
Developing a Generic Purpose
OpenModelica Package for Embedded

Applications

Submitted in partial fulfillment of the requirements of the degree of
Master of Technology

by

Manas Ranjan Das

Under the guidance of

Prof. Kannan M. Moudgalya
Department of Chemical Engineering

IIT Bombay

Systems & Control Engineering, IIT Bombay
June 23, 2019

Acknowledgment
I am grateful to Prof. Kannan M. Moudgalya for giving me the opportunity to
work in FOSSEE, introducing me to OpenModelica and its significance. His
guidance and constant encourgement has always been a motivation for me. My
sincere thanks to Dr. Sunil Shah, Mr. Ritesh Sharma & Mr. Pavan of Modelicon
for their valuable suggestions. I am also thankful to Prof. Peter Fritzson for his
valuable suggestions for further improvements. I am grateful to all my Team
members, especially Siddharth at FOSSEE, IIT Bombay for his help. I would like
to recognize the support and contribution of all the team members at FOSSEE.
My sincere gratitude to all who helped me knowingly or unknowingly throughout
the project.

1

Contents

1 Introduction 8

2 OpenModelica for Embedded Applications 9
2.1 Motivation . 9
2.2 Issues . 9

3 UART Protocol for Interfacing AVR ATmega family of controllers 10
3.1 Motivation . 10
3.2 Algorithm . 11
3.3 Implementation on OpenModelica part 11

3.3.1 Functionalities added to OpenModelica 12
3.4 Implementation on Controller part 13

3.4.1 Firmware Structure . 13
3.5 Issues . 13

4 IPC Protocol for Interfacing AVR ATmega family of controllers 14
4.1 Motivation . 14
4.2 Algorithm . 14
4.3 Implementation on OpenModelica part 15
4.4 Implementation on Controller part 17

4.4.1 Issues . 20

5 Firmata protocol for Interfacing ARM Cortex-M4 series of con-
trollers 21
5.1 Motivation . 21
5.2 Algorithm . 21
5.3 Implementation on OpenModelica part 22

5.3.1 Functionalities added to OpenModelica 23
5.4 Implementation on Controller part 27

6 Open Platform Communications Unified Architecture (OPC UA) 34
6.1 Motivation . 34
6.2 Technical Overview . 34

6.2.1 Classic OPC . 34
6.2.2 OPC UA . 35

6.3 Basic Building Blocks of OPC UA . 36
6.4 Protocol Implementation - OPC UA Stacks 37

2

6.5 OPC UA Services - Generic UA API 38
6.6 OPC UA built-in Information Models 39
6.7 OPC Companion Model . 39
6.8 Overall OPC UA Model . 40

7 OPC UA on 4DIAC 41
7.1 Motivation . 41
7.2 IEC 61499 . 41
7.3 IEC 61499 Base Model . 42
7.4 IEC 61499 applications . 43
7.5 The 4DIAC initiative . 43
7.6 4DIAC IDE & Runtime Environment 43

7.6.1 4DIAC IDE . 43
7.6.2 4DIAC RUNTIME ENVIRONMENT - FORTE 45

7.7 open62541 stack . 45
7.8 Integration of open62541 stack for OPC UA in 4DIAC 46

8 OPC UA in OpenModelica 48
8.1 Motivation . 48
8.2 Previous and Related Work . 49
8.3 OPC Interfaces . 49
8.4 Implementation . 50
8.5 Testing with UaExpert . 51

9 OPC UA for interfacing Single Board Computers (SBCs) & Open-
Modelica 53
9.1 Motivation . 53
9.2 Architecture . 53
9.3 Testing & Evaluation on Raspberry Pi 55
9.4 Generic Implementation for all Embedded hardwares 57

10 Software In Loop (SIL) simulation with 4DIAC and OpenModelica 58
10.1 Motivation . 58
10.2 Architecture of SIL simulation . 58

10.2.1 PID controller in 4DIAC . 60
10.2.2 Models in OpenModelica . 61

10.3 Testing & Evaluation . 61

11 Hardware In Loop (HIL) simulation with Different Embedded hard-
ware and OpenModelica 63
11.1 Motivation . 63
11.2 Architecture of HIL simulation . 64

11.2.1 Models on OpenModelica . 64
11.2.2 The Interface . 68
11.2.3 PID controller on Embedded hardware 68

11.3 Testing & Evaluation . 68
11.3.1 DC motor . 69

3

11.3.2 RLC Circuit . 70
11.3.3 Spring-Mass Model . 71
11.3.4 Flight Pitch Control Model 72

12 SIL & HIL Comparison 74
12.1 Motivation . 74
12.2 Error Comparison . 74
12.3 Timing Comparison . 74
12.4 Applications . 75

13 Conclusion 76

14 Future Work 77

Appendices 77

A Linux 78

B OpenModelica 79

C Python 80

D PID Structured text code for 4DIAC 82

E Arduino & Energia PID 84

F Sample C drivers for digital data exchange with OpenModelica 87

4

List of Figures

3.1 Pin Diagram of Arduino UNO . 10
3.2 Architecture of UART Implementation 11

4.1 Shared Working Memory for IPC . 15
4.2 HIL Problem Formulation on DC motor 18
4.3 IPC: HIL DC Motor model in OpenModelica 19
4.4 IPC HIL: PID on DC Motor with Pulse as reference 20

5.1 Firmata Implementation . 22
5.2 SymchronizeRealTime block . 23
5.3 AnalogInput block . 24
5.4 AnalogOutput block . 25
5.5 DigitalInput block . 25
5.6 DigitalOutput block . 26
5.7 Servo block . 26
5.8 StandardFirmata block . 27
5.9 CustomFirmata block . 27
5.10 customBoard block . 27
5.11 Pin Diagram of Tiva C Launchpad 28
5.12 TIVA C Led Example . 29
5.13 TIVA C Push Button Example . 30
5.14 TIVA C LDR Example . 31
5.15 TIVA DC Motor Example . 32
5.16 Data Sheet for Servo Motor SG90 . 33
5.17 TIVA C Servo Motor Example . 33

6.1 Scalability of OPC UA . 36
6.2 OPC UA Object Model . 37
6.3 OPC UA Stacks . 38

7.1 IEC 61499 FB . 42
7.2 4DIAC system configuration . 44
7.3 Application Window . 45
7.4 ECC for 4DIAC blink application . 45
7.5 4DIAC flip flop application . 47
7.6 Testing with UaExpert . 47

8.1 OM Code Test with UaExpert . 51

5

8.2 UaExpert client connected to OM . 51

9.1 Architecture of Raspberry Pi with OpenModelcia 54
9.2 Architecture of Raspberry Pi with OpenModelcia 55
9.3 List Ids of Raspberry Pi with OpenModelica 55
9.4 Output of Digital sensor with Raspberry Pi with OpenModelica . . . 56
9.5 Architecture of Analog sensor for Raspberry Pi with OpenModelica . 56
9.6 Output of Analog sensor with Raspberry Pi with OpenModelica . . . 57
9.7 Variable Path . 57

10.1 SIL Architecture . 59
10.2 List Ids of SIL DCMotor model . 59
10.3 List Ids of PID on 4DIAC . 60
10.4 PID Block in 4DIAC . 60
10.5 ECC of PID Block in 4DIAC . 61
10.6 PID Controller in 4DIAC . 61
10.7 SIL test on 4DIAC & OM . 62

6

List of Tables

12.1 Error Comparison SIL vs HIL . 75
12.2 Timing Comparison SIL vs HIL . 75

7

Chapter 1

Introduction

OpenModelica (OM) [8] [14] [5] is a free and open source environment based on
the Modelica modeling language for simulating, optimizing and analyzing complex
dynamic systems. OpenModelica is used in academics as well as industrial envi-
ronments. Industrial applications include the use of OpenModelica in the domains
of automation, power plant optimization, automotive, etc. Models are either built
through line by line code or graphical blocks in OpenModelica. It can interact
with C, Python languages and can call C, Python functions from within its models.
OpenModelica is a powerful tool that can be used to design and simulate complete
systems.

Embedded systems can be defined as a computer (software and hardware) buried
in a high stress environment (weak consumption, reduced memory capacity, real-
time, security, robustness). This project describes the demonstration of low cost
development tools and real-time simulation for rapid prototyping of autonomous
embedded systems. This is an integration of mechanics, electronics, automation and
informatics in design and manufacturing of a product to increase and/or optimize
its functionality in minimum cost.

Here the task is to implement model based design for different embedded targets
i.e. creating models for different embedded applications in OM and communicat-
ing with different families of micro-controllers and also with different Single Board
Computers (SBCs) such as Raspberry Pi. There are different protocols followed
depending on the architecture, flash memory available on the controller. The ap-
proaches were different while shifting from micro-controllers to SBCs. Though,
initially there was a heavy dependency on drivers to be written for each and every
family of micro-controllers. But at the end, this dependency was overcome by adopt-
ing the OPC UA protocol which provides a kind of generic platform for all kinds of
controllers and SBCs. This OpenModelica library supports Software In Loop (SIL)
with 4DIAC which is a IEC 61149 platform to implement industrial level controllers
and also Hardware In Loop (HIL) simulation on embedded platforms like Arduino
and TivaC (ARM Cortex-M4), ATmega16 and Raspberry Pi etc. Different proto-
cols like UART, Inter Process Communication (IPC), firmata and OPC UA were
implemented & tested to support different families of micro-controllers and SBCs
such as Raspberry Pi.

