
Cross-compilation and testing of
OpenModelica-generated FMUs

Martin Sjölund

Programming Environments Laboratory (PELAB)
Department of Computer and Information Science

Linköping University

2016-02-01



OpenModelica – Installers

OpenModelica is compiled for many architectures, which means
there are many versions of OpenModelica to test:

I Linux
I i686-linux-gnu
I x86 64-linux-gnu
I arm-linux-gnueabihf

I OSX
I i386-apple-darwin15
I x86 64-apple-darwin15

I Windows
I MinGW 32-bit i686-w64-mingw32

I x86 64-w64-mingw32



OpenModelica – Installers

OpenModelica is compiled for many architectures, which means
there are many versions of OpenModelica to test:

I Linux
I i686-linux-gnu
I x86 64-linux-gnu
I arm-linux-gnueabihf

I OSX
I i386-apple-darwin15
I x86 64-apple-darwin15

I Windows
I i686-w64-mingw32
I x86 64-w64-mingw32



OpenModelica – Additional Architectures

OpenModelica can also compile code for more platforms:

I Windows, Visual Studio



OpenModelica – Additional Architectures

OpenModelica can also generate different kinds of code:

I C runtime (default)

I C++ runtime

I HPCOM



OpenModelica – FMI Version Choices

OpenModelica can also generate different kinds of FMUs:

I 1.0 ME

I 1.0 CS

I 2.0 ME

I 2.0 CS



Cross-Compilation

Cross-compilation is the ability to compile for a different platform
than the current one.

I It is something OpenModelica did not support earlier.

I Imagine using a 64-bit GUI for the compilation process (uses
much RAM), and a 32-bit executable for the simulation.

I Generating code for embedded systems.



Ubuntu Installer

The Ubuntu packages are now aware of cross-compilation and
install to /usr/lib/x86 64-linux-gnu/, etc. But...

I If you try to install libomc:i386, the system BLAS libraries
conflict with 64-bit version (upstream bug).

I Might work in the future.

I Ubuntu does ship with cross-compilers for armhf and
mingw-w64 as optional packages.



Windows Installer

Work in progress by Adrian.

I Based on msys2, which includes a package manager (easier to
update for new packages)

I Using mingw32 and mingw64 gcc compiler 5.3.0

I Cross compilation just for 32 and 64 bit windows



FMUs Approach

The new FMU approach is different due to a number of reasons:
I We wanted all necessary code to be part of the FMU, with no

external dependencies.
I Previously, the FMU depended on having OpenModelica

installed (some shared objects were not part of the FMU).

I We wanted to support embedded platforms, etc that
OpenModelica either does not run on or is not powerful
enough to run OM:

I Source-code FMUs can be compiled on other platforms.
I Source-code FMUs can also be cross-compiled on this or

another platform.



Source-code FMUs

Based on autoconf, generating a configure script (same script for
all FMUs).

I autoconf supports cross-compilation.

I FMU includes all solvers, etc needed for the basic OM runtime
system, including dgesv from LAPACK.

I configure script allows choosing dynamically linked executable
(like before, smaller FMU).

I configure script uses a statically linked FMU when
cross-compiling.

I The OMC API supports choosing multiple targets when
generating the FMU.

I Additional targets can be added after the FMU has been
generated.



Source-code FMUs – OMC API

buildModelFMU(FmuExportCrossCompile, version="2.0",

fmuType="me_cs", platforms ={

// Requires osxcross manually installed

"i386-apple-darwin15",

"x86_64-apple-darwin15",

// apt-get install gcc-arm-linux-gnueabihf

"arm-linux-gnueabihf",

"x86_64-linux-gnu",

// apt-get install libc6-dev :i386

"i686-linux-gnu",

// apt-get install gcc-mingw-w64-x86-64

"x86_64-w64-mingw32",

// apt-get install gcc-mingw-w64-i686

"i686-w64-mingw32"

});



Source-code FMUs – Behind the Scenes

$ unzip Test.fmu -d fmutmp

$ cd fmutmp/sources

$ ./ configure --host=i686 -w64 -mingw32 CFLAGS=-Os

$ make -j6

...

i686 -w64 -mingw32 -gcc -shared -o FmuExportCrossCompile.dll

...

mkdir -p ../ binaries/win32

cp FmuExportCrossCompile.dll ... ../ binaries/win32/

rm -f ...

cd .. && rm -f ../ Test.fmu && zip -r ../ Test.fmu *



How to Test the FMU?

I OpenModelica servers mostly run 64-bit Linux (only).

I We would like to test the FMU in a single job, but test
multiple platforms...

I OpenModelica does not come with a stand-alone FMU
simulator.

I FMUChecker is cross-platform, but only comes with a simple
euler solver.



Testing the FMU

I 64-bit Linux: Use FMUChecker (native)

I 32-bit Linux: Use FMUChecker (32-bit Linux version), since
we can run the executables natively

I 64-bit Windows: Use FMUChecker (64-bit Windows version),
running using wine

I 32-bit Windows: Use FMUChecker (32-bit Windows version),
running using wine

I 64-bit OSX: Use darling (64-bit version), which is similar to
wine

I 32-bit OSX: Could use darling (32-bit version), but did not
compile on a native 64-bit Linux...

I ARM: Could perhaps run in a simulator, but we did not test
this



Tested Platforms

I Can test cross-compilation for 7 platforms, 4 FMU versions
(1.0/2.0 ME/CS), using C runtime (28 different targets).

I Can test execution of 5 platforms (total 20 targets).

I All using a single computer running a 64-bit Ubuntu Linux.



Future Work

I Windows installer.

I Supporting Modelica libraries using external C-code (embed
those sources into the FMU).

I Embed Resources from Modelica libraries into the FMU.




