
1

Tutorial, Version May 18, 2016
Peter Fritzson
Linköping University, peter.fritzson@liu.se
Director of the Open Source Modelica Consortium
Vice Chairman of Modelica Association

Bernhard Thiele, Ph.D., bernhard.thiele@liu.se
Researcher at PELAB, Linköping University

Slides
Based on book and lecture notes by Peter Fritzson
Contributions 2004-2005 by Emma Larsdotter Nilsson, Peter Bunus
Contributions 2006-2008 by Adrian Pop and Peter Fritzson
Contributions 2009 by David Broman, Peter Fritzson, Jan Brugård,
and Mohsen Torabzadeh-Tari
Contributions 2010 by Peter Fritzson
Contributions 2011 by Peter F., Mohsen T,. Adeel Asghar,
Contributions 2012, 2013, 2014, 2015, 2016 by Peter Fritzson,
Lena Buffoni, Mahder Gebremedhin, Bernhard Thiele

Introduction to Object-Oriented Modeling,
Simulation, Debugging and Dynamic Optimization

with Modelica using OpenModelica
MOSES 2016 Workshop

2016-05-16 2 Copyright © Open Source Modelica Consortium

Modelica/OpenModelica Tutorial Plan for the
MOSES 2016 Workshop

• Wednesday slot 24. The Modelica language part 1.
Introductory hands-on Modelica modeling.
Slides 8 – 49

• Thursday slot 28. The OpenModelica tool. (slides
50 – 78) The Modelica language part 2. (slides 95-
115)

• Thursday slot 29. Hands-on with Modelica textual
equation-based modeling (slides 95-115)

3 Copyright © Open Source Modelica Consortium

Peter Fritzson
Principles of Object Oriented
Modeling and Simulation with
Modelica 3.3
A Cyber-Physical Approach

Can be ordered from Wiley or Amazon

Wiley-IEEE Press, 2014, 1250 pages

• OpenModelica
• www.openmodelica.org

• Modelica Association
• www.modelica.org

Tutorial Based on Book, Decembr 2014
Download OpenModelica Software

4 Copyright © Open Source Modelica Consortium

September 2011
232 pages

2015 –Translations
available in
Chinese,
Japanese,
Spanish

Wiley
IEEE Press

For Introductory
Short Courses on
Object Oriented
Mathematical Modeling

Introductory
Modelica Book

5 Copyright © Open Source Modelica Consortium

Acknowledgements, Usage, Copyrights

• If you want to use the Powerpoint version of these slides in
your own course, send an email to: peter.fritzson@ida.liu.se

• Thanks to Emma Larsdotter Nilsson, Peter Bunus, David
Broman, Jan Brugård, Mohsen-Torabzadeh-Tari, Adeel
Asghar, Lena Buffoni, for contributions to these slides.

• Most examples and figures in this tutorial are adapted with
permission from Peter Fritzson’s book ”Principles of Object
Oriented Modeling and Simulation with Modelica 2.1”,
copyright Wiley-IEEE Press

• Some examples and figures reproduced with permission
from Modelica Association, Martin Otter, Hilding Elmqvist,
Wolfram MathCore, Siemens

• Modelica Association: www.modelica.org
• OpenModelica: www.openmodelica.org

6 Copyright © Open Source Modelica Consortium

Outline

Part I

Introduction to Modelica and a
demo example

Part II
Modelica environments

Part III
Modelica language concepts

and textual modeling

Part IV and Part V
Graphical modeling and the

Modelica standard library
Dynamic Optimization

2

7 Copyright © Open Source Modelica Consortium

Detailed Schedule (morning version) 09.00-12.30

09:00 - Introduction to Modeling and Simulation
• Start installation of OpenModelica including OMEdit graphic editor

09:10 - Modelica – The Next Generation Modeling Language
09:25 - Exercises Part I (15 minutes)

• Short hands-on exercise on graphical modeling using OMEdit– RL Circuit

09:50 – Part II: Modelica Environments and the OpenModelica Environment
10:10 – Part III: Modelica Textual Modeling
10:15 - Exercises Part IIIa (10 minutes)

• Hands-on exerciseson textual modeling using the OpenModelica environment

10:25 – Coffee Break
10:40 - Modelica Discrete Events, Hybrid, Clocked Properties (Bernhard Thiele)
11:00- Exercises Part IIIb (15 minutes)

• Hands-on exercises on textual modeling using the OpenModelica environment

11:20– Part IV: Components, Connectors and Connections
- Modelica Libraries

11:30 – Part V Dynamic Optimization (Bernhard Thiele)
• Hands-on exercise on dynamic optimization using OpenModelica

12:00 – Exercise Graphical Modeling DCMotor using OpenModelica

8 Copyright © Open Source Modelica Consortium

Software Installation - Windows

• Start the software installation

• Install OpenModelica-1.9.4beta.exe from the USB
Stick

9 Copyright © Open Source Modelica Consortium

Software Installation – Linux (requires internet connection)

• Go to
https://openmodelica.org/index.php/download/down
load-linux and follow the instructions.

10 Copyright © Open Source Modelica Consortium

Software Installation – MAC (requires internet connection)

• Go to
https://openmodelica.org/index.php/download/down
load-mac and follow the instructions or follow the
instructions written below.

• The installation uses MacPorts. After setting up a
MacPorts installation, run the following commands
on the terminal (as root):
• echo rsync://build.openmodelica.org/macports/ >>

/opt/local/etc/macports/sources.conf # assuming you installed into /opt/local

• port selfupdate

• port install openmodelica-devel

11 Copyright © Open Source Modelica Consortium

Part I

Introduction to Modelica and
a demo example

12 Copyright © Open Source Modelica Consortium

Modelica Background: Stored Knowledge

Model knowledge is stored in books and human
minds which computers cannot access

“The change of motion is proportional
to the motive force impressed “
– Newton

3

13 Copyright © Open Source Modelica Consortium

Modelica Background: The Form – Equations

• Equations were used in the third millennium B.C.

• Equality sign was introduced by Robert Recorde in 1557

Newton still wrote text (Principia, vol. 1, 1686)
“The change of motion is proportional to the motive force
impressed ”
CSSL (1967) introduced a special form of “equation”:

variable = expression
v = INTEG(F)/m

Programming languages usually do not allow equations!

14 Copyright © Open Source Modelica Consortium

What is Modelica?

• Robotics

• Automotive

• Aircrafts

• Satellites

• Power plants

• Systems biology

A language for modeling of complex cyber-physical systems

15 Copyright © Open Source Modelica Consortium

What is Modelica?

A language for modeling of complex cyber-physical systems

Primary designed for simulation, but there are also other
usages of models, e.g. optimization.

16 Copyright © Open Source Modelica Consortium

What is Modelica?

A language for modeling of complex cyber-physical systems
i.e., Modelica is not a tool

Free, open language
specification:

There exist several free and commercial
tools, for example:

• OpenModelica from OSMC
• Dymola from Dassault systems
• Wolfram System Modeler fr Wolfram MathCore
• SimulationX from ITI
• MapleSim from MapleSoft
• AMESIM from LMS
• JModelica.org from Modelon
• MWORKS from Tongyang Sw & Control
• IDA Simulation Env, from Equa
• ESI Group Modeling tool, ESI Group

Available at: www.modelica.org

Developed and standardized
by Modelica Association

17 Copyright © Open Source Modelica Consortium

Declarative language
Equations and mathematical functions allow acausal modeling,
high level specification, increased correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic, hydraulic,
biological, control, event, real-time, etc...

Everything is a class
Strongly typed object-oriented language with a general class
concept, Java & MATLAB-like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, non-proprietary
Efficiency comparable to C; advanced equation compilation,
e.g. 300 000 equations, ~150 000 lines on standard PC

Modelica – The Next Generation Modeling Language

18 Copyright © Open Source Modelica Consortium

What is acausal modeling/design?

Why does it increase reuse?
The acausality makes Modelica library classes more
reusable than traditional classes containing assignment
statements where the input-output causality is fixed.

Example: a resistor equation:
R*i = v;

can be used in three ways:
i := v/R;
v := R*i;
R := v/i;

Modelica Acausal Modeling

4

19 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

• Multi-Domain Modeling

• Visual acausal hierarchical component modeling

• Typed declarative equation-based textual language

• Hybrid modeling and simulation

20 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Multi-Domain
Modeling

Cyber-Physical Modeling

Physical

Cyber

3 domains
- electric
- mechanics
- control

21 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Multi-Domain
Modeling

Acausal model
(Modelica)

Causal
block-based
model
(Simulink)

Keeps the physical
structure

Visual Acausal
Hierarchical
Component

Modeling

22 Copyright © Open Source Modelica Consortium

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6

r3Drive1

1

r3Motor
r3ControlqdRef

1

S

qRef

1

S

k2

i

k1

i

qddRef cut joint

l

qd

tn

Jmotor=J

gear=i

spring=c

fr
ic

=R
v0

S
rel

joint=0

S

V
s

-

+
diff

-

+
pow er

emf

La=(250/(2*D
*w

m
))

R
a=250

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200

R
p2

=5
0

Rd4=100

hall2

R
d3

=1
00

g1

g2

g3

hall1

g4

g5

rw

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

What is Special about Modelica?

