
Center for Information Services and High Performance Computing – TU Dresden

Design Approach for a Generic and Scalable

Framework for Parallel FMU Simulations
Martin Flehmig, Marc Hartung, Marcus Walther

Linkop̈ing, 02. February 2015

E-Mail: martin.flehmig@tu-dresden.de

mailto:martin.flehmig@tu-dresden.de


Outline

1 Introduction and Motivation

2 Coupled Simulations Using FMI

3 Design Approach

4 Summary and Outlook

2/23



HPC-OM

www.hpc-om.de

3/23



Outline

1 Introduction and Motivation

2 Coupled Simulations Using FMI

3 Design Approach

4 Summary and Outlook

4/23



Tasks within HPC-OM

The three main tasks/goals within the HPC-OM project are:

1. Domain independent parallelization of Modelica simulations.
Equation based parallelization using task graph.
Algorithms for task merging and clustering.
Implementation of various schedulers.
Code generation for OpenMP, PThreads and Intel TBB.
Exploiting repeated structures and vectorization in Modelica.

2. Parallel time integration.
3. Coupling of interactive simulations and an HPC system.

4. High speedups.

5/23



Tasks within HPC-OM

The three main tasks/goals within the HPC-OM project are:

1. Domain independent parallelization of Modelica simulations.
Equation based parallelization using task graph.
Algorithms for task merging and clustering.
Implementation of various schedulers.
Code generation for OpenMP, PThreads and Intel TBB.
Exploiting repeated structures and vectorization in Modelica.

2. Parallel time integration.
3. Coupling of interactive simulations and an HPC system.
4. High speedups.

5/23



Task Graph Parallelization

. . . is promising, but current restrictions are:
Model dependent benefit, because

tasks are too lightweight,
one large equation system thwarts whole parallel computation.

OpenModelica has some issues regarding large models.

6/23



How to Achieve High Speedups?

Idea: Build simulation from several FMUs to obtain multiple levels of
parallelism:

Task graph parallelization with FMUs as nodes.

Use task graph parallelization generated by OMC in each FMU.

7/23



Outline

1 Introduction and Motivation

2 Coupled Simulations Using FMI

3 Design Approach

4 Summary and Outlook

8/23



FMI/FMU - Short Recap

Can bring together sub-models from distinctive authoring tools
(language, libraries, solvers, etc.).

Models can be used in already existing production codes and frameworks.

Protects intellectual property.

Single-threaded simulations using coupled FMUs have limitations:

Suitable for real time applications?

Large and complex models have long simulation execution times and
demand for high memory consumption.

Therefore, FMU simulations exploiting today’s multi-core hardware are
needed.

9/23



FMI/FMU - Short Recap

Can bring together sub-models from distinctive authoring tools
(language, libraries, solvers, etc.).

Models can be used in already existing production codes and frameworks.

Protects intellectual property.

Single-threaded simulations using coupled FMUs have limitations:

Suitable for real time applications?

Large and complex models have long simulation execution times and
demand for high memory consumption.

Therefore, FMU simulations exploiting today’s multi-core hardware are
needed.

9/23



FMI/FMU - Short Recap

Can bring together sub-models from distinctive authoring tools
(language, libraries, solvers, etc.).

Models can be used in already existing production codes and frameworks.

Protects intellectual property.

Single-threaded simulations using coupled FMUs have limitations:

Suitable for real time applications?

Large and complex models have long simulation execution times and
demand for high memory consumption.

Therefore, FMU simulations exploiting today’s multi-core hardware are
needed.

9/23



Synchronisation Step Approach

Synchronisation of FMUs happens after predefined time intervals.

At every synchronisation point, numerical error is calculated.

In between inputs are extrapolated for single solver steps.

T0 T1 T2 T3

FMU 1

FMU 2

error control extrapolation

+ No communication between synchronisation steps.

+ Clear and strait forward implementation possible.

− Revert FMUs to last synchronisation point or even rerun simulation.

− Communication leads to delays during synchronisation points.

10/23



Synchronisation Step Approach

Synchronisation of FMUs happens after predefined time intervals.

At every synchronisation point, numerical error is calculated.

In between inputs are extrapolated for single solver steps.

T0 T1 T2 T3

FMU 1

FMU 2

error control extrapolation

+ No communication between synchronisation steps.

+ Clear and strait forward implementation possible.

− Revert FMUs to last synchronisation point or even rerun simulation.

− Communication leads to delays during synchronisation points.

10/23



Generic Approach - Idea

Values of every valid solver step are communicated.

Dependent FMUs take most recent values as inputs.

Solvers can base the error estimation on profound data.

Less interfering in solver step size.

FMU 2

FMU 1

error controle and extra-/interpolation

11/23



Generic Approach - Aspects and Challenges

Aspects

+ Just single solver steps need to be rerun.

+ Replaces unsafe extrapolation with interpolation.
+ Direct error handling, i.e.,

change of numerical behaviour is treated on occurrence,
solver step size depends only on input values, not on synch. points.

− Increasing communication effort.

− Sophisticated implementation with complex data structures.

Challenges
Asynchronous communication is needed.

→ Field of parallel computing provides several solutions.

FMUs need to be smartly distributed on system for high efficiency.

→ Knowledge transfer from task scheduling.

Adoptable to different simulation setups.

! Requires interchangeable modular structure of the system and
components.

12/23



Generic Approach - Aspects and Challenges

Aspects

+ Just single solver steps need to be rerun.