8

Chapter 2

OpenModelica for Embedded
Applications

2.1 Motivation
As the demand for compact devices increases, the sizes of processors and microchips
keep shrinking, which requires the development of complex control systems. It is
necessary to monitor the entire embedded control system and application design
processes to optimize the overall system design. Here, the model-based design ap-
proach proves to be an effective and efficient means of understanding the product
parts such as commercial micro-controllers and processors as well as algorithms and
code for the working of both microelectronic and embedded devices. Model-based
design (MBD) [18] performs verification and validation through testing in the sim-
ulation environment. It covers various disciplines, functional behavior, and cost/
performance optimization to deploy a product from early concept of design to final
validation and verification testing. But the price of the commercial MBD tools being
quite expensive, we came up with an open-source implementation to facilitate MBD
for Embedded Systems. Here, OpenModelica, being an Open Source modeling and
simulation environment perfectly fits to this purpose. It has a rich set of libraries
in different domains for systems modeling and simulation.

2.2 Issues
OpenModelica inherently doesn’t have the facility to support external embedded
devices. To support external devices in simulation, there should be a facility to
send and receive data from and to the devices connected to the systems. And
to facilitate this, there has to be some drivers to implement different protocols to
connect different devices to OpenModelica. This involved developing back-end C/
C++ drivers to facilitate communication between OpenModelica and the embedded
devices, also front-end GUI block sets for users to create models. But the real issue
is to come up with a generic solution so that the user should be able to connect
any kind of embedded device, be it micro-controllers or Single Board Computers
(SBCs), for example Raspberry Pi with OpenModelica.

9

Chapter 3

UART Protocol for Interfacing AVR
ATmega family of controllers

3.1 Motivation
Both Arduino [1] & ATmega16 [2] are based on AVR family of controllers. Arduino
is based on ATmega328p with 32kbs of flash memory & ATmega16 has 16KBs of
flash memory. The Arduino UNO is a widely used microcontroller board based on
ATmega328P microcontroller IC, developed by arduino.cc. It operates at a voltage
of 5V. The board contains 14 Digital and 6 Analog input/output (I/O) pins, a 10-
bit ADC (Analog to Digital Convertor), 8-bit DAC, an in-built LED connected to
digital pin no. 13 and many other features shown in Figure: 3.1

Figure 3.1: Pin Diagram of Arduino UNO

The approach to provide support for these controllers from OpenModelica is

10

based on serial communication by UART protocol.
Basic idea behind serial communication with AVR ATmega series of micro-

controller is to configure the port where the required hardware is connected to
PC using USB cable and identifying the port. The information is therefore used in
establishing serial communication route with these development boards and Open-
Modelica software running in the system. All the configurations of the serial port
are done using external C functions which can be called by OpenModelica [4].

3.2 Algorithm
The architecture of serial communication implementation is as shown in Figure 3.2

Figure 3.2: Architecture of UART Implementation

3.3 Implementation on OpenModelica part
As OpenModelica doesn’t have the capability to interact with embedded devices,
there is need of some drivers through which it can send and receive data from the
external devices.This implementation establishes serial communication of OpenMod-
elica with the external ATmega based devices through UART protocol. Basic idea
behind serial communication with ATmega based device is to configure the port
where the board is connected to PC using USB cable and identifying the port. The
information is therefore used in establishing serial communication route with board
and OpenModelica software running on the system. All the configurations of the

11

serial port are done using external C functions which are called by OpenModelica
at the back-end.

3.3.1 Functionalities added to OpenModelica

The five basic functionalities required in this case are: open_serial, close_serial,
read_serial, write_serial & status_serial. These functions initiate serial commu-
nication with the hardware platform and are used in other interfacing functions to
establish communication. Before using these functions, the hardware setup must be
loaded with a firmware program. This program contains specific set of identifiers to
recognize instructions sent through the serial port.

The basic functions are as follows:

1. open_serial:- It takes in parameters as integer handle, port number on which
device is attached, and baud rate at which it has to communicate with the
device. The function opens the serial port (a file descriptor) and returns 0 if
serial port is successfully opened. In case of a bad file descriptor/failure to open
serial port it returns an integer. It also calls function set_interface_attribs
to set the baud rate and other attributes of the serial port interface and the
function set_blocking to disable blocking.

2. close_serial:- It takes in parameters handle to the serial port as an argument.
The function closes the serial port (file descriptor) and returns 0. If the port
closes successfully then a success message is printed, else not.

3. read_serial:- It takes in parameters handle, a character array that will return
the characters read from the file identified by handle and the number of char-
acters/bytes to be read from the serial port. The function reads ‘n’ number of
characters from the serial port where ‘n’ is the size specified by the function
caller. If read is successfully performed then the characters are copied to the
input argument buffer and a 0 is returned else an integer 2 is returned by the
function to denote error.

4. write_serial:- It takes in parameters handle, character array to be written
to serial port and the size of the character array. The function sends/writes
the given char array to the serial port and on successful write, a message is
printed, else nothing is printed. The function returns 0.

5. status_serial:- It takes in parameter handle and contains the information of
the bytes of data read and written through the serial port. It returns 0 on
success.

In addition to the above basic functions, there are supporting interfacing func-
tions to support digital, analog and pwm functionalities. All the functions are then
called from within OpenModelica from a functions package to avail its functionali-
ties. For a sample implementation for digital data exchange, please refer Appendix
E.

12

3.4 Implementation on Controller part
On the controller part, there has to be a firmware to recognize the data coming from
the OpenModelica tool.

3.4.1 Firmware Structure

The firmware has basic set of functionalities to receive, recognize and send different
types of data with OpenModelica. Depending on the ASCII character received, the
attached pin has been assigned as digital, analog, pwm and also the incoming data
is deciphered as digital, analog or pwm and accordingly the task is performed. If
the incoming ASCII value ranges from 2 to b, then the pin attached is recognized
as digital and accordingly it can be made HIGH (1) or LOW (0). Similarily, ASCII
values are defined for analog and pulse width modulation (pwm) functionalities.

3.5 Issues
Major drawback of this implementation is that, this is a soft real-time simulation
package and time synchronization with model and real-time data. Due to lack of
time synchronization between OpenModelica & system clock, results were not proper
for Hardware In Loop (HIL) application.

The next approach is to use Inter Process Communication (IPC) which imple-
ments time synchronization functionality in a much better way.

13

Chapter 4

IPC Protocol for Interfacing AVR
ATmega family of controllers

4.1 Motivation
To overcome the short-coming of the time synchronization issue with UART proto-
col, Inter Process Communication (IPC) was adopted, as the delay in data transfer
here is very negligible. Hence, it is best suited for Hardware In Loop (HIL) simula-
tion. The InterProcessCommunication package, which is central to this toolbox, was
developed at ModeliCon with the intent of communicating two PCs. We modified
it to work with an Arduino Uno/Mega and a PC. The reason that the IPC package
was chosen over conventional packages is its ability to transfer data independent of
data type. This comes in handy when dealing with the wide range of values that
can be assumed while working with a controller such as a PID.

4.2 Algorithm
Inter Process Communication (IPC) is a communication process by which no. of
different processes shown in Figure:4.1 can share information with each other run-
ning on a same or different systems. There are different methods to implement Inter
Process Communication (IPC) but here we are adopting the shared memory [12]
approach.

In this approach, a part of memory is shared between two or more processes
and then data can read/write to this memory space simultaneously. In our case,
one process is OpenModelica and other one is an embedded device such as Ar-
duino/OpenPLC.

14

Figure 4.1: Shared Working Memory for IPC

4.3 Implementation on OpenModelica part
The directory structure for the library is described below. Also as package.mo and
package.order are present in multiple directories within InterProcessCommunication,
and are largely irrelevant to direct usage, only those at the top level have been listed.

ArduinoCode

ArduIPCWrite

ArduIPCWrite.ino

basic_ write

basic_ write.ino

IPC_ PID

IPC_ PID.ino

15

InterProcessCommunication

Examples

CombinedExamples

PIDandMotor.mo

PulsePIDandMotor.mo

InterProcessExamples

ArduinoIPC.mo

DC_ Motor_ Arduino.mo

Info

Tutorial

Advanced.mo

GettingStarted.mo

Contact.mo

Overview.mo

Resources

Include

Arduino_ port.sh

SerialMI.h

Serial_ SHM.c

ShmMI.c

Library

linux64

librt.a

librt.so

SharedMemory

SharedMemoryRead.mo

SharedMemoryWrite.mo

package.mo

package.order

16

4.4 Implementation on Controller part
The controller has been implemented and tested on Arduino Uno platform. Details
about the controller implementation will be described in Chapter 11 i.e. in HIL
implementation.

The following steps explain how to use the IPC package to run real time HIL
routines. This has been illustrated using a couple of examples. However, before
executing any examples, the user is advised to replace the files librt.so and li-
brt.a in Resources/Libraries/linux64 with files with the same name in the /us-
r/lib/x86_ 64-linux-gnu folder of their systems.
The ArduinoIPC example will demonstrate basic capabilities of the Shared Memory
paradigm being used for HIL. It is assumed that the user is running OpenModelica
as root.

• First, change directory to /InterProcessCommunication/Resources/Include

• Next, run gcc -o Serial_SHM Serial_SHM.c -lrt

• Next, Open Arduino IDE and flash ArduIPCBasic.ino on the Arduino.

• Run sudo bash Arduino_ port.sh | ./Serial_ SHM [baudrate of choice] on the
terminal

• Set up the experiment on OpenModelica. A minimum of 10 seconds is advis-
able in this case.

• Go into the Simulation Flags menu in the Simulation setup, and adding a ’-rt’
flag in the Additional Simulation Flags textbox.

• Execute.

The DC_ Motor_ arduino example will be used to illustrate more detailed usage.
It is assumed that the user is running OpenModelica as root and has the Modelica
Device Drivers package loaded, if they wish to obtain the reference wave as well.
The reference wave in question is being generated on a function generator.

One of the bits of terminology that is being used here is that of the primary and
secondary arduinos. The primary arduino is the one with the PID code, and the
secondary arduino is the one that simply transmits a copy of the reference wave to
OpenModelica.

• First, change directory to /InterProcessCommunication/Resources/Include

• Next, run gcc -o Serial_SHM Serial_SHM.c -lrt

• Next, flash IPC_ PID.ino on the primary Arduino.