Visual Acausal
Hierarchical
Component

Modeling

Multi-Domain
Modeling

Hierarchical system
modeling

Courtesy of Martin Otter

Srel = n*transpose(n)+(identity(3)- n*transpose(n))*cos(q)-
skew(n)*sin(q);
wrela = n*qd;
zrela = n*qdd;
Sb = Sa*transpose(Srel);
r0b = r0a;
vb = Srel*va;
wb = Srel*(wa + wrela);
ab = Srel*aa;
zb = Srel*(za + zrela + cross(wa, wrela));

23 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Multi-Domain
Modeling

Typed
Declarative
Equation-based
Textual Language

A textual class-based language
OO primary used for as a structuring concept

Behaviour described declaratively using
• Differential algebraic equations (DAE) (continuous-time)
• Event triggers (discrete-time)

class VanDerPol "Van der Pol oscillator model"
Real x(start = 1) "Descriptive string for x”;
Real y(start = 1) "y coordinate”;
parameter Real lambda = 0.3;

equation
der(x) = y;
der(y) = -x + lambda*(1 - x*x)*y;

end VanDerPol;

Differential equations

Variable

declarations

Visual Acausal
Hierarchical
Component

Modeling

24 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Hybrid
Modeling

Visual Acausal
Component

Modeling

Multi-Domain
Modeling

Typed
Declarative
Equation-based
Textual Language

time

Continuous-time

Discrete-time

Hybrid modeling =
continuous-time + discrete-time modeling

Clocked discrete-time

5

25 Copyright © Open Source Modelica Consortium

Block Diagram (e.g. Simulink, ...) or
Proprietary Code (e.g. Ada, Fortran, C,...)
vs Modelica

Proprietary
Code

Block Diagram

Modelica

Systems
Definition

System
Decomposition

Modeling of
Subsystems

Causality
Derivation

(manual derivation of

input/output relations) Implementation Simulation

Modelica – Faster Development, Lower Maintenance
than with Traditional Tools

26 Copyright © Open Source Modelica Consortium

Modelica vs Simulink Block Oriented Modeling
Simple Electrical Model

R1=10

C=0.01 L=0.1

R2=100

G

AC=220

p
n

p

pp

p

p

n

n

nn

-1

 1

sum3

+1

 -1

sum1

+1

+1

sum2

1
s

l2

1
s

l1sinln

1/R1

Res1

1/C

Cap

1/L

Ind

R2

Res2

Modelica:
Physical model –
easy to understand

Simulink:
Signal-flow model – hard to
understand

Keeps the
physical
structure

27 Copyright © Open Source Modelica Consortium

Graphical Modeling - Using Drag and Drop Composition

28 Copyright © Open Source Modelica Consortium

• A DC motor can be thought of as an electrical circuit which
also contains an electromechanical component

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
ElectroMechanicalElement EM(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, EM.n);
connect(EM.p, DC.n);
connect(DC.n,G.p);
connect(EM.flange,load.flange);

end DCMotor

load

EM

DC

G

R L

Multi-Domain (Electro-Mechanical) Modelica Model

29 Copyright © Open Source Modelica Consortium

Automatic transformation to ODE or DAE for simulation:

(load component not included)

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

30 Copyright © Open Source Modelica Consortium

Model Translation Process to Hybrid DAE to Code

Modelica Model

Flat model Hybrid DAE

Sorted equations

C Code

Executable

Optimized sorted
equations

Modelica
Model

Modelica
Graphical Editor

Modelica
Source code

Translator

Analyzer

Optimizer

Code generator

C Compiler

Simulation

Modelica
Textual Editor

Frontend

Backend

"Middle-end"

Modeling
Environment

6

31 Copyright © Open Source Modelica Consortium

Modelica in Power Generation
GTX Gas Turbine Power Cutoff Mechanism

Hello

Courtesy of Siemens Industrial Turbomachinery AB

Developed
by MathCore
for Siemens

32 Copyright © Open Source Modelica Consortium

Modelica in Automotive Industry

33 Copyright © Open Source Modelica Consortium

Modelica in Avionics

34 Copyright © Open Source Modelica Consortium

Modelica in Biomechanics

35 Copyright © Open Source Modelica Consortium

Application of Modelica in Robotics Models
Real-time Training Simulator for Flight, Driving

Courtesy of Tobias Bellmann, DLR,
Oberphaffenhofen, Germany

• Using Modelica models
generating real-time
code

• Different simulation
environments (e.g.
Flight, Car Driving,
Helicopter)

• Developed at DLR
Munich, Germany

• Dymola Modelica tool

36 Copyright © Open Source Modelica Consortium

• GT unit, ST unit, Drum
boilers unit and HRSG units,
connected by thermo-fluid
ports and by signal buses

• Low-temperature parts
(condenser, feedwater
system, LP circuits) are
represented by trivial
boundary conditions.

• GT model: simple law
relating the electrical load
request with the exhaust gas
temperature and flow rate.

Combined-Cycle Power Plant
Plant model – system level

Courtesy Francesco Casella, Politecnico di Milano – Italy
and Francesco Pretolani, CESI SpA - Italy

7

37 Copyright © Open Source Modelica Consortium

Attitude control for satellites
using magnetic coils as actuators

Torque generation mechanism:
interaction between coils and
geomagnetic field

Formation flying on elliptical orbits

Control the relative motion of two or more
spacecraft

Modelica Spacecraft Dynamics Library

Courtesy of Francesco Casella, Politecnico di Milano, Italy

38 Copyright © Open Source Modelica Consortium

System Dynamics – World Society Simulation
Limits to Material Growth; Population, Energy and Material flows

• System Dynamics Modelica library by Francois Cellier (ETH), et al in OM distribution.

• Warming converts many agriculture areas to deserts (USA, Europe, India, Amazonas)

• Ecological breakdown around 2080-2100, drastic reduction of world population

• To avoid this: Need for massive investments in sustainable technology and renewable
energy sources

CO2 Emissions per
person:
• USA 17 ton/yr
• Sweden 7 ton/yr
• India 1.4 ton/yr
• Bangladesh 0.3 ton/yr

Left. World3 simulation
with OpenModelica
• 2 collapse scenarios

(close to current
developments)

• 1 sustainable scenario
(green).

39 Copyright © Open Source Modelica Consortium 40 Copyright © Open Source Modelica Consortium

What Can You Do?
Need Global Sustainability Mass Movement

• Book: Current catastrophic scenarios: Mark Lynas: ”6 Degrees”
Book: How to address the problems: Tim Jackson ”Prosperity without Growth”

• Promote sustainable lifestyle and technology

• Install electric solar PV panels

• Buy shares in cooperative wind power

20 sqm solar panels on garage roof, Nov 2012
Generated 2700 W at noon March 10, 2013

Expanded to 93 sqm, 12 kW, March 2013
House produced 11600 kwh, used 9500 kwh
Avoids 10 ton CO2 emission per year

41 Copyright © Open Source Modelica Consortium

Example Electric Cars
Can be charged by electricity from own solar panels

Renault ZOE; 5 seat; Range:
• EU-drive cycle 210 km
• Realistic Swedish drive cycle:
• Summer: 165 km
• Winter: 100 – 110 km
Cheap fast supercharger

Tesla model S
range 480 km

DLR ROboMObil
• experimental electric car
• Modelica models

42 Copyright © Open Source Modelica Consortium

Small rectangles – surface needed
for 100% solar energy for humanity

Year 2013 –China installed 12Gw, production 14 Twh/yr
More than doubling capacity. Germany installed 3.3 Gw

Good News

8

43 Copyright © Open Source Modelica Consortium

Sustainable Society Necessary for Human Survival

Almost Sustainable

• India, 1.4 ton C02/person/year

• Healthy vegetarian food

• Small-scale agriculture

• Small-scale shops

• Simpler life-style (Mahatma Gandhi)

Non-sustainable

• USA 17 ton CO2, Sweden 7 ton CO2/yr

• High meat consumption (1 kg beef uses ca
4000 L water for production)

• Hamburgers, unhealthy , includes beef

• Energy-consuming mechanized agriculture

• Transport dependent shopping centres

• Stressful materialistic lifestyle

Gandhi – role model for
future less materialistic
life style

44 Copyright © Open Source Modelica Consortium

Brief Modelica History

• First Modelica design group meeting in fall 1996
• International group of people with expert knowledge in both language

design and physical modeling
• Industry and academia

• Modelica Versions
• 1.0 released September 1997
• 2.0 released March 2002
• 2.2 released March 2005
• 3.0 released September 2007
• 3.1 released May 2009
• 3.2 released March 2010
• 3.3 released May 2012
• 3.2 rev 2 released November 2013
• 3.3 rev 1 released July 2014

• Modelica Association established 2000 in Linköping
• Open, non-profit organization

45 Copyright © Open Source Modelica Consortium

Modelica Conferences

• The 1st International Modelica conference October, 2000

• The 2nd International Modelica conference March 18-19, 2002

• The 3rd International Modelica conference November 5-6, 2003 in Linköping,
Sweden

• The 4th International Modelica conference March 6-7, 2005 in Hamburg, Germany

• The 5th International Modelica conference September 4-5, 2006 in Vienna, Austria

• The 6th International Modelica conference March 3-4, 2008 in Bielefeld, Germany

• The 7th International Modelica conference Sept 21-22, 2009 in Como, Italy

• The 8th International Modelica conference March 20-22, 2011 in Dresden,
Germany

• The 9th International Modelica conference Sept 3-5, 2012 in Munich, Germany

• The 10th International Modelica conference March 10-12, 2014 in Lund, Sweden

• The 11th International Modelica conference Sept 21-23, 2015 in Versailles, Paris

46 Copyright © Open Source Modelica Consortium

Exercises Part I
Hands-on graphical modeling

(15 minutes)

47 Copyright © Open Source Modelica Consortium

Exercises Part I – Basic Graphical Modeling

• (See instructions on next two pages)
• Start the OMEdit editor (part of OpenModelica)
• Draw the RLCircuit
• Simulate

A
C

R=10

R1

L=0.1

L

G

L=1R=100

SimulationThe RLCircuit

48 Copyright © Open Source Modelica Consortium

Exercises Part I – OMEdit Instructions (Part I)

• Start OMEdit from the Program menu under OpenModelica

• Go to File menu and choose New, and then select Model.

