

Detailed Schedule (morning version) 09.00-12.30
09:00 - Introduction to Modeling and Simulation • Start installation of OpenModelica including OMEdit graphic editor
09:10 - Modelica – The Next Generation Modeling Language 09:25 - Exercises Part I (15 minutes) • Stort hands-on exercise on gradium andeling using OMEdit- RI Circuit
09:50 – Part II: Modelica Environments and the OpenModelica Environment
10:15 - Exercises Part IIIa (10 minutes) Hands-on exercises nettual modeling using the OpenModelica environment
10:25 – Coffee Break 10:40 - Modelica Discrete Events, Hybrid, Clocked Properties (Bernhard Thiele)
11:00- Exercises Part IIIb (15 minutes) Handson exercises on textual modeling using the OpenModelica environment 11:20- Part IV: Components Connectors and Connections
- Modelica Libraries - Modelica Libraries 11:30 - Part V Dynamic Optimization (Bernhard Thiele)
Hands-on exercise on dynamic optimization using OpenModelica 12:00 – Exercise Graphical Modeling DCMotor using OpenModelica
7 Copyright © Open Source Modelica Consortium n g g ℓ L L (L A

Software Installation - Windows

· Start the software installation

Copyright © Open Source Modelica Consortium

• Install OpenModelica-1.9.4beta.exe from the USB Stick

HODELICA

Software Installation - Linux (requires internet connection) https://openmodelica.org/index.php/download/down load-linux and follow the instructions.

HODELICA

• Go to

Copyright © Open Source Modelica Consortium

Software Installation – MAC (requires internet connection)
 Go to <u>https://openmodelica.org/index.php/download/down</u><u>load-mac</u> and follow the instructions or follow the instructions written below. The installation uses MacPorts. After setting up a MacPorts installation, run the following commands on the terminal (as root): echo rsync://build.openmodelica.org/macports/>> /opt/local/etc/macports/sources.conf # assuming you installed into /opt/local port selfupdate port install openmodelica-devel
10 Copyright © Open Source Modelica Consortium

Modelica Acausal Modeling
What is <i>acausal</i> modeling/design?
Why does it increase reuse?
The acausality makes Modelica library classes <i>more</i> <i>reusable</i> than traditional classes containing assignment statements where the input-output causality is fixed.
Example: a resistor <i>equation</i> : R*i = v;
can be used in three ways:
i := v/R;
v := R*i;
R := v/i;
18 Copyright © Open Source Modelica Consortium

Sustainable Society Necessary for Human Survival

Almost Sustainable

- India, 1.4 ton C02/person/year
- Healthy vegetarian food
- Small-scale agriculture
- Small-scale shops
- Simpler life-style (Mahatma Gandhi)

Non-sustainable

- USA 17 ton CO2, Sweden 7 ton CO2/yr
 High meat consumption (1 kg beef uses ca 4000 L water for production)
- Hamburgers, unhealthy , includes beef
- Energy-consuming mechanized agriculture
- Transport dependent shopping centres
- Stressful materialistic lifestyle

43 Copyright © Open Source Modelica Consortium

future less materialistic life style

HODELICA

Modelica Variables	and Constants
Built-in primitive data Boolean true or fa Integer Integer Real Floating String String, c Enumeration Enumerat	types Ise value, e.g. 42 or –3 g point value, e.g. 2.4e-6 e.g. "Hello world" tion literal e.g. ShirtSize.Medium
 Two types of constant 	nts in Modelica
• constant • parameter	<pre>constant Real PI=3.141592653589793; constant String redcolor = "red"; constant Integer one = 1; parameter Real mass = 22.5;</pre>
99 Copyright © Open Source Modelica Conso	

Technology Preview The clocked synchronous language extension not yet ready in OpenModelica (under development) However some simple models can be simulated. No graphical editing support for state machine in OMEdit, yet. Full state machine extension requires that clocked synchronous support is available However, many state machines can already be simulated By using a workaround that restricts the sampling period of a state machine to a fixed default value of 1s.

137 Copyright © Open Source Modelica Consortium

HODELICA

Preview Clocked Synchronous and State Machines

- The OMNotebook ebook
 "SynchronousAndStateMachinePreview.onb"
 provides one example featuring clocked
 synchronous language elements and two state
 machine examples.
- Open this and simulate. (If there is time)

```
138 Copyright © Open Source Modelica Consortium
```

HODELICA

N	lodelica	Standard Library cont'
T Va	he Modelic arious appli	a Standard Library contains components from ication areas, including the following sublibraries:
•	Blocks	Library for basic input/output control blocks
•	Constants	Mathematical constants and constants of nature
•	Electrical	Library for electrical models
•	lcons	Icon definitions
•	Fluid	1-dim Flow in networks of vessels, pipes, fluid machines, valves, etc.
•	Math	Mathematical functions
•	Magnetic	Magnetic.Fluxtubes – for magnetic applications
•	Mechanics	Library for mechanical systems
•	Media	Media models for liquids and gases
•	Slunits	Type definitions based on SI units according to ISO 31-1992
•	Stategraph	Hierarchical state machines (analogous to Statecharts)
•	Thermal	Components for thermal systems
•	Utilities	Utility functions especially for scripting
151	Copyright © Open S	Source Modelica Consortium

Optimal Control Problem	(OCP)	
Cost function $\min_{u(t)} J(x(t), u(t), t) = \underbrace{E(x(t_f), u)}_{Mayer-}$	$\frac{(t_f), t_f}{\text{Term}} + \int_{t_0}^{t_f} \underbrace{L(x(t), u(t), t)}_{\text{Lagrange-Term}} dt$	(1)
Subject to		
Initial conditions	$x(t_0) = x_0$	(2)
Nonlinear dynamic model	$\dot{x} = f(x(t), u(t), t)$	(3)
Path constraints	$\hat{g}(x(t), u(t), t) \leq 0$	(4)
Terminal constraints	$r\left(x(t_f)\right) = 0$	(5)
where		
$x(t) = [x^1(t), \dots, x^{n_x}]^T$ is the state vector an	nd	
$u(t) = [u^1(t),, u^{n_u}(t)]^T$ is the control var	iable vector for	
$t \in [t_0, t_f]$ respectively.		
163 Copyright © Open Source Modelica Consortium	н	O D'ELICA

OCP Formulation in OpenModelica

The path constraints $\hat{g}(x(t),u(t),t) \leq 0$ can be split into box constraints

 $x_{\min} \le x(t) \le x_{\max}$ $u_{\min} \le u(t) \le u_{\max}$

Variable attributes min and max are reused for describing constraints, annotations are used for specifying the OCP

	Annotation
Mayer-Term	Real costM annotation (isMayer=true);
Lagrange-Term	Real costL annotation (isLagrange=true);
Constraints	Real x(max=0) annotation(isConstraint=true);
Final constraints	<pre>Real y(min=0) annotation(isFinalConstraint=true);</pre>
64 Copyright © Open S	ource Modelica Consortium

Start the optimiza $[t_0, t_f] = [0,400]s$	ation from OM seconds	Notebook using a time interval
setCommandLineOp optimize(ForestOCP, simflags="-s optimizat	stopTime=400, tole ion");); erance=1e-8, numberOfIntervals=50,
Option	Example value	Description
Option numberOfIntervals	Example value	Description collocation intervals
Option numberOfIntervals startTime, stopTime	Example value 50 0, 400	Description collocation intervals time horizon in seconds
Option numberOfIntervals startTime, stopTime tolerance	Example value 50 0, 400 1e-8	Description collocation intervals time horizon in seconds solver/optimizer tolerance