• Flash basic_ write.ino on the secondary Arduino.

• If the user is making use of a function generator, connect it to pin A5 for both
the arduinos, set a 4V sine wave with a period of 30 seconds or a square pulse
with a similar period, on the function generator.

17

• If the user is not making use of a function generator, comment out line 6 on
basic_ write.ino and uncomment line 7.

• Run sudo bash Arduino_ port.sh | ./Serial_ SHM [baudrate of choice] on the
terminal

• Set up the experiment on OpenModelica. A minimum of 60 seconds is advis-
able in this case.

• Go into the Simulation Flags menu in the Simulation setup, and adding a ’-rt’
flag in the Additional Simulation Flags textbox.

• Execute.

Here the problem involves building a HIL simulation with a DC motor as in
Figure:4.3 as a software plant, and a proportional control algorithm running on the
embedded hardware. The process is expected to run in real time which means that
a delay should not be used. The problem of HIL for DC motor can be elaborated
as in Figure:4.2

Figure 4.2: HIL Problem Formulation on DC motor

The results obtaiend from HIL simulation of DC motor when PID controller
is applied on Arduino by taking virtual pulse signal as a reference as shown in
Figure:4.4

18

Figure 4.3: IPC: HIL DC Motor model in OpenModelica

19

Figure 4.4: IPC HIL: PID on DC Motor with Pulse as reference

4.4.1 Issues

Though this method of HIL simulation worked on almost all the embedded platforms
but still it has some issues as listed below:

• Depends on librt file of each system which is different for each & every system
even if for same operating system

• Cumbersome as number of steps to be followed to execute one model

20

Chapter 5

Firmata protocol for Interfacing
ARM Cortex-M4 series of controllers

5.1 Motivation
To reduce the bottlenecks in IPC, and to support ARM Cortex Series of controllers
firmata protocol was adapted.

5.2 Algorithm
This protocol uses MIDI (Musical Interface Digital Interface) [3] is a commu-

nication protocol that provides interface of musical instruments to host computers.
Though it uses MIDI message format but it doesn’t use whole of the protocol.
Here sysex (System Exclusive) messages are being used to define set of core and
optional features. The package developed (OpenModelicaEmbedded) has several
components like micro-controller boards, Digital/Analog Pins, etc. which the user
will have to use in the model to make it interact with connected hardware device.
These components make call to external C functions present in the library provided
in Library directory. Those functions using serial communication communicate with
the connected device. This source file will remain same irrespective of the connected
hardware device and platform used (Windows, Linux, Mac).

The connected hardware device uses Firmata protocol as in Figure:5.1 to com-
municate with OpenModelica. The source code implementing Firmata protocol on
hardware will vary depending on the language/IDE used by that hardware/micro-
controller, but the underlying protocol remains the same.

21

Figure 5.1: Firmata Implementation

5.3 Implementation on OpenModelica part
1. Once you have installed OpenModelica, launch OMEdit and open the Open-

ModelicaEmbedded package.

2. To use the above package you will also need to load Modelica_DeviceDrivers
package. The ‘synchronizeRealtime’ block present in this package is used to
make the simulation of models in real-time. All it does is that, it maps the
time interval provided by you before simulation with clock of your PC.

3. The components provided in this package are:

(a) Pins: It contains Analog input, Analog output, Digital input, Digital
output and Servo pins to perform corresponding function in model.

(b) Boards: Any of the provided board can be used depending on the one you
are using, else use the ‘customBoard’ provided and vary it’s parameters
to match the configuration of the development board you are using.

4. Take a look at the examples provided along with the package to understand the
basics structure of a model. Each model has ‘Board’ block which represents
the development board used. This block when added to a model, on simulation
calls a couple of functions present in ‘Internal > ExternalFunctions’ which sets
the initialization parameters for communication like PORT, BAUD rate, etc.

5. These modelica functions present in ‘ExternalFunctions’ then call external C
functions which perform the actual task that the function is supposed to do.

6. These external C functions are bundled together and provided in the form of
libraries. The Libraries used will be ‘*.dll’ in case of WindowsOS and ‘*.so’ in
case of Linux.

22

7. After adding a board to your model add pins using blocks provided for the
same. If you want to send some data from OpenModelica to connected micro-
controller then use Analog/Digital Output Pin, and vice versa. Use Analog
Pin while working with real data and Digital pin while working with Boolean.

8. These pin blocks again call functions in similar manner to either send or receive
data.

9. Once your model is ready and check is successful, upload appropriate Firmware
on microcontroller board connected.

10. The Firmwares for Arduino and Tiva C boards have been provided along with
the package. Open Arduino IDE if using Arduino board and Energia IDE if
using Tiva C board and upload corresponding firmware on board.

11. The Firmware implements Firmata protocol to establish communication with
OpenModelica.

5.3.1 Functionalities added to OpenModelica

• SynchronizeRealTime Block: This block is a part of Modelica_DeviceDrivers
library used for real-time simulation of the model, i.e., this block synchronizes
simulation time of the process to real- time clock of the operating system.
Without this block, the models designed using this package will not be able
to give proper real-time output. This block works at five different priority
levels which can be changed in Parameters dialog box by double-clicking on
the block as in Figure:5.2

Figure 5.2: SymchronizeRealTime block

23

• Pins: This package contains blocks which define input and output pins of the
board to which our hardware can be connected. These pin components define
the properties and working of the pins used in the hardware.

• AnalogInput: It reads an analog signal from the specified pin. This compo-
nent uses the function ‘analogRead’. It takes minimum and maximum values
of the signal as parameter (default values being 0 and 1 respectively) and gives
output depending on the size of ADC (analog to digital converter) 12-bit for
Tiva C series TM4C123G board.

Figure 5.3: AnalogInput block

• AnalogOutput: It writes analog value (PWM wave) to the specified pin.
This component uses the function ‘analogWrite’. It takes minimum and max-
imum values of the signal as parameter (default values being 0 and 1 respec-
tively) and gives output depending on the size of ADC.

24

Figure 5.4: AnalogOutput block

• DigitalInput: It reads an digital signal from the specified pin. This compo-
nent uses the function ‘digitalRead’. It only takes boolean signals.

Figure 5.5: DigitalInput block

• DigitalOutput: It writes digital value to the specified pin. This component
uses the function ‘digitalWrite’. It only takes boolean signals.

25

Figure 5.6: DigitalOutput block

• Servo: It controls a servo motor attached to the specified pin. This compo-
nent uses the ’Servo’ library. By default, the range goes from 0 to 1, which
corresponds to 0 to 180 degrees. If you want to input values in degrees or
radians, you can change the parameter ’InputUnit’ to ’Degrees’ or ’Radians’.

Figure 5.7: Servo block

This package contains block components which enable connection with differ-
ent firmata boards. These components take serial port used for connection as
parameter.

• StandardFirmata: Connects only to compatible boards.

26

Figure 5.8: StandardFirmata block

• CustomFirmata: Supports any board firmata.

Figure 5.9: CustomFirmata block

• customBoard: Takes name of the board also as parameter and can be used
to connect any board supporting firmata.

Figure 5.10: customBoard block

5.4 Implementation on Controller part
The Tiva C series Launchpad Evaluation board (EK-TM4C123GXL) is low cost
ARM-Cortex-M4F based micro-controller. The board contains 40 I/O pins, two user
programmable push buttons, an RGB led and many more features as in Figure:5.11

27

Figure 5.11: Pin Diagram of Tiva C Launchpad

1. Connect the Tiva C board to the computer using a USB cable.

2. Open Energia IDE.

3. In Tools Menu, select Board →Tiva C and Port as the available serial port to
which Arduino is connected.

4. If Tiva C board is not present, then click on Board Manager, type Tiva C in
search bar and then click on Install to install board library, then apply Step
3.

5. In Sketch menu, Select Include Library →Add .zip library and add the zip file
provided in the Firmware folder. Then open StandardFirmata sketch: File
→Examples →StandardFirmata.
OR
Click File →Open and browse OpenModelicaEmbedded →Firmware →Tiva C
→StandardFirmata and open StandardFiramata.ino.

6. Upload the sketch to the board.

The process of interfacing with OpenModelica happens in the following steps

1. Upload StandardFirmata sketch to the Tiva C board.

28

2. Open package.mo from OpenModelicaEmbedded package, also open pack-
age.mo file from Modelica_DeviceDrivers library.

3. In OpenModelicaEmbedded library, open TivaC_Examples package.

4. In Diagram view, change the port name for the board component to the port
to which board is connected by double-clicking on it.

5. Simulate the example model.

Examples for TIVA C Controller
TIVA C Examples package consists of example models designed for specifically to
work with TIVA C series board. In order to work with these examples, double-click
of board block in the Diagram view and change port name to the port to which
board is connected.

The following is an example to turn on the blue led indefinitely as in Figure:5.12.
Double clicking each block opens the parameter window for it. Change the param-
eters according to the following image.

Figure 5.12: TIVA C Led Example

29

The following example is to read the status of the pushbutton and display it on
the serial monitor.

In this model in Figure:5.13, a BooleanValue block is used to show boolean value
coming from the digital input pin of TIVA C on Simulation Output. The block
BooleanValue can be found at Modelica.Blocks.Interaction.Show.BooleanValue.

Figure 5.13: TIVA C Push Button Example

Turning the blue LED on and off according to the values of LDR (Light Depen-
dent Resistor).

In the model as in Figure:5.14, two blocks have been used namely Less and Con-
stant.

Less block takes two inputs and gives one output according to the values of in-
put. For example in the case below, when value from pin 19 is less than k = 300,
output is true (or 1) and when value from pin 19 is greater than equal to k=300, its
output is false (or 0). The block can be found at Modelica.Blocks.Logical.Less.

Constant block provides with a constant value which can be set by user. The
block can be found at Modelica.Blocks.Sources.Constant.