• E.g. write RLCircuit as the model name.

• For more information on how to use OMEdit, go to Help and choose
User Manual or press F1.

• Under the Modelica Library:
• Contains The standard Modelica library components
• The Modelica files contains the list of models you
have created.

9

49 Copyright © Open Source Modelica Consortium

Exercises Part I – OMEdit Instructions (Part II)

• For the RLCircuit model, browse the Modelica standard library and add
the following component models:

• Add Ground, Inductor and Resistor component models from
Modelica.Electrical.Analog.Basic package.

• Add SineVoltage component model from Modelica.Electrical.Analog.Sources
package.

• Make the corresponding connections between the component models
as shown in slide 38.

• Simulate the model
• Go to Simulation menu and choose simulate or click on the simulate button in the

toolbar.

• Plot the instance variables
• Once the simulation is completed, a plot variables list will appear on the right side.

Select the variable that you want to plot.

50 Copyright © Open Source Modelica Consortium

Part II

Modelica environments and OpenModelica

51 Copyright © Open Source Modelica Consortium

Courtesy
Wolfram

Research

• Wolfram Research

• USA, Sweden

• General purpose

• Mathematica integration

• www.wolfram.com

• www.mathcore.com

Car model graphical view

Wolfram System Modeler – Wolfram MathCore

Mathematica

Simulation and
analysis

52 Copyright © Open Source Modelica Consortium

• Dassault Systemes Sweden

• Sweden

• First Modelica tool on the market

• Initial main focus on automotive
industry

• www.dymola.com

Dymola

53 Copyright © Open Source Modelica Consortium

Simulation X

• ITI Gmbh (Just bought by ESI
Group)

• Germany

• Mechatronic systems

• www.simulationx.com

54 Copyright © Open Source Modelica Consortium

MapleSim

• Maplesoft

• Canada

• Recent Modelica tool on the
market

• Integrated with Maple

• www.maplesoft.com

10

55 Copyright © Open Source Modelica Consortium

The OpenModelica Environment
www.OpenModelica.org

56 Copyright © Open Source Modelica Consortium

• Advanced Interactive Modelica compiler (OMC)
• Supports most of the Modelica Language

• Modelica and Python scripting

• Basic environment for creating models
• OMShell – an interactive command handler

• OMNotebook – a literate programming notebook

• MDT – an advanced textual environment in Eclipse

56

• OMEdit graphic Editor

• OMDebugger for equations

• OMOptim optimization tool

• OM Dynamic optimizer collocation

• ModelicaML UML Profile

• MetaModelica extension

• ParModelica extension

The OpenModelica Open Source Environment
www.openmodelica.org

57 Copyright © Open Source Modelica Consortium

Industrial members
• ABB AB, Sweden
• Bosch Rexroth AG, Germany
• Siemens Turbo, Sweden
• CDAC Centre, Kerala, India
• Creative Connections, Prague
• DHI, Aarhus, Denmark
• Dynamica s.r.l., Cremona, Italy
• EDF, Paris, France
• Equa Simulation AB, Sweden
• Fraunhofer IWES, Bremerhaven
• IFPEN, Paris, France

Open-source community services
• Website and Support Forum

• Version-controlled source base

• Bug database

• Development courses

• www.openmodelica.org

Code Statistics
• Austrian Inst. of Tech, Austria
• TU Berlin, Inst. UEBB, Germany
• FH Bielefeld, Bielefeld, Germany
• TU Braunschweig, Germany
• University of Calabria, Italy
• Univ California, Berkeley, USA
• Chalmers Univ Techn, Sweden
• TU Dortmund, Germany
• TU Dresden, Germany
• Université Laval, Canada
• Ghent University, Belgium
• Halmstad University, Sweden

University members

OSMC – International Consortium for Open Source
Model-based Development Tools, 48 members Jan 2016

Founded Dec 4, 2007
• ISID Dentsu, Tokyo, Japan
• Maplesoft, Canada
• Ricardo Inc., USA
• RTE France, Paris, France
• Saab AB, Linköping, Sweden
• Scilab Enterprises, France
• SKF, Göteborg, Sweden
• TLK Thermo, Germany
• Sozhou Tongyuan, China
• VTI, Linköping, Sweden
• VTT, Finland
• Wolfram MathCore, Sweden

• Heidelberg University, Germany
• Linköping University, Sweden
• TU Hamburg/Harburg Germany
• IIT Bombay, Mumbai, India
• KTH, Stockholm, Sweden
• Univ of Maryland, Syst Eng USA
• Univ of Maryland, CEEE, USA
• Politecnico di Milano, Italy
• Ecoles des Mines, CEP, France
• Mälardalen University, Sweden
• Univ Pisa, Italy
• StellenBosch Univ, South Africa
• Telemark Univ College, Norway

58 Copyright © Open Source Modelica Consortium

OMNotebook Electronic Notebook with DrModelica

• Primarily for teaching
• Interactive electronic book
• Platform independent

Commands:
• Shift-return (evaluates a cell)
• File Menu (open, close, etc.)
• Text Cursor (vertical), Cell

cursor (horizontal)
• Cell types: text cells &

executable code cells
• Copy, paste, group cells
• Copy, paste, group text
• Command Completion (shift-

tab)

59 Copyright © Open Source Modelica Consortium

OMnotebook Interactive Electronic Notebook
Here Used for Teaching Control Theory

60 Copyright © Open Source Modelica Consortium

OM Web Notebook Generated from OMNotebook
Edit, Simulate, and Plot Models on a Web Page

OMweb
book

OMNote
book

11

61 Copyright © Open Source Modelica Consortium

OpenModelica Environment Demo

62 Copyright © Open Source Modelica Consortium

OpenModelica MDT – Eclipse Plugin

• Browsing of packages, classes, functions

• Automatic building of executables;
separate compilation

• Syntax highlighting

• Code completion,
Code query support for developers

• Automatic Indentation

• Debugger
(Prel. version for algorithmic subset)

63 Copyright © Open Source Modelica Consortium 63

OpenModelica MDT: Code Outline and Hovering Info

Code Outline for
easy navigation within
Modelica files

Identifier Info on
Hovering

64 Copyright © Open Source Modelica Consortium

OpenModelica Simulation in Web Browser Client

OpenModelica compiles
to efficient
Java Script code which is
executed in web browser

MultiBody RobotR3.FullRobot

65 Copyright © Open Source Modelica Consortium

Interactive Simulation

Tank 1 Tank 2

Liquid
Source

MaxLevel

Level h

Level h

Plot View

Requirements
Evaluation View
in ModelicaML

Domain-Specific
Visualization View

Examples of Simulation Visualization

Simulation Control

66 Copyright © Open Source Modelica Consortium

OMPython – Python Scripting with OpenModelica

• Interpretation of Modelica
commands and expressions

• Interactive Session handling

• Library / Tool

• Optimized Parser results

• Helper functions

• Deployable, Extensible and
Distributable

12

67 Copyright © Open Source Modelica Consortium

PySimulator Package

• PySimulator, a
simulation and
analysis package
developed by DLR

• Free, downloadable

• Uses OMPython to
simulate Modelica
models by
OpenModelica

68 Copyright © Open Source Modelica Consortium

Modelica3D Library

• Modelica 3D
Graphics Library
by Fraunhofer
FIRST, Berlin

• Part of
OpenModelica
distribution

• Can be used for
3D graphics in
OpenModelica

69 Copyright © Open Source Modelica Consortium

Extending Modelica with PDEs
for 2D, 3D flow problems – Research

Insulated boundary:

Poorly insulated boundary:

20infT

Conducting boundary:
60u

class PDEModel
HeatNeumann h_iso;
Dirichlet h_heated(g=50);
HeatRobin h_glass(h_heat=30000);
HeatTransfer ht;
Rectangle2D dom;

equation
dom.eq=ht;
dom.left.bc=h_glass;
dom.top.bc=h_iso;
dom.right.bc=h_iso;
dom.bottom.bc=h_heated;

end PDEModel;

Prototype in OpenModelica 2005
PhD Thesis by Levon Saldamli
www.openmodelica.org
Currently not operational

70 Copyright © Open Source Modelica Consortium

Failure Mode and Effects Analysis (FMEA) in OM

• Modelica models augmented with reliability properties can be used to generate
reliability models in Figaro, which in turn can be used for static reliability analysis

• Prototype in OpenModelica integrated with Figaro tool (which is becoming open-
source)

Modelica Library
Application
Modelica model

Simulation

Figaro Reliability
Library

Reliability model
in Figaro

FT generation FT processing

Automated
generation

71 Copyright © Open Source Modelica Consortium

Model structure Model Variables

Optimized
parameters

Optimized
Objectives

OMOptim – Optimization (1)

72 Copyright © Open Source Modelica Consortium

Problems

Solved problems Result plot Export result data .csv

OMOptim – Optimization (2)

13

73 Copyright © Open Source Modelica Consortium

Multiple-Shooting and Collocation
Dynamic Trajectory Optimization

• Minimize a goal function subject to model
equation constraints, useful e.g. for NMPC

• Multiple Shooting/Collocation
• Solve sub-problem in each sub-interval

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

1 2 4 8 16

MULTIPLE_COLLOCATION

ipopt [scaled] jac_g [scaled]