+ Replaces unsafe extrapolation with interpolation.
+ Direct error handling, i.e.,

change of numerical behaviour is treated on occurrence,
solver step size depends only on input values, not on synch. points.

− Increasing communication effort.

− Sophisticated implementation with complex data structures.

Challenges
Asynchronous communication is needed.

→ Field of parallel computing provides several solutions.

FMUs need to be smartly distributed on system for high efficiency.

→ Knowledge transfer from task scheduling.

Adoptable to different simulation setups.

! Requires interchangeable modular structure of the system and
components.

12/23



Generic Approach - Aspects and Challenges

Aspects

+ Just single solver steps need to be rerun.

+ Replaces unsafe extrapolation with interpolation.
+ Direct error handling, i.e.,

change of numerical behaviour is treated on occurrence,
solver step size depends only on input values, not on synch. points.

− Increasing communication effort.

− Sophisticated implementation with complex data structures.

Challenges
Asynchronous communication is needed.
→ Field of parallel computing provides several solutions.

FMUs need to be smartly distributed on system for high efficiency.

→ Knowledge transfer from task scheduling.

Adoptable to different simulation setups.

! Requires interchangeable modular structure of the system and
components.

12/23



Generic Approach - Aspects and Challenges

Aspects

+ Just single solver steps need to be rerun.

+ Replaces unsafe extrapolation with interpolation.
+ Direct error handling, i.e.,

change of numerical behaviour is treated on occurrence,
solver step size depends only on input values, not on synch. points.

− Increasing communication effort.

− Sophisticated implementation with complex data structures.

Challenges
Asynchronous communication is needed.
→ Field of parallel computing provides several solutions.

FMUs need to be smartly distributed on system for high efficiency.
→ Knowledge transfer from task scheduling.

Adoptable to different simulation setups.

! Requires interchangeable modular structure of the system and
components.

12/23



Generic Approach - Aspects and Challenges

Aspects

+ Just single solver steps need to be rerun.

+ Replaces unsafe extrapolation with interpolation.
+ Direct error handling, i.e.,

change of numerical behaviour is treated on occurrence,
solver step size depends only on input values, not on synch. points.

− Increasing communication effort.

− Sophisticated implementation with complex data structures.

Challenges
Asynchronous communication is needed.
→ Field of parallel computing provides several solutions.

FMUs need to be smartly distributed on system for high efficiency.
→ Knowledge transfer from task scheduling.

Adoptable to different simulation setups.
! Requires interchangeable modular structure of the system and

components.

12/23



FMU Simulation Framework

Final goal is a generic and scalable framework for coupled FMU simulations.

InitializationInitializationInitialization I/O

FMI

Solver

Communication

Framework for Parallel FMU Simulation

OpenMP

MPI

Error control/handling

Simulation Data Management

Adaptive step sizesUser friendliness Scalable

Generic

C++

13/23



Outline

1 Introduction and Motivation

2 Coupled Simulations Using FMI

3 Design Approach

4 Summary and Outlook

14/23



DataHistory

Challenge: How to provide input/output data for asynchronous simulation?

Answer: Use buffers!

Saves relevant state values of FMUs.

Input values are written remotely.

Interface for accessing input values on local storage.

FMU 2

FMU 1

15/23



DataHistory

Challenge: How to provide input/output data for asynchronous simulation?
Answer: Use buffers!

Saves relevant state values of FMUs.

Input values are written remotely.

Interface for accessing input values on local storage.

Buffer

FMU 2

FMU 1

15/23



DataManager

Challenge: How to achieve efficient communication and handling of parallel
FMU simulation?

Answer: Use a manager!

Initiates shared and distributed memory writes for input values.

Writes result data to file.

Controls DataHistory, e.g., flushes unnecessary data.

Interpolation/extrapolation of input data.

→ Hides communication and data flow from solvers.

Buffer

FMU 2

FMU 1

16/23



DataManager

Challenge: How to achieve efficient communication and handling of parallel
FMU simulation?
Answer: Use a manager!

Initiates shared and distributed memory writes for input values.

Writes result data to file.

Controls DataHistory, e.g., flushes unnecessary data.

Interpolation/extrapolation of input data.

→ Hides communication and data flow from solvers.

Buffer

FMU 2

FMU 1

16/23



Outline

1 Introduction and Motivation

2 Coupled Simulations Using FMI

3 Design Approach

4 Summary and Outlook

17/23



Summary

Presented approach for efficient asynchronous parallel simulation of
coupled FMUs.

Key features and main challenges have been identified:

Use task graph parallelized FMUs generated from OpenModelica.
Use model exchange FMUs in order to obtain asynchronous simulation.

! Need scalable data structures and communication.
! Need localized buffers to provide input values for FMUs.

18/23



Outlook

What has to be done?

Finish implementation.

Show scalability by performing large simulation with numerous FMUs.

Find a fancy name for this piece of software - suggestions are welcome.

Make a release available.

19/23



HPC-OM

Thank you for your attention.

www.hpc-om.de

20/23



21/23



FMU Input Extrapolation

T0 T1 T2 T3

FMU 1

FMU 2

error control extrapolation

error control of input values only at synchronization points

in between extrapolated inputs only based on previous interval

in several cases FMUs need to be set back to last synchronization point

22/23



FMU Input Extrapolation

FMU 2

FMU 1

error controle and extra-/interpolation

error control of input values based on most recent values

solver can directly check error after every step

leading to higher numerical stability

less interfering in solver step size

more dynamical error handling possible

23/23


	Introduction and Motivation
	Coupled Simulations Using FMI
	Design Approach
	Summary and Outlook