30

Figure 5.14: TIVA C LDR Example

The following example is of rotating the DC motor in both directions. As visible
in the model in Figure:5.15, 2 pulse blocks are used to manage this.

A pulse block generates pulse signals of real value. It’s amplitude, duty cycle,
time period, start time can be varied through changing amplitude, width, period,
startTime respectively in the parameter window of the pulse. The block can be
found at Modelica.Blocks.Sources.Pulse.

Double clicking each block opens the parameter window for it. Change the
parameters according to the following image.

31

(a) Connections for dc motor

(b) Model for rotating dc motor in both directions

Figure 5.15: TIVA DC Motor Example

Rotating the servo in increments.

The model as in Figure:5.16 contains blocks like Product, RealToInteger, Inte-
gerToReal, Constant and Ramp. The Ramp block gives a strictly increasing value.
On using RealToInteger block on the output, it converts it to step function. Now as
the Product block accepts 2 input in real format only, there was a need to convert
the value back to real using IntegerToReal block.

In Servo pin, set InputUnit to OpenModelicaEmbedded.Internal.Types.ServoUnit.None.

As can be seen from data sheet in Figure:5.17, SG90 has a duty cycle of 5-10%
where if it is 5%, the position of motor is -90 degrees and if 10%, it is +90 degrees.
So as we were simulating for 10 seconds, MinPulse was 0.5 sec and MaxPulse was 1
sec in Servo pin Parameters.

32

Figure 5.16: Data Sheet for Servo Motor SG90

Figure 5.17: TIVA C Servo Motor Example

33

Chapter 6

Open Platform Communications
Unified Architecture (OPC UA)

6.1 Motivation
Now-a-days system designs and information sharing has become border-less of any
specific company or any plant. Many a companies are working in-sync without
any boundaries together on different common projects and products. Due to the
huge demand of integration and interconnecting different systems, there has to be
a common standard for their interoperability. The common standard of different
information systems reduces cost and time of integration. With standardization,
there is also a possibility to create common adoption between different kind of
systems. OPC Foundation [6] solves the need of standardization. Initially, the
OPC started for OLE for Process Control. But OLE itself is proprietary technology
called Object Linking and Embedding. This technology is used to create references
between the data objects specifically in Windows OS. Microsoft later published SDK
for this technology, which leads to creation of the OPC. OPC Foundation decided
to redesign OPC components and technologies with modern, vendor independent
solutions. The new specification is called OPC Unified Architecture (OPC UA).
Nowadays the OPC means Openness, Productivity and Collaboration. Currently,
OPC is the communication standard in automation technology. Migration to OPC
UA is needed to increase possible types of the integration solutions for which OPC
can be used.

6.2 Technical Overview

6.2.1 Classic OPC

It’s an inherited technology and based on a technology from Microsoft which is
called COM/DCOM i.e. distributed object model. It was started around twenty
years back to connect the process devices in the same way as the printer. The idea
is to have a driver for the device and the driver is talking through the proprietary
protocol to the industrial device. Also, all the windows application should be able
to communicate with the device through the driver. There is facility to

34

1. Data Access

2. Historical Data Access

3. Alarms & Events

Based on this technology, new requirements are coming up, so the new generation
technology OPC UA was developed.

6.2.2 OPC UA

On one side, there is wide adoption of OPC classic but there is a need to use OPC
as a common system interface and to do that there is need of something we call it
scalability as shown in Figure 6.1. That means the technology can be used on very
small embedded devices but the same technology can also be used on larger systems
like classic SCADA systems etc. In addition to that scalability, the communication
between distributed systems should be platform independent. That is why we need
a technology that can be implemented on any operating systems not specific to
Microsoft. So, it’s not bind to COM/DCOM. Hence, OPC UA has a new platform
independent application and we can implement it on all kinds of operating systems.
In industry, there is need of redundancy and very fault tolerant and robust systems
and also they need to run 24/7 and of course performance isn’t an option. It needs
very high performance to transfer all the data coming from process devices. Also,
when security comes into picture, it becomes more important. It needs to secure
the data, needs to sign the data, also needs to authenticate the data so that only
the authorized person can only visualize the data. Also, it needs to cross firewall
boundaries because there is a need to interconnect in large networks and even over
the Internet. In addition to the protocol specific details, there is also a need of
data modelling capabilities. This is one of the basic key features of OPC Unified
Architecture. It is needed to describe the data that is inside the machinery. So,
type of the system need to be described. Also, complex data structure that needs
to be transfered. And to describe all these information, there is need to have a
meta data model. This meta data model is used to describe the semantics and
all the relationships between the data inside the particular device. This concept is
applicable to all kinds of data.

35

Figure 6.1: Scalability of OPC UA

6.3 Basic Building Blocks of OPC UA
The technology started in 2003 and till 2006 was the definition phase writing the
specifications. Then there came the verification phase when actually the community
tried to implement what was specified and to see what was doable by coding stan-
dards. And finally the specifications were released in 2009. During this time only
the first products were showed up in the market. Now, OPC UA has become an
IEC standard which is an international standard and the release happened in 2010.

By basic oveview, the OPC UA is the classic OPC standards and it has classic
OPC features with additional features such as

1. Platform Independence

2. Standard internet and IP Based standard Protocol

3. Built in Security features

4. Generic object model

5. Extensible type system

6. Scalability through profiles

The object model and the type system are the basic building blocks as shown
Figure 6.2. Data modeling and it’s capabilities are best described as similar to object
oriented programming. So, there is an OPC UA object which is the representation
of a data point or some processed value. It has a variable, it can have methods and
it can also trigger events. So, it’s quite a complex object.

36

Figure 6.2: OPC UA Object Model

The OPC variables have OPC data access and historical data access. The events
are known as OPC alarms & events. The commands are the method invocation of
those kind of objects.

Everything in OPC UA is a node. So, the address of a OPC server gives the full
description of the information that is inside the device. All this is described with
the nodes and there are eight node classes defined by the OPC foundation like the
base node classes and from this everything else is derived. In addition to nodes, the
base nodes and all the attributes, this can be extended to systems if there occurs
any special requirements. There are instances of objects, variables, methods, and
there are object types. All the objects and nodes inside the address space of an OPC
server are interconnected with references. So, references are like pointers pointing to
another node. And with those references, we can build all the relationships between
different nodes within the address space.

The next building block is transport. There are different transport bindings. So,
OPC UA can be transported over different protocols. And one of the transport is
mandatory that every OPC UA server must implement i.e. Optimized OPC UA
binary. This is using TCP/IP as a base so it’s sitting on top of TCP/IP and then it
defines a UA TCP protocol. On top of that we have a security layer which is known
as UA secure compenastion layer. It’s the layer that encrypts the message and on
top of it is encoding which is a UA binary encoding as a special encoding which
is very optimal for the use of OPC. This is known as message security because the
message content is secured.

6.4 Protocol Implementation - OPC UA Stacks
In the protocol stack, in the Figure: 6.3 there is a client application which calls
an API on the stack at the API call and the stack is implemented in different

37

programming languages. When there is an API call, the client application calls into
the stack and then the message structure gets encoded and the encoded message
gets secured and the secured message gets transported over the wire. On the other
side the message goes up the stack through different layers. The transport header
is removed and the message is decrypted and the raw message sturcture pop’s up
on the server API. If the server answers then it goes back to the client and so on.
This is the concept of message transfering between the server and client and back.
And user doesn’t have to implement the stack, it’s already there. User just have to
integrate it to their applications.

Figure 6.3: OPC UA Stacks

6.5 OPC UA Services - Generic UA API
On top the basic bulding blocks, it has UA based services. It has the following
fatures

1. Protocol Independent OPC UA Services

2. Services to

(a) Discovery Services and Endpoints

(b) Browse Server Address Space

i. Instances
ii. Type Systems

(c) Read & Write current data

(d) Read History of Data & Events

(e) Call Methods

(f) Subscribe for

38

i. Data Changes
ii. Events

(g) Create & Delete Nodes & References

3. Generic Services

(a) No Feature Specific extensions
(b) Features Added through information Models

6.6 OPC UA built-in Information Models
OPC UA has an information model for data access, alarm, conditions and programs.
The model has following features

1. Data Access :-

(a) Representation of process variables
(b) e.g. AnalogItemType with unit and range

2. Alarms & conditions :-

(a) Representation of power alarm systems
(b) State machines for Alarm States
(c) Events for State changes
(d) Methods feedback like Acknowledge

3. Historical Access :- Information about historized data and events

4. Programs :-

(a) Representation of programs
(b) Manipulate programs like start, stop
(c) State of a program execution
(d) Result data handling

6.7 OPC Companion Model
On top of the OPC information models, there comes the companion models in which
organizations use OPC and the data is being described in a companion specifications.
Here data is being described in OPC UA and this can be defined already some
standard models defined by the OPC. But user can also define their own model
directly for any vendor specific model. There were very successful companion models
such as PLCopen which defines the way how the PLC data is being exposed in OPC
UA object. Also, there is a companion model defined by the Automation group.
There is also a specification defined companion model is going on for oil and gas
industry.

39

6.8 Overall OPC UA Model
1. Standard Information Models

• Use Case Specific Models

• Industry Specific Models

2. Defintion Based On

• Collaboration with other models

• Special use cases and requirements

3. Already Available

• Device Integration(DI)

• Anlyzer device Integration(ADI)

• IEC61131-3(PLCopen)

• Field Device Integration(FDI)

• Bulding Automation(BACnet)

4. More Ongoing

• Oil & Gas subsea (MDIS)

• Auto Identification (AIM)

• AutomationML

OPC UA specifications has currently has 14 parts based on OPC technology.
These are known as base course specifications.