Example speedup, 16 cores:

74 Copyright © Open Source Modelica Consortium

OpenModelica Dynamic Optimization Collocation

75 Copyright © Open Source Modelica Consortium

General Tool Interoperability & Model Exchange
Functional Mock-up Interface (FMI)

• FMI development was started by ITEA2 MODELISAR project. FMI is a
Modelica Association Project now

• Version 1.0

• FMI for Model Exchange (released Jan 26,2010)

• FMI for Co-Simulation (released Oct 12,2010)

• Version 2.0

• FMI for Model Exchange and Co-Simulation (released July 25,2014)

• > 60 tools supporting it (https://www.fmi-standard.org/tools)

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling
courtesy Daimler

76 Copyright © Open Source Modelica Consortium

Functional Mockup Units

• Import and export of input/output blocks –
Functional Mock-Up Units – FMUs, described by

• differential-, algebraic-, discrete equations,

• with time-, state, and step-events

• An FMU can be large (e.g. 100 000 variables)

• An FMU can be used in an embedded system (small overhead)

• FMUs can be connected together

77 Copyright © Open Source Modelica Consortium

OpenModelica Functional Mockup Interface (FMI)

78 Copyright © Open Source Modelica Consortium

FMI in OpenModelica

• Model Exchange implemented (FMI 1.0 and FMI 2.0)

• FMI 2.0 Co-simulation available

• The FMI interface is accessible via the OpenModelica scripting
environment and the OpenModelica connection editor

14

79 Copyright © Open Source Modelica Consortium

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements
models

Unified Modeling: Meta-modeling&Modelica& UML

Business
Process
Control

Requirements
Capture

Model-Driven
Design

Compilation
& Code Gen

System
Simulation

Software &
System Product

Platform
models

Process
models

OPENPROD – Large 28-partner European Project, 2009-2012
Vision of Cyber-Physical Model-Based Product Development

OPENPROD Vision of unified modeling framework for model-based
product development.

Open Standards – Modelica (HW, SW) and UML (SW)

80 Copyright © Open Source Modelica Consortium

OPENPROD Model-Based Development Environment
Covers Product-Design V

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML

Business
Process
Control

Requirements
Capture

Model-Driven
Design

Compilation
& Code Gen

System
Simulation

Software &
System Product

Platform
models

Process
models

Specification

Design

Design
Refinement

Component verification

Subsystem level integration and
verification

Subsystem level integration test
calibration and verification

Product verification and
deployment

Maintenance

Realization

Detailed feature design and
implementation

Architectural design and
system functional design

Preliminary feature design

System
requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

81 Copyright © Open Source Modelica Consortium

Business Process Control and Modeling

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML

Business
Process
Control

Requirements
Capture

Model-Driven
Design

Compilation
& Code Gen

System
Simulation

Software &

System Product
Platform
models

Process
models

Metso Business model & simulation
VTT Simantics Graphic Modeling To

OpenModelica based simulation

Simulation of 3 strategies with
outcomes

VTT Simantics
Business process modeler

OpenModelica
compiler & simulator

82 Copyright © Open Source Modelica Consortium

Requirement Capture

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML

Business
Process
Control

Requirements
Capture

Model-Driven
Design

Compilation
& Code Gen

System
Simulation

Software &

System Product
Platform
models

Process
models

OpenModelica based simulation

vVDR (virtual Verification of
Designs against Requirements)

in ModelicaML UML/Modelica
Profile, part of OpenModelica

Design Model

Scenario Model

Requirement
Models

Verification Model

Binding

Provider from
design model

Client from requirement model

83 Copyright © Open Source Modelica Consortium

OpenModelica – ModelicaML UML Profile
SysML/UML to Modelica OMG Standardization

• ModelicaML is a UML Profile for SW/HW modeling
• Applicable to “pure” UML or to other UML profiles, e.g. SysML

• Standardized Mapping UML/SysML to Modelica
• Defines transformation/mapping for executable models

• Being standardized by OMG

• ModelicaML
• Defines graphical concrete syntax (graphical notation for diagram) for

representing Modelica constructs integrated with UML

• Includes graphical formalisms (e.g. State Machines, Activities,
Requirements)

• Which do not exist in Modelica language

• Which are translated into executable Modelica code

• Is defined towards generation of executable Modelica code

• Current implementation based on the Papyrus UML tool + OpenModelica

84 Copyright © Open Source Modelica Consortium

Example: Simulation and Requirements Evaluation

Req. 001 is instantiated 2 times (there are 2 tanks in
the system)

tank-height is 0.6m

Req. 001 for the tank2 is violated

Req. 001 for the tank1 is not violated

15

85 Copyright © Open Source Modelica Consortium

vVDR Method –
virtual Verification of Designs vs Requirements

Formalize
Requirements

Formalize Designs

Formalize
Scenarios

Create Verification
Models

Execute and
Create Report

Analyze Results

RMM Requirement
Monitor Models

Scenario
Models

SM

Designs
Alternative
Models

DAM

VM Verification Models

AUTOMATED

Task Created Artifact

Goal: Enable on-demand
verification of designs
against requirements
using automated model
composition at any time
during development.

AUTOMATED

Actor

Reports

*

86 Copyright © Open Source Modelica Consortium

Industrial Product with OEM Usage of OpenModelica

• The Wolfram SystemModeler modeling and
simulation product by Wolfram, www.wolfram.com

• Includes a large part of the OpenModelica compiler
using the OSMC OEM license.

• Images show a house heating application and an
excavator dynamics simulation.

87 Copyright © Open Source Modelica Consortium

• ABB OPTIMAX® provides advanced model based control products
for power generation and water utilities

• ABB: “ABB uses several compatible Modelica tools, including
OpenModelica, depending on specific application needs.”

• ABB: “OpenModelica provides outstanding debugging features that
help to save a lot of time during model development.”

ABB Industry Use of OpenModelica FMI 2.0 and Debugger

88 Copyright © Open Source Modelica Consortium

Performance Profiling
(Below: Profiling all equations in MSL 3.2.1 DoublePendulum)

89 Copyright © Open Source Modelica Consortium

OpenModelica MDT Algorithmic Code Debugger

90 Copyright © Open Source Modelica Consortium

The OpenModelica MDT Debugger (Eclipse-based)
Using Japanese Characters

16

91 Copyright © Open Source Modelica Consortium

OpenModelica Equation Model Debugger

0 = y + der(x * time * z); z = 1.0;

(1) substitution:
y + der(x * (time * z))
=>
y + der(x * (time * 1.0))

(2) simplify:
y + der(x * (time * 1.0))
=>
y + der(x * time)

(3) expand derivative (symbolic
diff):
y + der(x * time)
=>y + (x + der(x) * time)

(4) solve:
0.0 = y + (x + der(x) * time)
=>
der(x) = ((-y) - x) / time
time <> 0

Showing
equation
transformations
of a model:

Mapping run-time error to source model position

92 Copyright © Open Source Modelica Consortium

Debugging Example – Detecting Source of Chattering
(excessive event switching) causing bad performance

• Lkjlkjlj

• Lkjlkj

• lkjklj

equation
z = if x > 0 then -1 else 1;
y = 2 * z;

…

93 Copyright © Open Source Modelica Consortium

Error Indication – Simulation Slows Down

94 Copyright © Open Source Modelica Consortium

Exercise 1.2 – Equation-based Model Debugger

model ChatteringEvents1
Real x(start=1, fixed=true);
Real y;
Real z;

equation
z = noEvent(if x > 0 then -1 else 1);
y = 2*z;
der(x) = y;

end ChatteringNoEvents1;

In the model ChatteringEvents1, chattering takes place after t = 0.5, due to the
discontinuity in the right hand side of the first equation. Chattering can be detected
because lots of tightly spaced events are generated. The debugger allows to identify
the (faulty) equation that gives rise to all the zero crossing events.

• Switch to OMEdit text view (click on text button upper left)
• Open the Debugging.mo package file using OMEdit
• Open subpackage Chattering, then open model ChatteringEvents1
• Simulate in debug mode
• Click on the button Debug more (see prev. slide)
• Possibly start task manager and look at CPU. Then click stop simulation button

Uses 25% CPU

95 Copyright © Open Source Modelica Consortium

Part III

Modelica language concepts
and textual modeling

Hybrid
Modeling

Typed
Declarative
Equation-based
Textual Language

96 Copyright © Open Source Modelica Consortium

A resistor equation:
R*i = v;

Acausal Modeling

The order of computations is not decided at modeling time

Acausal Causal

Causal possibilities:
i := v/R;
v := R*i;
R := v/i;

Visual
Component
Level

Equation
Level

17

97 Copyright © Open Source Modelica Consortium

Typical Simulation Process

98 Copyright © Open Source Modelica Consortium

Simple model - Hello World!

model HelloWorld "A simple equation"
Real x(start=1);
parameter Real a = -1;

equation
der(x)= a*x;

end HelloWorld;

Equation: x’ = - x
Initial condition: x(0) = 1

Simulation in OpenModelica environment

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

simulate(HelloWorld, stopTime = 2)
plot(x)

Name of model

Continuous-time

variable

Initial condition

Parameter, constant

during simulation

Differential equation

99 Copyright © Open Source Modelica Consortium

Modelica Variables and Constants

• Built-in primitive data types
Boolean true or false

Integer Integer value, e.g. 42 or –3

Real Floating point value, e.g. 2.4e-6

String String, e.g. “Hello world”

Enumeration Enumeration literal e.g. ShirtSize.Medium

• Parameters are constant during simulation

• Two types of constants in Modelica
• constant

• parameter
constant Real PI=3.141592653589793;
constant String redcolor = "red";
constant Integer one = 1;
parameter Real mass = 22.5;

100 Copyright © Open Source Modelica Consortium

A Simple Rocket Model

 abs

thrust mass gravity
acceleration

mass
mass massLossRate thrust

altitude velocity

velocity acceleration

class Rocket "rocket class"
parameter String name;
Real mass(start=1038.358);
Real altitude(start= 59404);
Real velocity(start= -2003);
Real acceleration;
Real thrust; // Thrust force on rocket
Real gravity; // Gravity forcefield
parameter Real massLossRate=0.000277;

equation
(thrust-mass*gravity)/mass = acceleration;
der(mass) = -massLossRate * abs(thrust);
der(altitude) = velocity;
der(velocity) = acceleration;

end Rocket;

new model
declaration
comment

parameters (changeable
before the simulation)

name + default value

differentiation with
regards to time

mathematical
equation (acausal)

floating point
type

start value

thrustapollo13

mg

Rocket

101 Copyright © Open Source Modelica Consortium

Celestial Body Class

class CelestialBody
constant Real g = 6.672e-11;
parameter Real radius;
parameter String name;
parameter Real mass;

end CelestialBody;

An instance of the class can be
declared by prefixing the type
name to a variable name

...
CelestialBody moon;
...

