
DRESDEN

ZIH

12/19

High Performance Computing



AD forward by Example

y = f(x1, X2, x3) = sin(x1x2)x3,

What is %’1 at (1,3,7)?

@ Chose x; as only independent variable, thus x; =1, x, =0 and x3 =0

Vi X1 X0 3

i = xx+xx = 3

vo = sin(v) = 0.14112

vo = cos(vi)vy = —2.96997
Vi = X3 = 0.98784

Vi =  \WhXx3+ VX3 —20.78984
y = v = 0.98784

y = = —20.78984

TECHNISCHE
@ UNIVERSITAT
DRESDEN

ZIH

12/19

High Performance Computing



AD forward by Example

y = f(x1, X2, x3) = sin(x1x2)x3,

What is %’1 at (1,3,7)?

@ Chose x; as only independent variable, thus x; =1, x, =0 and x3 =0

Vi = X1X = 3

i = xx+xx = 3

vo = sin(v) = 0.14112

vo = cos(vi)vy = —2.96997
Vi = X3 = 0.98784

3 = Wwxz+ wxg = —20.78984
y = v = 0.98784

y = = —20.78984

@ Derivatives within working accuracy
o All gradients cost O(n) function evaluations

—
TECHNISCHE Z I H
@ UNIVERSITAT s

DRESDEN 12/19 High Periormance Computing




AD in OpenModelica

So, should we implement AD functionality in OpenModelica?

No, use a well established tool, like ADOL-C!

Package ADOL-C (Automatic Differentiation by OverLoading in C++)

@ Open-Source
@ Used in many applications
@ Hugh range of functions

@ Bases on operator overloading in C/C++

class adouble {
double val;
double dot;

}

adouble operatorx (adouble a,
adouble c;
c.val = a.val % b.val;

adouble b) {

c.dot = a.dot * b.val + a.val % b.dot;

return c;

}

TECHNISCHE
UNIVERSITAT

ZIH

DRESDEN

13/19

e
High Performance Computing



Connecting ADOL-C and OpenModelica

OpenModelica + ADOL-C

@ First prototype 2014 with C++
code and adouble

o New prototype generates directly
a trace

@ No compilation needed, just read
the trace

ZIH

TECHNISCHE
@ UNIVERSITAT
DRESDEN 14/19

e
High Performance Computing



Connecting ADOL-C and OpenModelica

OpenModelica + ADOL-C

o First prototype 2014 with C++
code and adouble

@ New prototype generates directly
a trace

@ No compilation needed, just read
the trace

Example:

model A
parameter Real a=-0.25;
Real x,y;
equation
der(y)
der(x)
end A;

y/x + x%3.0 + a;
x + log(x)*(—3.0);

TECHNISCHE
@ UNIVERSITAT
DRESDEN 14/19

ZIH

e
High Performance Computing



Connecting ADOL-C and OpenModelica

OpenModelica + ADOL-C

o First prototype 2014 with C++
code and adouble

@ New prototype generates directly
a trace

@ No compilation needed, just read
the trace

Example:

Trace for model A:

model A
parameter Real a=-0.25;
Real x,y;
equation
der(y) = y/x + x%3.0 + a;
der(x) = x + log(x)=*(—3.0);
end A;

// allocation of

/ operations

op:mult-d-a loc
op:assign-p loc
op:plus_a_.a loc
op:plus_a_.a loc
op:log-op loc:0
op:mult.d_a loc
op:plus_a_a loc

P A o i A o e S o o S o i e Ay

used variables

op:assign_d.zero loc:0 }
op:assign_d.zero loc:1 }
op:assign-d.zero loc:2 }
op:assign-d.zero loc:3 }

/ define independent —> x, y
op:assign_ind loc:0 }
op:assign_ind loc:1 }

op:div_.a.a loc:1 loc:0 loc:4 }

:0 loc:5 val:3.0 }

:1 loc:6 }

:5 loc:6 loc:7 }

:4 loc:7 loc:3 }

loc:4 }

4 loc:5 val:—3.0 }

0 loc:5 loc:2 }
der(y)

// define depenpendent —> der(x),
{ op:assign_dep loc:2 }
{ op:assign_dep loc:3 }

// death_not

{ op:death_not loc:0 loc:9 }
// num real parameters

{ op:set_-numparam

loc:1 }

ZIH

TECHNISCHE
@ UNIVERSITAT
DRESDEN

14/19

High Performance Computing



OpenModelica + ADOL-C - First Results

Example:
ScalableTestSuite.Elementary.SimpleODE.Models.CascadedFirstOrder

Sparse Jacobian Evaluation: Generate and Read Performance:

_ ADOL-C OM Sym.

N ADOL-C OM Symbolical N generate read generate
100 | 0.000480442 | 0.000156783 100 | 0.0008721 | 0.0289017 | 0.0255

200 | 0.000830835 | 0.000413299 200 0.001601 | 0.0569519 | 0.04937
200 | 0.00157551 0.000952923 R e R R B
800 0.00294508 0.00209405 800 0.006973 | 0.227438 0.2311
1600 | 0.00676732 0.00536921 B R ce
3200 | 0.0141433 0.012003 3200 0.0259 0.898992 1.732
6400 | 0.0390204 0.0310391 S e e
12800 | 0.0771545 0.0756394 12800 | 0.1087 3.62892 4357

ZIH

TECHNISCHE
@ UNIVERSITAT o
DRESDEN 15/19 High Performance Computing




OpenModelica + ADOL-C - Status

Status: Early-pre-alpha prototype

We can create traces for (simple) expressions using
o standard operators (e.g., +, —, %, /)

e and standard functions (e.g., sin, cos, log, exp).

Outlook
o |f expressions
o Arrays
@ Records, functions, algorithms

@ Algebraic loops

P
TECHNISCHE Z I H
@ UNIVERSITAT e

DRESDEN 16/19 High Periormance Computing



Goals within PARADOM

Development of parallel algorithms and application of efficient optimization
methods within the OpenModelica environment with respect to HPC systems

@ Integration of ADOL-C into the OpenModelica Compiler and the
simulation runtimes C and C++

@ Linking of the optimization solvers Ipopt and HQP and OpenModelica

@ Provisioning of interfaces to suitable solvers for systems of equations
(e.g., MUMPS, SuperLU, SuiteSparse)

o Parallelization of derivative computation in ADOL-C

@ Development of parallel multiple shooting methods within HQP

s oy ]

Modell Frontend Backend Codegenerierung {3

OpenModelica-Compiler

e

@ B ZIH

DRESDEN 17/19 High Periormance Computing




Wide Appeal and Sustainability

OpenModelica, ADOL-C and HQP are open-source software projects
@ We will develop on the corresponding repositories
@ Developments can be used immediately by the communities
@ Feedback from the users

o Early and continuous build-up of know-how on user side

ADOL-C: parallel computation of derivatives
@ Independent from OpenModelica

@ Guarantees future

OpenModelica
@ Enable and speed-up large simulations

o New users due to new possibilities/capabilities

=
TECHNISCHE Z I H
Bervices &

UNIVERSITAT
DRESDEN 18/19 Vigh Performance Computnn




Thank you for your attention.

UNIVERSITAT
DRESDEN 19/19 Vigh Performance Computnn

e
TECHNISCHE Z I H
Bervices &



	Motivation
	Software und Zielstellung