40

Chapter 7

OPC UA on 4DIAC

7.1 Motivation
The motivation behind this integration is to transform industrial control systems
from the standard pyramid topology into the reconfigurable systems. 4DIAC frame-
work is based upon to the IEC 61499 standards. It allows an user to create any type
of control application and then implements the feature of reconfiguring the appli-
cation by creating and modifying functional blocks (FBs) and making connections
in-between them. But, the implemented application runs only on one layer of the
industrial hierarchical pyramid. The issue with this implementation of control sys-
tem is that the systems on other layers do not react to this reconfiguration, because
they are not capable of automatic detecting this kind of reconfiguration. But the
issue was solved by OPC UA implementation as the data sharing protocol. The
information model of OPC UA which allows not only to store data, but also to store
them in the structured series of interconnected nodes. The developed solution uses
OPC UA not only to share values, but also structure of FBs with other systems in
network. This brings new possibilities to the systems on other layers of the pyramid
with detecting reconfiguration in 4DIAC application.

7.2 IEC 61499
This section will give a brief idea into the IEC 61499 standard. 4DIAC framework is
built on IEC 61499 standard. IEC 61499 is a new family of standards for Industrial
Process and Control Systems. This standard mainly consists of 4 parts. Such as

1. IEC 61499-I : Function Blocks - Part-1: Architecture

2. IEC 61499-II : Function Blocks - Part-2: Software tools requirements

3. IEC 61499-III : Function Blocks - Part-3: for Industrial Process Control Sys-
tems

4. IEC 61499-IV : Function Blocks - Part-4: Rules for creating compatibility
profiles

41

The main purpose of this standard is defining Function Bocks (FBs) and creating
a network by connecting the functional blocks. IEC 61499 is based on an older
standard known as IEC 61131 family of standards which is the most widely adopted
standard in industrial process and control systems domain.As IEC 61499 is built
upon IEC 61131 and hence it’s easier to adopt this standard. The features which
makes it easier for user acceptance because of its distributive nature, modularity,
reconfigurability and event-triggered model. In IEC 61499 standards, models can be
defined through graphical block diagrams to create a distributive control application.

Models that can be defined in this standard are the application model, the system
model, the device model, the resource model and the FB model. This models are
in a hierarchical manner such as application model has multiple system models,
system model in return consists of multiple device models etc. The most basic and
important model is the Functional Block (FB) model. FB as Figure: 7.1 in is an
independent self-sufficient entity which provides specified functionalities.

Figure 7.1: IEC 61499 FB

7.3 IEC 61499 Base Model
Implementing model in IEC 61499 system can be done in two phases. In the first
phase, user creates network of Function Block (FB) by interconnecting the FBs with
data and event connection. At this point, the developer has only functionality part
in mind and it is independent of any device or control infrastructure. After the im-
plementation of functionalities in the first phase, the system model already created
are mapped to control devices. The IEC 61499 model is executed on devices. Each
device comprises of managing device component, communication interface that fa-
cilitates communication between the devices, to access the sensors, process interface
provides the services, also present are different actuators and other physical devices
for controlling the processes. Resources can also be part of devices. These are func-
tional entities which may have the whole applications or the parts of applications.
But resources are device independent. So, resources in any particular device can be
modified, added and/or removed without any modification in any of other resources.
This is a vital step to get to the goal of reconfiguration. The goal of the resource is
to provide an execution environment, to deliver event notifications.

42

7.4 IEC 61499 applications
Very basic principles of the 4DIAC framework is creating different types of appli-
cations by using function blocks and then deploying the applications to use. The
essential idea of having 4DIAC framework is compiling own version of 4DIAC run-
time environment dedicated for the current applications of IEC 61499 which can be
differentiated into the research and as well as industrial sectors. The IEC 61499
standard came to a proper existence only in January 2005. But before the stan-
dardization came to existence, around 2000 it existed in a format known as Public
Available Specification. Though IEC 61499 was available in different forms for quite
a long time, but most work published up to now has been mostly in academics or
only prototypes for industrial test cases. The Industrial sector adopted IEC 61499
primarily for case studies and prototypes. A number of test cases has been imple-
mented through the Function Block Development Kit (FBDK) / Function Block
Run-Time (FBRT) package. Java and Java Classes are used to implement FBRT
and IEC 61499 elements. This package is considered as a reference implementa-
tion and was used to test models and standards. In FBRT the event notification
is handled by function call. The source FB calls notification function of the event
connection object and this object triggers event on destination FB by calling his
event function. This approach creates delays and is also one of the greatest reasons
why FBRT has never been adopted by industry sector. Another reason is also that
this Java implementation was not able to run on small industrial control platforms.

7.5 The 4DIAC initiative
4DIAC open source initiative was founded by collaboration of The Automation and
Control group of Vienna University of Technology and PROFAC-TOR GmbH. The
aim of 4DIAC initiative is to create an open-source framework based on IEC 61499
standard which will provide reference implementation of execution model for IEC
61499. 4DIAC initiative is currently focusing and developing two major projects of
IEC 61499 compliant

1. DIAC IDE - Engineering tool

2. FORTE - Runtime environment

To work with 4DIAC framework you have to use both of this parts. You can find
instructions how to install and run this project on your own computer in Appendix
A. Brief information about 4DIAC IDE and FORTE are given in the next section..

7.6 4DIAC IDE & Runtime Environment

7.6.1 4DIAC IDE

The development environment of IEC 61499 is implemented by 4DIAC IDE and the
4DIAC IDE is built on top of Eclipse open source framework. The Eclipse framework

43

makes 4DIAC IDE an open source IDE and platform independent. All the other
tools built on Eclipse works well in 4DIAC IDE. Each user can create their own
user specific application. There are three default environments which gets created
in 4DIAC IDE. These are required to create a basic application in 4DIAC. FBs
can be modified/added/deleted, events can be created and data connection should
happen. The system configuration of one of the examples supplied with 4DIAC IDE
can be taken as a reference. The system configuration as in Figure: 7.2 consists
of one device connected via Ethernet. Each of this device includes two resources.
One of the resources is management resource always named MGR_ID and is read-
only. The FB Network running on the resource can be edited by double clicking on
it. Type Management facility is dedicated to edit and create developers’ own FBs.
The application window having the required block-sets for the current application
is somewhat looks like as in Figure: 7.3. In case of basic FB you can edit function of
this FB by editing its ECC or Algorithm written in pseudo-code as in Figure: 7.4.
The function of the Composite FB can by modified or created by editing Composite
Network. Only Service Interface FBs (SIFBs) function is not allowed to change in
4DIAC editor. Function of SIFBs can be modified only by editing FORTE source.
All changes made in Type library have to be exported into the FORTE code. To
use this modified FBs in control system it is necessary to recompile the FORTE
with these updated function block. Deployment Perspective is dedicated to the
deployment and upload application into the control system devices by clicking on
Download button. There is also possibility to run local FORTE and FBRT directly
from Deployment Perspective. In case of local FORTE runtime, all its output are
shown in Console window.

Figure 7.2: 4DIAC system configuration

44

Figure 7.3: Application Window

Figure 7.4: ECC for 4DIAC blink application

7.6.2 4DIAC RUNTIME ENVIRONMENT - FORTE

The FORTE is a portable C++ implementation of an IEC 61499 runtime environ-
ment. It is focused on small embedded control devices like 16/32bit controllers and
provides execution of all IEC 61499 types of functions blocks. Currently FORTE is
available for Windows, POSIX (Cygwin, Linux), NET+OS 7, and eCos. It can also
be used on small embedded boards like RaspberryPi, BeagleBone, etc.

7.7 open62541 stack
Different OPC UA standards are published by the OPC UA Foundation. No offi-
cial communication stack has been announced yet. The OPC Foundation has just
published some example codes in Ansi C and JAVA, but there is no complete SDK
or even documentation present. However there are a few open source or propri-
etary stacks available. On the OPCConnect website, OPC UA stacks overview,
one can find brief description of available SDKs and toolkits. There are also some

45

open stacks available for OPC UA. But these stacks are often published under li-
cense which is not compatible with the 4DIAC license. OpenOpcUa is open source,
but to use it, one needs to pay a one time fee. Also, there is FreeOpcUa hosted
by GitHub(https://github.com/FreeOpcUa/freeopcua), but this SDK is not fully
working and the lack of documentation makes it impossible to use it for the pur-
pose of this thesis. However FreeOpcUa is a C/C++ and Python SDK, and in the
Python version, much more progress has been made. This SDK provides a great
open-source Python GUI interface for discovering the OPC UA server. Considering
two important parameters: license and documentation, the open62541 stack seems
to be optimal. This stack is used to integrate OPC UA into FORTE. Open 62541
is a communication stack based on OPC UA standards published as IEC 62541 li-
censed under LGPL and is freely available on GitHub. This stack is fully scalable,
supports multi-threaded architecture, where each connection or session is operated
by a separate thread. Open 62541 is written in C99 with POSIX support, so it is
able to run on Windows, Linux, MacOS and Android. POSIX Linux support means
open62541 stack can also run on small embedded machines like RaspberryPi, PLCs,
etc.

7.8 Integration of open62541 stack for OPC UA in
4DIAC

4DIAC by default doesn’t support OPC UA. Users have to build open62541 with
FORTE so that OPC UA functionality is made available in 4DIAC. The building
instructions are in Appendix A. During the first stage, module open62541 enables
4DIAC to create a dummy server and client stack. 4DIAC tool already has a different
method of data transfer in network by using PUBLISH and SUBSCRIBE FBs, but
this connection is just peer-to-peer. This means only transfer between two resources,
devices, or applications is possible. While built-in solution in 4DIAC allows only
connection between two points, both running 4DIAC runtime, OPC_UA_WRITE
and OPC_UA_READ can write and read values from any distant or local server,
which can create connections among multiple devices, not necessarily using 4DIAC.
The SUBSCRIBE block subscribes or receives one or more variable values avail-
able from the other servers into the address space defined. The PUBLISHER block
sends or makes the computation value available to the server on the other side.
But the address space of the variables should be same for the subscriber and pub-
lisher. With the INIT event, the OPC UA server starts with a default IP address of
opc.tcp://localhost:4840. Here only one OPC UA server is created and the address
space is shared between all the FBs. Please refer to the Figure: 7.5 for flip-flop
application and testing with UaExpert in Figure: 7.6. In this application the binary
value available in the subscriber end gets toggled and the toggled value is available
for publish.