A class declaration creates a type name in Modelica

The declaration states that moon is a variable
containing an object of type CelestialBody

102 Copyright © Open Source Modelica Consortium

Moon Landing

class MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;

protected
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;

public
Rocket apollo(name="apollo13");
CelestialBody moon(name="moon",mass=7.382e22,radius=1.738e6);

equation
apollo.thrust = if (time < thrustDecreaseTime) then force1

else if (time < thrustEndTime) then force2
else 0;

apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;
end MoonLanding;

 2..

..
.

radiusmoonaltitudeapollo

massmoongmoon
gravityapollo

only access
inside the class

access by dot
notation outside
the class

altitude
CelestialBody

thrust
apollo13

mg

Rocket

18

103 Copyright © Open Source Modelica Consortium

Simulation of Moon Landing

simulate(MoonLanding, stopTime=230)
plot(apollo.altitude, xrange={0,208})
plot(apollo.velocity, xrange={0,208})

50 100 150 200

5000

10000

15000

20000

25000

30000
50 100 150 200

-400

-300

-200

-100

It starts at an altitude of 59404
(not shown in the diagram) at
time zero, gradually reducing it
until touchdown at the lunar
surface when the altitude is zero

The rocket initially has a high
negative velocity when approaching
the lunar surface. This is reduced to
zero at touchdown, giving a smooth
landing

104 Copyright © Open Source Modelica Consortium

Specialized Class Keywords

• Classes can also be declared with other keywords, e.g.: model, record,
block, connector, function, ...

• Classes declared with such keywords have specialized properties
• Restrictions and enhancements apply to contents of specialized classes
• After Modelica 3.0 the class keyword means the same as model

• Example: (Modelica 2.2). A model is a class that cannot be used as a
connector class

• Example: A record is a class that only contains data, with no equations
• Example: A block is a class with fixed input-output causality

model CelestialBody
constant Real g = 6.672e-11;
parameter Real radius;
parameter String name;
parameter Real mass;

end CelestialBody;

105 Copyright © Open Source Modelica Consortium

Modelica Functions

• Modelica Functions can be viewed as a specialized
class with some restrictions and extensions

• A function can be called with arguments, and is
instantiated dynamically when called

function sum
input Real arg1;
input Real arg2;
output Real result;

algorithm
result := arg1+arg2;

end sum;

106 Copyright © Open Source Modelica Consortium

function PolynomialEvaluator
input Real A[:]; // array, size defined

// at function call time
input Real x := 1.0;// default value 1.0 for x
output Real sum;

protected
Real xpower; // local variable xpower

algorithm
sum := 0;
xpower := 1;
for i in 1:size(A,1) loop

sum := sum + A[i]*xpower;
xpower := xpower*x;

end for;
end PolynomialEvaluator;

Function Call – Example Function with for-loop

Example Modelica function call:

The function
PolynomialEvaluator
computes the value of a
polynomial given two
arguments:
a coefficient vector A and
a value of x.

...
p = polynomialEvaluator({1,2,3,4},21)

{1,2,3,4} becomes
the value of the
coefficient vector A, and
21 becomes the value of
the formal parameter x.

107 Copyright © Open Source Modelica Consortium

Inheritance

record ColorData
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real green;

end ColorData;

class Color
extends ColorData;

equation
red + blue + green = 1;

end Color;

Data and behavior: field declarations, equations, and
certain other contents are copied into the subclass

keyword
denoting
inheritance

restricted kind
of class without
equations

parent class to Color

child class or
subclass

class ExpandedColor
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end ExpandedColor;

108 Copyright © Open Source Modelica Consortium

Multiple Inheritance

Multiple Inheritance is fine – inheriting both geometry and color

class Point
Real x;
Real y,z;

end Point;

class Color
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end Color;
multiple inheritance

class ColoredPointWithoutInheritance
Real x;
Real y, z;
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real green;

equation
red + blue + green = 1;

end ColoredPointWithoutInheritance;

Equivalent to

class ColoredPoint
extends Point;
extends Color;

end ColoredPoint;

Extra slide

19

109 Copyright © Open Source Modelica Consortium

Multiple Inheritance cont’

Only one copy of multiply inherited class Point is kept

class Point
Real x;
Real y;

end Point;

Diamond Inheritance
class VerticalLine
extends Point;
Real vlength;

end VerticalLine;

class HorizontalLine
extends Point;
Real hlength;

end HorizontalLine;

class Rectangle
extends VerticalLine;
extends HorizontalLine;

end Rectangle;

Extra slide

110 Copyright © Open Source Modelica Consortium

Simple Class Definition

• Simple Class Definition
• Shorthand Case of Inheritance

• Example:
class SameColor = Color;

class SameColor
extends Color;

end SameColor;

Equivalent to:

• Often used for
introducing new
names of types:

type Resistor = Real;

connector MyPin = Pin;

inheritance

111 Copyright © Open Source Modelica Consortium

Inheritance Through Modification

• Modification is a concise way of combining inheritance
with declaration of classes or instances

• A modifier modifies a declaration equation in the
inherited class

• Example: The class Real is inherited, modified with a
different start value equation, and instantiated as an
altitude variable:

...
Real altitude(start= 59404);

...

112 Copyright © Open Source Modelica Consortium

The Moon Landing - Example Using Inheritance (I)

model Body "generic body"
Real mass;
String name;

end Body;

model CelestialBody
extends Body;
constant Real g = 6.672e-11;
parameter Real radius;

end CelestialBody;

model Rocket "generic rocket class"
extends Body;
parameter Real massLossRate=0.000277;
Real altitude(start= 59404);
Real velocity(start= -2003);
Real acceleration;
Real thrust;
Real gravity;

equation
thrust-mass*gravity= mass*acceleration;
der(mass)= -massLossRate*abs(thrust);
der(altitude)= velocity;
der(velocity)= acceleration;

end Rocket;

altitude CelestialBody

thrustapollo13

mg

Rocket

Extra slide

113 Copyright © Open Source Modelica Consortium

The Moon Landing - Example using Inheritance (II)

model MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;
Rocket apollo(name="apollo13", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");
equation
apollo.thrust = if (time<thrustDecreaseTime) then force1

else if (time<thrustEndTime) then force2
else 0;

apollo.gravity =moon.g*moon.mass/(apollo.altitude+moon.radius)^2;
end Landing;

inherited
parameters

Extra slide

114 Copyright © Open Source Modelica Consortium

Inheritance of Protected Elements

class ColoredPointWithoutInheritance
Real x;
Real y,z;
protected Real red;
protected Real blue;
protected Real green;

equation
red + blue + green = 1;

end ColoredPointWithoutInheritance;

If an extends-clause is preceded by the protected keyword,
all inherited elements from the superclass become protected
elements of the subclass

The inherited fields from Point keep
their protection status since that
extends-clause is preceded by
public

A protected element cannot be
accessed via dot notation!

class ColoredPoint
protected
extends Color;
public
extends Point;

end ColoredPoint;

class Color
Real red;
Real blue;
Real green;

equation
red + blue + green = 1;

end Color;

class Point
Real x;
Real y,z;

end Point;

Equivalent to

Extra slide

20

115 Copyright © Open Source Modelica Consortium

Exercises Part III a
(15 minutes)

116 Copyright © Open Source Modelica Consortium

Exercises Part III a

• Start OMNotebook (part of OpenModelica)
• Start->Programs->OpenModelica->OMNotebook

• Open File: Exercises-ModelicaTutorial.onb from the directory you copied
your tutorial files to.

• Note: The DrModelica electronic book has been automatically opened when
you started OMNotebook.

• Open Exercises-ModelicaTutorial.pdf (also
available in printed handouts)

117 Copyright © Open Source Modelica Consortium

• Open the Exercises-ModelicaTutorial.onb found in the
Tutorial directory you copied at installation.

• Exercise 2.1. Simulate and plot the HelloWorld example. Do
a slight change in the model, re-simulate and re-plot. Try
command-completion, val(), etc.

• Locate the VanDerPol model in DrModelica (link from
Section 2.1), using OMNotebook!

• (extra) Exercise 2.2: Simulate and plot VanDerPol. Do a
slight change in the model, re-simulate and re-plot.

Exercises 2.1 and 2.2 (See also next two pages)

class HelloWorld "A simple equation"
Real x(start=1);

equation
der(x)= -x;

end HelloWorld;

simulate(HelloWorld, stopTime = 2)
plot(x)

118 Copyright © Open Source Modelica Consortium

Exercise 2.1 – Hello World!

A Modelica “Hello World” model
class HelloWorld "A simple equation”
parameter Real a=-1;
Real x(start=1);

equation
der(x)= a*x;

end HelloWorld;

Equation: x’ = - x
Initial condition: x(0) = 1

Simulation in OpenModelica environment

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

simulate(HelloWorld, stopTime = 2)
plot(x)

119 Copyright © Open Source Modelica Consortium

-1 1 2

-2

-1

1

2

-2

(extra) Exercise 2.2 – Van der Pol Oscillator

class VanDerPol "Van der Pol oscillator model"
Real x(start = 1) "Descriptive string for x"; // x starts at 1
Real y(start = 1) "y coordinate"; // y starts at 1
parameter Real lambda = 0.3;

equation
der(x) = y; // This is the 1st diff equation //
der(y) = -x + lambda*(1 - x*x)*y; /* This is the 2nd diff equation */

end VanDerPol;

simulate(VanDerPol,stopTime = 25)

plotParametric(x,y)

120 Copyright © Open Source Modelica Consortium

(extra) Exercise 2.3 – DAE Example

Include algebraic equation
Algebraic equations contain
no derivatives

Simulation in OpenModelica environment

0.2 0.4 0.6 0.8 1

time

0.90

0.95

1.05

1.10

1.15

1.20

1.0

simulate(DAEexample, stopTime = 1)
plot(x)

class DAEexample
Real x(start=0.9);
Real y;

equation
der(y)+(1+0.5*sin(y))*der(x)

= sin(time);
x - y = exp(-0.9*x)*cos(y);

end DAEexample;

Exercise: Locate in DrModelica.
Simulate and plot. Change
the model, simulate+plot.

21

121 Copyright © Open Source Modelica Consortium

Exercise 2.4 – Model the system below

• Model this Simple System of Equations in Modelica

122 Copyright © Open Source Modelica Consortium

(extra) Exercise 2.5 – Functions

• a) Write a function, sum2, which calculates the sum
of Real numbers, for a vector of arbitrary size.

• b) Write a function, average, which calculates the
average of Real numbers, in a vector of arbitrary
size. The function average should make use of a
function call to sum2.

123 Copyright © Open Source Modelica Consortium

Part III b
Discrete Events and Hybrid Systems

Picture: Courtesy Hilding Elmqvist

124 Copyright © Open Source Modelica Consortium

Hybrid Modeling

time

Continuous-time

Discrete-time

Hybrid modeling = continuous-time + discrete-time modeling

Real x;
Voltage v;
Current i;

Events

discrete Real x;
Integer i;
Boolean b;

• A point in time that is instantaneous, i.e., has zero duration

• An event condition so that the event can take place

• A set of variables that are associated with the event

• Some behavior associated with the event,
e.g. conditional equations that become active or are deactivated at
the event

125 Copyright © Open Source Modelica Consortium

Event Creation – if

model Diode "Ideal diode"
extends TwoPin;
Real s;
Boolean off;

equation
off = s < 0;
if off then

v=s
else

v=0;
end if;
i = if off then 0 else s;

end Diode;

if <condition> then
<equations>

elseif <condition> then
<equations>

else
<equations>

end if;

if-equations, if-statements, and if-expressions

false if s<0

If-equation choosing
equation for v

If-expression

126 Copyright © Open Source Modelica Consortium

Event Creation – when

when <conditions> then
<equations>

end when;

when-equations

Only dependent on time, can be
scheduled in advance

Time event
when time >= 10.0 then

...
end when;

time
event 1 event 2 event 3

Equations only active at event times

State event

when sin(x) > 0.5 then
...

end when;

Related to a state. Check for
zero-crossing

22

127 Copyright © Open Source Modelica Consortium

Generating Repeated Events

The call sample(t0,d) returns
true and triggers events at times
t0+i*d, where i=0,1, …

model SamplingClock
Integer i;
discrete Real r;

equation
when sample(2,0.5) then

i = pre(i)+1;
r = pre(r)+0.3;

end when;
end SamplingClock;

time

sample(t0,d)

false

true

t0 t0+d t0+2d t0+3d t0+4d

Variables need to be
discrete

Creates an event
after 2 s, then
each 0.5 s

pre(...) takes the
previous value
before the event.

128 Copyright © Open Source Modelica Consortium

Reinit - Discontinuous Changes

model BouncingBall "the bouncing ball model"
parameter Real g=9.81; //gravitational acc.
parameter Real c=0.90; //elasticity constant
Real height(start=10),velocity(start=0);

equation
der(height) = velocity;
der(velocity)=-g;
when height<0 then

reinit(velocity, -c*velocity);
end when;

end BouncingBall;

The value of a continuous-time state variable can be instantaneously
changed by a reinit-equation within a when-equation

Reinit ”assigns”
continuous-time variable
velocity a new value

Initial conditions

129 Copyright © Open Source Modelica Consortium

Application: Digital Control Systems

• Discrete-time controller + continuous-time plant =
hybrid system or sampled-data system

• Typically periodic sampling, can be modeled with
“when sample(t0,td) then …”

130 Copyright © Open Source Modelica Consortium

Sampled Data-Systems in Modelica

// time-discrete controller
when {initial(),sample(3,3)} then

E*xd = A*pre(xd)+ B*y;
ud = C*pre(xd) + D*y;

end when;

// plant (continuous-time process)
0 = f(der(x), x, ud);
y = g(x);

y ud

• y is automatically sampled at t = 3, 6, 9,…;

• xd, u are piecewise-constant variables that change values at
sampling events (implicit zero-order hold)

• initial() triggers event at initialization (t=0)

131 Copyright © Open Source Modelica Consortium

Exercise 2.6 – BouncingBall

• Locate the BouncingBall model in one of the hybrid
modeling sections of DrModelica (the When-
Equations link in Section 2.9), run it, change it
slightly, and re-run it.

132 Copyright © Open Source Modelica Consortium

Part IIIc “Technology Preview”

Clocked Synchronous Models
and State Machines

23

133 Copyright © Open Source Modelica Consortium

Clocked Synchronous Extension in Modelica 3.3

134 Copyright © Open Source Modelica Consortium

State Machines in Modelica 3.3: Simple Example

• Equations are active if corresponding clock ticks. Defaults to
periodic clock with 1.0 s sampling period

• “i” is a shared variable, “j” is a local variable. Transitions are
“delayed” and enter states by “reset”

135 Copyright © Open Source Modelica Consortium

Simple Example: Modelica Code

model Simple_NoAnnotations "Simple state machine"
inner Integer i(start=0);
block State1

outer output Integer i;
output Integer j(start=10);

equation
i = previous(i) + 2;
j = previous(j) - 1;

end State1;
State1 state1;
block State2

outer output Integer i;
equation

i = previous(i) - 1;
end State2;
State2 state2;

equation
transition(state1,state2,i > 10,immediate=false);
transition(state2,state1,i < 1,immediate=false);
initialState(state1);

end Simple_NoAnnotations;

136 Copyright © Open Source Modelica Consortium

Hierarchical and Parallel Composition

Semantics of Modelica state machines (and example above)
inspired by Florence Maraninchi & Yann Rémond’s “Mode-
Automata” and by Marc Pouzet’s Lucid Synchrone 3.0.

137 Copyright © Open Source Modelica Consortium

Technology Preview

• The clocked synchronous language extension not yet ready in
OpenModelica (under development)
• However some simple models can be simulated.

• No graphical editing support for state machine in OMEdit, yet.

• Full state machine extension requires that clocked
synchronous support is available

• However, many state machines can already be simulated

• By using a workaround that restricts the sampling period of a state
machine to a fixed default value of 1s.

138 Copyright © Open Source Modelica Consortium

Preview Clocked Synchronous and State Machines

• The OMNotebook ebook
“SynchronousAndStateMachinePreview.onb”
provides one example featuring clocked
synchronous language elements and two state
machine examples.

• Open this and simulate. (If there is time)

24

139 Copyright © Open Source Modelica Consortium

Part IV

Components, Connectors and Connections –
Modelica Libraries and Graphical Modeling

140 Copyright © Open Source Modelica Consortium

Software Component Model

A component class should be defined independently of the
environment, very essential for reusability

A component may internally consist of other components, i.e.
hierarchical modeling

Complex systems usually consist of large numbers of
connected components

Component

Interface

ConnectionComponent

Connector
Acausal coupling

Causal coupling

141 Copyright © Open Source Modelica Consortium

Connectors and Connector Classes

Connectors are instances of connector classes

v +

i

pin

s

f

flange

connector Pin
Voltage v;
flow Current i;

end Pin;

Pin pin;

connector class

keyword flow
indicates that currents
of connected pins
sum to zero.

electrical connector

an instance pin
of class Pin

connector Flange
Position s;
flow Force f;

end Flange;

Flange flange;

connector class

mechanical connector

an instance flange
of class Flange

142 Copyright © Open Source Modelica Consortium

The flow prefix

Two kinds of variables in connectors:
• Non-flow variables potential or energy level

• Flow variables represent some kind of flow

Coupling
• Equality coupling, for non-flow variables

• Sum-to-zero coupling, for flow variables

The value of a flow variable is positive when the current
or the flow is into the component

v

+ i

pin
positive flow direction:

143 Copyright © Open Source Modelica Consortium

Translational Position Force Linear momentum
Mechanical.
Translational

Physical Connector

• Classes Based on Energy Flow
Domain

Type
Potential Flow Carrier Modelica

Library

Electrical Voltage Current Charge
Electrical.