46

Figure 7.5: 4DIAC flip flop application

Figure 7.6: Testing with UaExpert

47

Chapter 8

OPC UA in OpenModelica

8.1 Motivation
With time and growing demand, systems have become quite large, complex, and
mathematically tedious to build. We continue to rely on age old tools but these
aren’t capable of analyzing, building such complex systems as the computational
complexity and the control of such systems is beyond their capability. Also with
the availability of large powerful engines, speed of computation has increased by a
huge factor. So, as there is a availability of large computation power, the simulation
and modeling tools can be used to analyze and build large and complex systems.
OpenModelica [8] is such a tool which has become the standard of modeling and
simulation to build complex systems. It’s always too costly to perform experiments
on real-time systems and most of the times the resources are also not properly used.
Hence, it’s has become a standard practice for academia and also for the industry
to perform the virtual experiments on some modeling and simulation tools before
going for the actual implementation of the plant setup. Modeling and simulation of
real-time systems is cost-effective as compared to implementing real-time systems
directly as it’s quite a bit easier to add/ delete or modify the components as per
the demand of the situation. The results from simulation become more real-time
and practical if the simulation tool can interact with the external devices in real-
time. And it does this by using the open62541 stack at its back-end. open62541
is a open-source library implemented in C/C++ for OPC UA architecture [7].
OPC UA being platform independent, can be used to interface with any of the
external devices to connect with OpenModelica. OPC and its latest version OPC
UA are specifications that can be used in communication among both software
and hardware components in technical systems, especially in process control and
manufacturing automation systems. In this chapter, a method for incorporating the
OPC interfaces, especially OPC UA, into OpenModelica is implemented. In order
to monitor variables efficiently in real-time, the OPC UA interface to OpenModelica
simulations was developed. OPC UA is called the pioneer of Industry 4.0 [21]as it
is a communication architecture aiming at the standardization of communication in
industry.

48

8.2 Previous and Related Work
There used to be an OpenModelica OPC-UA/OPC-DA interface implemented around
2011 in [9], but it has number of issues problems:

1. Closed source code, making updates hard.

2. Windows-only, making it not run on the primary platform for OpenModelica
(Linux).

3. Not maintained for several years.

OpenModelica used to have support for interactive simulations in the 1.5.0 re-
lease. Then it was using a custom protocol that was not suitable for real-time
simulation and was not maintained for several years. The functionality of both OPC-
UA/OPC-DA and interactive simulation was lost around the same time, when the
simulation runtime was completely restructured since nobody working on OpenMod-
elica could use the interface. It is also possible to use FMUs for interactive simula-
tion. If FMI for co-simulation is used, this can be done in a straight-forward manner,
just making a step, displaying variables, and synchronizing to real-time. However,
OpenModelica does not support advanced numerical solvers for co-simulation FMUs.
If FMI for modelica exchange is used, the interactive simulation tool would need to
become a full-fledged FMI simulation tool like OMSimulator; but OpenModelica
model exchange FMUs coupled with OMSimulator cannot simulate as many models
as OpenModelica simulations at the moment.

8.3 OPC Interfaces
In OpenModelica, a model can be simulated through the OPC interfaces. It is possi-
ble to choose between two similar interfaces, OPC Data Access (DA) and OPC Uni-
fied Automation (UA). Both interfaces offer about the same functionality. However,
OPC DA is a part of OPC Classic which is an older interface based on Microsoft
Windows technology. OPC DA is a standardized way of communicating data in
terms of values, time and other quality information, bound to Windows platforms.
The communication takes place in a client-server model, which means that the OPC
server and client communicate over a computer network. OPC UA is based on a
client and a server communicating over a network. It is fully possible to connect
several OPC clients to an OPC server. However, the OPC DA server in OpenMod-
elica is, according to the documentation, currently broken. Instead, let us have a
closer look at OPC UA which is currently in an experimental state.

OPC UA [22] is a standardized protocol for industrial communication in the
ISO/IEC 62541:2015, OPC Unified Architecture. This standard aims to define in-
formation exchange between clients regardless of the hardware in use. The OPC
Foundation[OPC2] released OPC UA in 2008 and it integrates the previous OPC
Classic specification functionality into one unified architecture. OPC UA is back-
ward compatible with OPC Classic as well as hardware independent. It can run on
several platforms such as Windows, Linux, Android and Mac. In other words, OPC

49

UA can be used as a communication protocol between smaller embedded devices as
well as between large network infrastructures. OPC UA can be used in both closed
networks and over the Internet. Authentication, access control and encryption is
built into the protocol for security measures in case it is intended for usage outside
a closed network. OPC UA is functionality equivalent to OPC Classic but also
extended with further capabilities. For example, it is possible to invoke a Remote
Procedure Call (RPC) which makes it possible to call functions and execute pro-
grams on the server side, from a client. Another interesting feature is subscriptions.
A client can subscribe to a server and monitor interacting data. If the interacting,
monitored data item changes, it will be reported back from the server to the client.
This feature can therefore reduce the amount of network traffic by only sending data
as it becomes relevant to the client. It can be valuable in different aspects in terms
of reduced overhead cost for a small embedded device or reduced network traffic for
a large scale cloud infrastructure. Another new functionality added to OPC UA is
the ability for a OPC UA client to discover OPC UA servers on a local computer or
network, or both. All data on a OPC UA server is represented hierarchically using
folders. A folder can contain other folders and data items.

Furthermore, an important difference between OPC DA and OPC UA is the
address space model. The primary object for the address space is to provide a
standardized way for the server to represent objects to clients. It contains metadata
about the server as well as data items, referred to as nodes. Each node is assigned
to a node class which in turn represent a different object in the object model. Nodes
are especially interesting because they are described by attributes. They can also
contain information about the relation to other nodes. However, attributes contains
information about each node such as the node id, value and data type. They can be
accessed by a client using the read, write, query or subscription services. There is
also possible to protect attributes of a node from being written by the WriteMask
attribute. It can be useful in cases where read-only nodes are exposed to clients.

8.4 Implementation
open62541, which is an open-source OPC UA implementation, is being used in the
backend of OpenModelica. OPC UA in OpenModleica can be activated by using
the simulation flag -embeddedServer=opc-ua. Inside OpenModelica, internally
in the simulation, open62541 runs on a separate thread created and it samples
variables chosen by the user to monitor, and performs the communication with
OPC UA clients which may be an another software or hardware. This approach
has a negligible effect on the performance of the actual simulation and will not
interfere with the real-time properties of the simulation assuming that the user has
a separate processor core to spare for the thread sampling the simulation variables.
The simulation can be controlled by setting variables through the following OPC
UA interfaces:

• OpenModelica.step

• OpenModelica.run Runs asynchronously and synchronizing to real-time after
each time step

50

• OpenModelica.realTimeScalingFactor 0.0 disables, 1.0 synchronizes in real-
time

• OpenModelica.enableStopTime When disabled, simulation continues without
stop-time

8.5 Testing with UaExpert
UaExpert [10] is an C/C++ based OPC UA client with a graphical user interface.
It can connect to any of the OPC UA server running on the local host and also
anywhere on the network. Let’s take up an example to explain it better as shown
in Figure: 8.1 and in Figure: 8.2. This will help to understand better how the OPC
UA client server communication between OpenModelica and UaExpert works.

Figure 8.1: OM Code Test with UaExpert

Figure 8.2: UaExpert client connected to OM

51

An example can help to obtain better understanding about OPC UA and how
it works. The following example uses UaExpert which is an OPC UA test client
with a GUI. Figure: 8.2 depicts UaExpert connected to the simulation of the model
on OpenModelica. The address space to the left contains the exposed nodes in the
address space model hierarchy. Attributes related to the variable node step have
been read and the response is shown in the attributes area to the right. Several
attributes are available as Figure: 8.2 illustrates, including the attribute NodeClass
which defines that step is a variable node. OPC UA is a communication protocol
which is platform independent. It is quite possible to implement this architecture in a
number of ways and also by using different programming frameworks. OpenModelica
at its back end uses open62541 for OPC UA server implementation. The reason for
choosing the open62541 library for this implementation is it is open-source and quite
well-documented. The other available libraries are not well-documented, though
they are open-source. Also, OpenModelica being an open-source entity, it has a third
party package which has to be open-source and not a closed package. open62541
is an OPC UA protocol written in C. As mentioned earlier, OpenModelica is open
source which means that the third party libraries available is limited to the open
source domain. Also, this very protocol is intended to be platform independent.
That includes hardware and OS independence. A stable and exact implementation
of OPC UA was required therefore to be able to communicate with different clients
and servers independent of their actual implementation. But users can go for any
other implementation of OPC UA if they think it better than open62541. open62541
is the backbone of OPC UA architecture for OPC UA in OpenModelica.

52

Chapter 9

OPC UA for interfacing Single Board
Computers (SBCs) & OpenModelica

9.1 Motivation
OPC UA can be used to communicate among different platforms such as Windows,
Linux, OS X and other Single Board Computers (SBCs) like Raspberry Pi etc. Here
OpenModelica being an open-source modeling and simulation tool, it has various
block sets for process simulation. Any of the SBCs on which OpenModelica can
be installed and can access the GPIO pins will be of great use in Industrial IoT
[16] [13] i.e. in cyber- physical production systems [20]. If any analog/digital sensor
is interfaced to any of the GPIOs of SBCs while sensor data is made available to a
plant model for real-time simulation [?], it will be of immense value real-time process
simulation. As the results obtained are of real-time, that can be directly used for
plant setup.

9.2 Architecture
As the OPC UA architecture is platform independent, fetch real-time data and
store data history, it will be an ideal platform to access GPIO pin modes from
OpenModelica environment. The architecture of the implementation is shown in
Figure: 9.1. Here the OPC UA server runs on OpenModelica and the OPC UA
client runs which is created by the Python implementation. Once the data from
sensors is made available through the serial communication to OPC client, then
the OPC server running on OpenModelica can access it and do the computation as
defined by the user in the process defined on OpenModelica. The implementation
happens in two stages. In the the first stage, it is required to get the IDs of the
process, Node and variables.The server implementation architecture is as shown in
Figure: 9.2.The Figure: 9.3 shows the Node Ids and variable Ids from the 1st stage
implementation. The OpenModelica script for this implementation can be found
in Appendix B. The OPC UA python script can be referred in Appendix C. The
process ID is shown by the OpenModelica.run field which is here 2 and the variable
IDs is given by x and y here as per the modelica script. After getting the IDs the
user has to use those specific ID nos to make the data available to OpenModelica

53

workspace. Here, once the node is created, the node objects have methods to read
and write node attributes as well as browse or populate the address space. All the
child processes in that node will ultimately give access to the variables to which the
values from the sensors will be written.

Figure 9.1: Architecture of Raspberry Pi with OpenModelcia

54

Figure 9.2: Architecture of Raspberry Pi with OpenModelcia

Figure 9.3: List Ids of Raspberry Pi with OpenModelica

9.3 Testing & Evaluation on Raspberry Pi
The results in Figure: 9.4 and Figure: 9.6 shows controlling of digital and analog
sensor interfaced to Raspberry Pi through OPC UA through OpenModelica. Rasp-
berry Pi doesn’t have any ADC and hence it’s not feasible to connect any analog
sensors source to any of the GPIO pins of RPi. To overcome this issue, one approach
could be connecting an external ADC(Analog to Digital Converter) and measure the
analog values through it. But a high resolution ADC will be very expensive. So,
the other approach is using the ADC of Arduino Uno which has a quite good res-
olution of 10-bit. It can measure a voltage resolution of 5V/1024 which is around
0.00049V. Also, Arduino can be connected to Rpi through a serial port or USB.
Once the real-time sensor values are available through serial communication to Rpi,
then OPC UA client on Rpi made these values available to OpenModelica model for
further computation. The architecture is being explained in Figure: 9.5

55

Figure 9.4: Output of Digital sensor with Raspberry Pi with OpenModelica

Figure 9.5: Architecture of Analog sensor for Raspberry Pi with OpenModelica

56

Figure 9.6: Output of Analog sensor with Raspberry Pi with OpenModelica

9.4 Generic Implementation for all Embedded hard-
wares

OPC UA provides a universal implementation as it is platform independent. Being
an user, you just have to define the path to the variable in the algorithm implemented
in python. And the path or file structure to the variable can be found by running
the opcua-client as shown in Figure: 9.7

Figure 9.7: Variable Path

57

Chapter 10

Software In Loop (SIL) simulation
with 4DIAC and OpenModelica

10.1 Motivation
Before going for Hardware In Loop (HIL) simulation i.e. to verify the plant model
with real-time data input from controller, it’s advised to verify the plant charac-
teristics by Software In Loop (SIL) simulation with controller on 4DAIC and plant
model on OpenModelica. SIL is a method for software based evaluation of simula-
tion characteristics of plant model. A plant model defined in OpenModelica can be
evaluated under simulated input conditions from another software entity and for the
purpose of my thesis, it’s an open-source framework based on IEC 61149 standard
and used for controller implementation for different industries. SIL is a cost effec-
tive method for evaluating critical systems before its actual implementation in the
real world scenario. SIL is vital stage in Model Based Design (MBD) for embedded
system design.

10.2 Architecture of SIL simulation
The architecture of the communication between 4DIAC and OpenModelica happens
by OPC UA protocol. As described in the previous chapters the OPC UA has
been enabled in both 4DIAC and OpenModelica. Here 4DIAC works as a client
and OpenModelica acts as a server. To get the list of IDs of different nodes and
variables, please refer the Figure: 10.2 and Figure: 10.3.

58

Figure 10.1: SIL Architecture

Figure 10.2: List Ids of SIL DCMotor model

59

Figure 10.3: List Ids of PID on 4DIAC

10.2.1 PID controller in 4DIAC

4DIAC doesn’t have a PID block. So, it’s like creating a new library for PID
controller in 4DIAC. This is a basic FB in 4DIAC. And the process of creating a
basic FB in 4DIAC happens in no. of stages. The first stage is defining the PID
block as in Figure: 10.2with input and output data types. This uses kp, kd and ki as
real inputs to the PID block. Once the PID graphical block is ready, the next step
is to define the ECC diagram which behaves as a state machine for the PID block as
shown in Figure: 10.3. RESET algorithm as shown in Figure: 10.3 just initializes the
internal variables. And the REQ algorithm has PID logic implemented as described
in the chapter 11. For details of the structured text code , please refer Appendix D.

Once the PID block is ready, there is need to create an application to commu-
nicate with OpenModelica. The PID block with the SUBSCRIBER block which
receives data from model output defined in OM and also the PUBLISHER block
that made the data available to OM model as input is shown in the Figure: 10.4

Figure 10.4: PID Block in 4DIAC

60

Figure 10.5: ECC of PID Block in 4DIAC

Figure 10.6: PID Controller in 4DIAC

10.2.2 Models in OpenModelica

There are different models defined on OM and tested with 4DIAC for SIL.

10.3 Testing & Evaluation
SIL testing on dc motor model as in Figure: 4.3 with PID controller on 4DIAC is as
shown in Figure: 10.7

61

Figure 10.7: SIL test on 4DIAC & OM

62

Chapter 11

Hardware In Loop (HIL) simulation
with Different Embedded hardware
and OpenModelica

11.1 Motivation
OpenModelica has proven to be an excellent tool for engineers, with its algebraic
modeling capabilities, myriad array of solvers, and strongly typed structure. It has
an exceptionally detailed standard library, capable of modeling problems ranging
from chemical, fluid dynamics, to power systems. At the same time, it has a ded-
icated community that keeps developing packages that can handle other complex
problem domains such as aerospace engineering, etc.

Hardware-in-the-loop (HIL) simulation [15] [17], or HWIL, is a technique that
is used in the development and testing of complex real-time embedded systems.
HIL simulation provides an effective platform by adding the complexity of the plant
under control to the test platform. The complexity of the plant under control is
included in test and development by adding a mathematical representation of all
related dynamic systems. These mathematical representations are referred to as
the “plant simulation” [11]. The embedded system to be tested interacts with this
plant simulation.A HIL simulation must include emulation of sensors and actuators.
These emulations act as the interface between the plant simulation and the embed-
ded system under test. The value of each electrically emulated sensor is controlled
by the plant simulation and is read by the embedded system under test (feedback).
Likewise, the embedded system under test implements its control algorithms by out-
putting actuator control signals. Changes in the control signals result in changes
to variable values in the plant simulation. For embedded systems, however, Open-
Modelica has only one major package, the Modelica Device Drivers. It is well-made
but requires a steep learning curve, and expects a certain degree of expertise. For
HIL simulations, it isn’t a convenient tool to use. To fill in this gap in the exist-
ing software, we developed our own tool to interface OpenModelica with embedded
targets.

63

11.2 Architecture of HIL simulation
The HIL package we developed for OpenModelica consists of three primary parts:

• Models on OpenModelica

• The Interface

• The embedded target interface

11.2.1 Models on OpenModelica

We developed models in OpenModelica to provide examples of HIL systems that
can work using our routine. They have been described below in increasing order of
complexity. All of them have been displayed with a virtual PID routine for ease of
visualization of the feedback loop.

First order DC Motor

This model is a straightforward first-order DC motor. The angular velocity is the
process value and the torque is being used as the control variable to do so. The
controller is a PID.
The equation of the model is: P (s) = Θ(s)

V (s)
= Kt

(Js+b)(Ls+R)+KbKt

64

RLC Circuit

This model is a 2nd order electric circuit, containing a resistor, inductor, and ca-
pacitor connected in series, and connected to a signal voltage source. The current is
the process variable and the voltage is the control variable. The controller is a PID.

65

Spring-Mass System

This is a 2nd order mechanical model. The system involves a mass attached to a
spring-damper system. The position of the mass is the process variable and the
force applied to it is the control variable. The controller is a PID.

The transfer function for this model is:
H(s) = X(s)

F (s
= 1

ms2+cs+k

66

Flight Pitch Controller

This is a complex model involving a longitudinal flight model. The target is to
maintain a constant pitch for the aircraft. This can be done by altering both thrust
and elevation. For the purposes of this example, we will keep a constant thrust,
and control the pitch using only the elevation angle. The control model is a CAS as
detailed in

The transfer function of this model is out of the scope of the current discussion.

67

11.2.2 The Interface

We have used the three communication protocols described in previous chapters to
exchange data between OpenModelica and the embedded targets. Below I will ex-
plain the process using which the data was passed.

In describing the process, I will assume that the data is processed in OpenMod-
elica, then being passed first from OpenModelica to the embedded target, being
processed on the embedded target, and then the embedded target output is being
passed to OpenModelica.

• A float or an integer is processed by an OpenModelica block.

• It is specified in the shmWrite function along with a position number. This
passes it through the shared memory buffer.

• The communication protocol handles the data in the form of chars.

• On the embedded target, the chars are read, tokenized, and parsed based
on their token position. The data is then converted to the relevant floats or
integers.

• The control algorithm on the embedded target then uses these quantities as
input and provides the relevant output.

• The output is converted to chars, given a position number, and then written
onto the serial port.

• It is then read by OpenModelica via the shmRead function and the relevant
position number.