Analog

Rotational Angle Torque
Angular

momentum
Mechanical.
Rotational

Magnetic
Magnetic
potential

Magnetic
flux rate

Magnetic flux

Hydraulic Pressure Volume flow Volume HyLibLight

Heat Temperature Heat flow Heat HeatFlow1D

Chemical
Chemical
potential

Particle flow Particles
Under

construction

Pneumatic Pressure Mass flow Air PneuLibLight

144 Copyright © Open Source Modelica Consortium

connect-equations

pin1 pin2
+ +

i i

v v

connect(connector1,connector2)

Connections between connectors are realized as equations in Modelica

The two arguments of a connect-equation must be references to
connectors, either to be declared directly within the same class or be
members of one of the declared variables in that class

pin1.v = pin2.v;
pin1.i + pin2.i =0;

Pin pin1,pin2;
//A connect equation
//in Modelica:
connect(pin1,pin2); Corresponds to

25

145 Copyright © Open Source Modelica Consortium

Connection Equations

1 2 3 nv v v v

pin1.v = pin2.v;
pin1.i + pin2.i =0;

Pin pin1,pin2;
//A connect equation
//in Modelica
connect(pin1,pin2); Corresponds to

Each primitive connection set of nonflow variables is
used to generate equations of the form:

Each primitive connection set of flow variables is used to generate
sum-to-zero equations of the form:

1 2 () 0k ni i i i

connect(pin1,pin2); connect(pin1,pin3); ... connect(pin1,pinN);

Multiple connections are possible:

146 Copyright © Open Source Modelica Consortium

Common Component Structure

The base class TwoPin has
two connectors p and n for
positive and negative pins
respectively

p

p.i

p.v

n.i

n.v
n

i

ii + -TwoPin

electrical connector class

partial model TwoPin
Voltage v
Current i
Pin p;
Pin n;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;
// TwoPin is same as OnePort in
// Modelica.Electrical.Analog.Interfaces

positive pin

negative pin

partial class
(cannot be
instantiated) connector Pin

Voltage v;
flow Current i;

end Pin;

147 Copyright © Open Source Modelica Consortium

Electrical Components

model Resistor ”Ideal electrical resistor”
extends TwoPin;
parameter Real R;

equation
R*i = v;

end Resistor;

model Inductor ”Ideal electrical inductor”
extends TwoPin;
parameter Real L ”Inductance”;

equation
L*der(i) = v;

end Inductor;

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

model Capacitor ”Ideal electrical capacitor”
extends TwoPin;
parameter Real C ;

equation
i=C*der(v);

end Capacitor;

148 Copyright © Open Source Modelica Consortium

Electrical Components cont’

model Source
extends TwoPin;
parameter Real A,w;

equation
v = A*sin(w*time);

end Resistor;

p.i n.i

p.v n.v

v(t)

+

This image
cannot
currently
be
displayed.

model Ground
Pin p;

equation
p.v = 0;

end Ground;

149 Copyright © Open Source Modelica Consortium

Resistor Circuit

R 2 R 1

R 3

n p p n

p n i3

i 2i1

v 1 v 2

v 3

R1.p.v = R2.p.v;
R1.p.v = R3.p.v;
R1.p.i + R2.p.i + R3.p.i = 0;

model ResistorCircuit
Resistor R1(R=100);
Resistor R2(R=200);
Resistor R3(R=300);

equation
connect(R1.p, R2.p);
connect(R1.p, R3.p);

end ResistorCircuit;

Corresponds to

150 Copyright © Open Source Modelica Consortium

• Modelica Standard Library (called Modelica) is a
standardized predefined package developed by
Modelica Association

• It can be used freely for both commercial and
noncommercial purposes under the conditions of
The Modelica License.

• Modelica libraries are available online including
documentation and source code from
http://www.modelica.org/library/library.html

Modelica Standard Library - Graphical Modeling

26

151 Copyright © Open Source Modelica Consortium

Modelica Standard Library cont’

• Blocks Library for basic input/output control blocks
• Constants Mathematical constants and constants of nature
• Electrical Library for electrical models
• Icons Icon definitions
• Fluid 1-dim Flow in networks of vessels, pipes, fluid machines, valves, etc.
• Math Mathematical functions
• Magnetic Magnetic.Fluxtubes – for magnetic applications
• Mechanics Library for mechanical systems
• Media Media models for liquids and gases
• SIunits Type definitions based on SI units according to ISO 31-1992
• Stategraph Hierarchical state machines (analogous to Statecharts)
• Thermal Components for thermal systems
• Utilities Utility functions especially for scripting

The Modelica Standard Library contains components from
various application areas, including the following sublibraries:

152 Copyright © Open Source Modelica Consortium

Modelica.Blocks

Continuous, discrete, and logical input/output blocks
to build block diagrams.

 Library

Continuous

Examples:

153 Copyright © Open Source Modelica Consortium

Modelica.Electrical

Electrical components for building analog, digital, and
multiphase circuits

Library

Analog

Library

MultiPhase

Library

Digital

V1

V2

I1

R1

R2

R3

R4

C1

C4

C5

C2

C3

Gnd1

Gnd9

Gnd3

Gnd2

Gnd6

Gnd7 Gnd8 Gnd5

Gnd4

Transistor1 Transistor2

Examples:

Library

Machines

154 Copyright © Open Source Modelica Consortium

Modelica.Mechanics

Package containing components for mechanical systems

Subpackages:

• Rotational 1-dimensional rotational mechanical components

• Translational 1-dimensional translational mechanical components

• MultiBody 3-dimensional mechanical components

155 Copyright © Open Source Modelica Consortium

Modelica.Stategraph

Hierarchical state machines (similar to Statecharts)

156 Copyright © Open Source Modelica Consortium

Other Free Libraries

• WasteWater Wastewater treatment plants, 2003
• ATPlus Building simulation and control (fuzzy control included), 2005
• MotorCycleDymanics Dynamics and control of motorcycles, 2009
• NeuralNetwork Neural network mathematical models, 2006
• VehicleDynamics Dynamics of vehicle chassis (obsolete), 2003
• SPICElib Some capabilities of electric circuit simulator PSPICE, 2003
• SystemDynamics System dynamics modeling a la J. Forrester, 2007
• BondLib Bond graph modeling of physical systems, 2007
• MultiBondLib Multi bond graph modeling of physical systems, 2007
• ModelicaDEVS DEVS discrete event modeling, 2006
• ExtendedPetriNets Petri net modeling, 2002
• External.Media Library External fluid property computation, 2008
• VirtualLabBuilder Implementation of virtual labs, 2007
• SPOT Power systems in transient and steady-state mode, 2007
• ...

27

157 Copyright © Open Source Modelica Consortium

Some Commercial Libraries

• Powertrain

• SmartElectricDrives

• VehicleDynamics

• AirConditioning

• HyLib

• PneuLib

• CombiPlant

• HydroPlant

• …

158 Copyright © Open Source Modelica Consortium

Connecting Components from Multiple Domains

model Generator
Modelica.Mechanics.Rotational.Accelerate ac;
Modelica.Mechanics.Rotational.Inertia iner;
Modelica.Electrical.Analog.Basic.EMF emf(k=-1);
Modelica.Electrical.Analog.Basic.Inductor ind(L=0.1);
Modelica.Electrical.Analog.Basic.Resistor R1,R2;
Modelica.Electrical.Analog.Basic.Ground G;
Modelica.Electrical.Analog.Sensors.VoltageSensor vsens;
Modelica.Blocks.Sources.Exponentials ex(riseTime={2},riseTimeConst={1});

equation
connect(ac.flange_b, iner.flange_a); connect(iner.flange_b, emf.flange_b);
connect(emf.p, ind.p); connect(ind.n, R1.p); connect(emf.n, G.p);
connect(emf.n, R2.n); connect(R1.n, R2.p); connect(R2.p, vsens.n);
connect(R2.n, vsens.p); connect(ex.outPort, ac.inPort);

end Generator;

R1

R2

ind

emf

G

ex ac iner vsen

Electrical
domain

Mechanical
domain

Block
domain

1

2

• Block domain

• Mechanical domain

• Electrical domain

159 Copyright © Open Source Modelica Consortium

DCMotor Model Multi-Domain (Electro-Mechanical)

A DC motor can be thought of as an electrical circuit
which also contains an electromechanical component.

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
EMF emf(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, emf.n);
connect(emf.p, DC.n);
connect(DC.n,G.p);
connect(emf.flange,load.flange);

end DCMotor;

load

emf
DC

G

R L

160 Copyright © Open Source Modelica Consortium

Part V
Dynamic Optimization
Theory and Exercises

using
OpenModelica

161 Copyright © Open Source Modelica Consortium

Simulation

Built-in Dynamic Optimization - Motivation

Inputs
(known)

Simulation
Output
(result)

Optimization – Try to find the inputs that result in a desired output

Inputs
(result)

Simulation
Output

(desired)

162 Copyright © Open Source Modelica Consortium

Optimization of Dynamic Trajectories Using
Multiple-Shooting and Collocation

• Minimize a goal function subject to model
equation constraints, useful e.g. for NMPC

• Multiple Shooting/Collocation
• Solve sub-problem in each sub-interval

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

1 2 4 8 16

MULTIPLE_COLLOCATION

ipopt [scaled] jac_g [scaled]

Example speedup, 16 cores:

This approach uses a single
optimization run and is
different from classical parameter
sweep optimization typically using
a large number of simulations

28

163 Copyright © Open Source Modelica Consortium

Optimal Control Problem (OCP)

Cost
function min

௨ሺ௧ሻ
ܬ ݔ ݐ , ݑ ݐ , ݐ ൌ ܧ ݔ ݐ , ݑ ݐ , ݐ

MayerെTerm
	න ܮ ݔ ݐ , ݑ ݐ , ݐ

LagrangeെTerm
	ݐ݀

௧

௧బ
ሺ1ሻ

Subject to

Initial conditions ݔ ݐ ൌ ݔ ሺ2ሻ

Nonlinear dynamic model ሶݔ ൌ ݂ ݔ ݐ , ݑ ݐ , ݐ ሺ3ሻ

Path constraints ො݃ ݔ ݐ , ݑ ݐ , ݐ 0 ሺ4ሻ

Terminal constraints ݎ ݔ ݐ ൌ 0	 ሺ5ሻ

where

ݔ ݐ ൌ ଵݔ ݐ , … , ೣݔ ்is the state vector and

ݑ ݐ ൌ ଵݑ ݐ , … , ೠݑ ݐ ் is the control variable vector for

ݐ ∈ ሾݐ, ሿݐ respectively.

164 Copyright © Open Source Modelica Consortium

OCP Formulation in OpenModelica

The path constraints ො݃ ݔ ݐ , ݑ ݐ , ݐ 0 can be split into box
constraints

minݔ ሻݐሺݔ maxݔ
minݑ ሻݐሺݑ maxݑ

Variable attributes min and max are reused for describing
constraints, annotations are used for specifying the OCP

Annotation

Mayer-Term Real costM annotation(isMayer=true);

Lagrange-Term Real costL annotation(isLagrange=true);

Constraints Real x(max=0) annotation(isConstraint=true);

Final constraints Real y(min=0) annotation(isFinalConstraint=true);

165 Copyright © Open Source Modelica Consortium

Predator-Prey Example – The Forest Model

Dynamic model of a forest with foxes , rabbitsݔ , fox huntersݔ
ݑ and rabbit hunters ݑ (adapted from Vitalij Ruge, “Native Optimization

Features in OpenModelica”, part of the OpenModelica documentation)

ሶݔ ൌ ݃ ∙ ݔ െ ݀ ∙ ݔ ∙ ݔ െ ݀ ∙ ݑ

ሶݔ ൌ ݃ ∙ ݀ ∙ ݔ ∙ ݔ െ ݀ ∙ ݔ െ ݀ ∙ ݑ

IC: ݔ ݐ ൌ 700, ݔ ݐ ൌ 10

where

݃ ൌ 4 ∙ 10ିଶ, Natural growth rate
for rabbits

݀ ൌ 5 ∙ 10ିଷ, Death rate of
rabbits due to hunters

݃ ൌ 1 ∙ 10ିଵ, Efficiency in growing
foxes from rabbits

݀ ൌ 9 ∙ 10ିଶ, Natural death rate
for foxes

݀ ൌ 5 ∙ 10ିଷ, Death rate of rabbits
due to foxes

݀ ൌ 9 ∙ 10ିଶ, Death rate of
foxes due to hunters

166 Copyright © Open Source Modelica Consortium

Predator-Prey Example – Modelica model

model Forest "Predator-prey model"
parameter Real g_r = 4e-2 "Natural growth rate for rabbits";
parameter Real g_fr = 1e-1 "Efficiency in growing foxes from rabbits";
parameter Real d_rf = 5e-3 "Death rate of rabbits due to foxes";
parameter Real d_rh = 5e-2 "Death rate of rabbits due to hunters";
parameter Real d_f = 9e-2 "Natural deathrate for foxes";
parameter Real d_fh = 9e-2 "Death rate of foxes due to hunters";
Real x_r(start=700,fixed=true) "Rabbits with start population of 700";
Real x_f(start=10,fixed=true) "Foxes with start population of 10";
input Real u_hr "Rabbit hunters";
input Real u_hf "Fox hunters";

equation
der(x_r) = g_r*x_r - d_rf*x_r*x_f - d_rh*u_hr;
der(x_f) = g_fr*d_rf*x_r*x_f - d_f*x_f - d_fh*u_hf;

end Forest;

Control
variables

167 Copyright © Open Source Modelica Consortium

Predator-Prey Example – Optimal Control Problem

Objective: Regulate the population in the forest to a desired
level (5 foxes, 500 rabbits) at the end of the simulation ݐ) ൌ (ݐ

ୟ୷ୣ୰ܬ ൌ 0.1 ∙ ݔ ݐ െ 5
ଶ
 0.01 ∙ ݔ ݐ െ 500

ଶ
(desired population at ݐ ൌ (ݐ

Constraints: ݑ ݑ		,0 0,			x୰ 0,		x 0

Modelica model:

model ForestOCP;
extends Forest(

u_hr(min=0, nominal=1e-4),u_hf(min=0, nominal=1e-4),
x_r(min=0),x_f(min=0));

Real J_Mayer =
0.1*(x_r- 5)^2 + 0.01*(x_r - 500)^2 annotation(isMayer=true);

end ForestOCP;

constraint
Cost function
Mayer-term

Important for scaling,
needs to be > 0 to make
optimizer converge!Extension of the

system model

168 Copyright © Open Source Modelica Consortium

Predator-Prey Example – Using OMNotebook

Start the optimization from OMNotebook using a time interval
,ݐ ݐ ൌ 0,400 seconds

Option Example value Description

numberOfIntervals 50 collocation intervals

startTime, stopTime 0, 400 time horizon in seconds

tolerance 1e-8 solver/optimizer tolerance

simflags … see documentation for details

setCommandLineOptions("+gDynOpt");
optimize(ForestOCP, stopTime=400, tolerance=1e-8, numberOfIntervals=50,
simflags="-s optimization");

29

169 Copyright © Open Source Modelica Consortium

Predator-Prey Example – Using OMEdit

Simulation→Simulation SetupTools→Options→Simulation

+gDynOpt

optimization

170 Copyright © Open Source Modelica Consortium

Predator-Prey Example – Plots

Simulation of the forest model with
control variables ݑ ൌ ݑ ൌ 0

Simulation of the forest model
using the control variables
computed by the optimization.
Notice (not well visible in the
plot) that

ݔ ݐ ൌ ݔ	,500 ݐ ൌ 5

171 Copyright © Open Source Modelica Consortium

Exercise – Optimal Control

Load the OPCExample.onb ebook into OMNotebook and
modify the optimization problem in the following ways:

1. Constrain the maximal number of rabbit hunters and
fox hunters to five, respectively.

2. Change the Mayer-term of the cost function to a
Lagrange-term.

3. Penalize the number of employed hunters by a
suitable modification of the cost function and observe
how the solution changes for different modifications.

172 Copyright © Open Source Modelica Consortium

Part Vb
More

Graphical Modeling Exercises

using
OpenModelica

173 Copyright © Open Source Modelica Consortium

Graphical Modeling - Using Drag and Drop Composition

174 Copyright © Open Source Modelica Consortium

Graphical Modeling Animation – DCMotor

30

175 Copyright © Open Source Modelica Consortium

• A DC motor can be thought of as an electrical circuit which
also contains an electromechanical component

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
ElectroMechanicalElement EM(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, EM.n);
connect(EM.p, DC.n);
connect(DC.n,G.p);
connect(EM.flange,load.flange);

end DCMotor

load

EM

DC

G

R L

Multi-Domain (Electro-Mechanical) Modelica Model

176 Copyright © Open Source Modelica Consortium

Automatic transformation to ODE or DAE for simulation:

(load component not included)

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

177 Copyright © Open Source Modelica Consortium

Exercise 3.1

• Draw the DCMotor model using the graphic connection
editor using models from the following Modelica
libraries:
Mechanics.Rotational.Components,
Electrical.Analog.Basic,
Electrical.Analog.Sources

J

emf
u

G

R L • Simulate it for 15s and plot the
variables for the outgoing
rotational speed on the inertia
axis and the voltage on the
voltage source (denoted u in the
figure) in the same plot.

178 Copyright © Open Source Modelica Consortium

Exercise 3.2

• If there is enough time: Add a torsional spring to the
outgoing shaft and another inertia element. Simulate
again and see the results. Adjust some parameters to
make a rather stiff spring.

179 Copyright © Open Source Modelica Consortium

Exercise 3.3

• If there is enough time: Add a PI controller to the system
and try to control the rotational speed of the outgoing shaft.
Verify the result using a step signal for input. Tune the PI
controller by changing its parameters in OMEdit.

180 Copyright © Open Source Modelica Consortium

Exercise 3.4 – DrControl

• If there is enough time: Open the DrControl electronic book
about control theory with Modelica and do some exercises.
• Open File: C:OpenModelica1.9.3\share\omnotebook\drcontrol\DrControl.onb

31

181 Copyright © Open Source Modelica Consortium

Learn more…

• OpenModelica
• www.openmodelica.org

• Modelica Association
• www.modelica.org

• Books
• Principles of Object Oriented Modeling and Simulation with

Modelica 3.3: A Cyber-Physical Approach, Peter Fritzson
2015.

• Modeling and Simulation of Technical and Physical
Systems with Modelica. Peter Fritzson., 2011
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-
111801068X.html

• Introduction to Modelica, Michael Tiller

182 Copyright © Open Source Modelica Consortium

Summary

Hybrid
Modeling

Visual Acausal
Component

Modeling

Multi-Domain
Modeling

Typed
Declarative
Textual Language Thanks for listening!