11.2.3 PID controller on Embedded hardware

We started by implementing a PID routine on an embedded target. The equations
for this are detailed below:
Output = Kpe(t) +KI

∫
e(t)dt+KD

d
dt
e(t)dt

where e = Setpoint-Input

The code for the PID implementation for the embedded target, Arduino & TIVA
C series has been included in Appendix E

11.3 Testing & Evaluation
In this section, we set up and test out the HIL simulation. The embedded target
we are using is an arduino, TIVA C series ARM cortex-M4 controller and Raspbery
Pi. The model we are using is the DC Motor described in Section 11.2.1.

68

The circuit diagram is as shown below:

11.3.1 DC motor

We start by testing the DC Motor model.
The following are the quantities used in this test:

• The setpoint here is obtained via a function generator, and is a pulse with an
amplitude of 1020 rad/s and period of 20 seconds. The software setpoint is
set at 833 rad/s with a similar period.

• The controller is a discrete proportional controller [19] with kp = 15.

• The controller is discrete because it is on an embedded target.

• The plant is a DC motor with J = 5m2.

• The process variable as previously mentioned, is the angular velocity.

• The control variable is the torque of the motor.

• The experiment is run for 40 seconds.

The output of the experiment is shown below:

69

As can be seen, the output signal generated by the proportional controller on the
arduino tracks the setpoint as comparably well as the software controller.

11.3.2 RLC Circuit

Now we look at the RLC circuit model. This is a second order electrical model as
mentioned previously. The following are the quantities used in this test:

• The setpoint here is obtained via a function generator, and is a pulse with an
amplitude of 100 A and period of 20 seconds. The software setpoint is set at
100 A with a similar period.

• The controller is a discrete PID controller with:
kp = 30
ki = 500
kd = 2.

• The controller is discrete because it is on an embedded target.

• The plant is a series RLC circuit with:
R = 10
L = 30mH
C = 100µF .

• The process variable as previously mentioned, is the current.

• The control variable is the voltage of the system.

• The experiment is run for 60 seconds.

70

The output of the experiment is shown below:

As can be seen, the output signal generated by the PID controller on the arduino
tracks the setpoint as comparably well as the software controller.

11.3.3 Spring-Mass Model

Now we look at a mechanical model. This is a second order spring-mass model as
mentioned previously. The following are the quantities used in this test:

• The setpoint here is obtained via a function generator, and is a pulse with an
amplitude of 300 m and period of 20 seconds. The software setpoint is set at
300 m with a similar period.

• The controller is a discrete PID controller with:
kp = 30
ki = 10
kd = 0.1.

• The controller is discrete because it is on an embedded target.

• The plant is a spring-mass model with:
R = 1kg
d = 10N.s/m
c = 100N/m
= 1m.

• The process variable as previously mentioned, is the displacement of the mass.

• The control variable is the force applied to the system.

• The experiment is run for 60 seconds.

71

The output of the experiment is shown below:

As can be seen, the output signal generated by the PID controller on the arduino
tracks the set-point as comparably well as the software controller.

11.3.4 Flight Pitch Control Model

Lastly, we will perform an evaluation of the flight pitch model. This is a second
order spring-mass model as mentioned previously. The following are the quantities
used in this test:

• The setpoint here is set at 0.1 rad. Seeing as the signal is uncomplicated, a
function generator is not used.

• The controller is a discrete CAS controller. The inner loop has a proportional
controller with kp = 0.005. The outer loop has a PI controller with kp = 0.2
and ki = 0.06.

• The controller is discrete because it is on an embedded target.

• The plant is a longitudinal cessna model with the standard characteristics[cessnau].

• The process variable as previously mentioned, is the pitch of the flight.

• The control variables are the thrust (constant for this experiment) and the
elevation angle.

• The experiment is run for 100 seconds.

The output of the experiment is shown below:

72

As can be seen, the output signal generated by the CAS controller on the arduino
tracks the setpoint as comparably well as the software controller.

73

Chapter 12

SIL & HIL Comparison

12.1 Motivation
In this chapter, we will explore in detail the comparisons between using a hardware
controller in the loop, and a software controller. SIL usually gives us much cleaner
control loops but we expect HIL to capture the situations a controller will placed
under in the real world. This makes it extremely important that we compare the
two and are aware of the reasons the two might differ.
We will compare the errors between the controlled variable output and the setpoints
for both the HIL and SIL simulations. We will use the models we described in the
previous chapter to do this.
Lastly, we will discuss the applications that these systems will find themselves in.

12.2 Error Comparison
Here we will compare the error generated by a SIL controller and the hardware
controller. We will do so for all the models discussed in chapter 11. The following
assumptions are being made for all models for this particular error comparison.

• The controller is on an arduino, ARM Cortex-M4, 4DIAC and another Rasp-
berry Pi.

• The controller for the first and second order models is a PID routine as de-
scribed in Chapter 11.

• The setpoint is being generated by a function generator.

12.3 Timing Comparison
SIL is tested on a Linux 64 bit PC having i5 processor. HIL model remains on the
above configuration PC with controller on external hardware.

74

Table 12.1: Error Comparison SIL vs HIL

Model Error
DC Motor 0.000012
RLC 0.000010
Spring Mass 0.000010
Flight Pitch control 0.0000023

Table 12.2: Timing Comparison SIL vs HIL

Method Max Time(ms) Avg Time(ms)
SIL 12 10
HIL 30 25

12.4 Applications
As industry is moving towards Industry 4.0, HIL and SIL bears a significant impor-
tance. In cyber physical production systems, the HIL can give real-time parameters
for actual plant setup.

75

Chapter 13

Conclusion

The ideaa behind "Developing a Generic Purpose OpenModelica Package for Em-
bedded Applications", is to develop a library for OpenModelica to support different
families of micro controllers, Single Board Computers like Raspberry Pi, and also
4DIAC software. Hardware support should comply with HIL testing support and
software support should comply with SIL support. With the work completed till
now, the package supports ATmega328p (Arduino),TIVA-C series (ARM Cortex-
M4) boards, Raspberry Pi and 4DIAC. Initially, UART implementation was tested
on ATmega series of controllers. But due to time synchronization issues, MDD was
explored as it has the functionality to generate Embedded C code from OpenMod-
elica models. But HIL implementation wasn’t possible with MDD. Then to support
HIL simulations, the IPC approach was adapted which is found to be supported on
most AVR controllers. The drawbacks of IPC, specifically that of system depen-
dency, was handled by using the Firmata protocol. A number of experiments were
performed on the Tiva-c board. Hardware-in-loop simulations were implemented
using the PID controller. But for SBCs the approach has to be totally different as
it is difficult to develope a firmware or facilitate device drivers for SBCs. So, a more
generic and platform independent protocol OPC UA was adopted. It also solved
the issue of interfacing with 4DIAC for SIL simulation. OPC UA is found to be
a generic approach which can be used any of the embedded hardware targets with
OpenModelica.

76

Chapter 14

Future Work

With this development, OpenModelica now has support for most of the micro-
controllers, Single Board Computers and 4DIAC. Future work involves :-

1. Optimize the implementation for time critical systems

2. HIL & SIL testing for actual industrial set-up

3. HIL & SIL testing for different domains

4. Coming up with a common GUI for different embedded devices

77

Appendix A

Linux

Download the FORTE source from http://git.eclipse.org/c/4diac/org.eclipse.
4diac.forte.git:

$ mkdir ~/4 d iac && cd "$_"
$ g i t c l one −b develop https : // g i t . e c l i p s e . org / r /4 d iac / org .
e c l i p s e . 4 d iac . f o r t e f o r t e
$ cd f o r t e && mkdir bu i ld

Download the source for open62541 from https://github.com/open62541/open62541:

$ cd ~/4 d iac
$ g i t c l one https : // github . com/open62541/open62541 . g i t

−−branch=v0 . 3 . 0 open62541

Build open62541. If you are running the code on production devices we suggest
setting the build type to Release.

$ cd ~/4 d iac /open62541 && mkdir bu i ld && cd $_
$ cmake −DBUILD_SHARED_LIBS=ON −DCMAKE_BUILD_TYPE=Debug

−DUA_ENABLE_AMALGAMATION=ON . .
$ make −j

Set FORTE to include open62541. If you are running the code on production de-
vices we suggesst setting the build type to Release. If you are using the 0.2 branch of
open62541 make sure that you set the correct value for FORTE_COM_OPC_UA_VERSION=0.2

$ cd ~/4 d iac / f o r t e / bu i ld
$ cmake −DCMAKE_BUILD_TYPE=Debug

−DFORTE_ARCHITECTURE=Posix −DFORTE_MODULE_CONVERT=ON \
−DFORTE_COM_ETH=ON −DFORTE_MODULE_IEC61131=ON

−DFORTE_COM_OPC_UA=ON \
−DFORTE_COM_OPC_UA_INCLUDE_DIR=$HOME/4 diac /open62541/ bu i ld \
−DFORTE_COM_OPC_UA_LIB_DIR=$HOME/4 diac /open62541/ bu i ld /bin \
−DFORTE_COM_OPC_UA_LIB=l ibopen62541 . so

$ make −j

78

http://git.eclipse.org/c/4diac/org.eclipse.4diac.forte.git
http://git.eclipse.org/c/4diac/org.eclipse.4diac.forte.git
https://github.com/open62541/open62541

Appendix B

OpenModelica

model f i r s t
input Real x ;
Real y ;

equat ion
y=x ;

end f i r s t ;

79

Appendix C

Python

Python script to get node and variable ids for OPC UA server on OpenModelica

import sys , t raceback
sys . path . i n s e r t (0 , " . . ")
import l o gg ing
from opcua import Cl i en t
from opcua import ua
from opcua import Node
from opcua import crypto
from opcua . t o o l s import endpoint_to_str ings

from time import s l e e p

i f __name__ == "__main__" :

l ogg ing . bas i cCon f i g (l e v e l=logg ing .WARN)
model ica = Cl i en t ("opc . tcp :// l o c a l h o s t :4841 ")

try :
model ica . connect ()

model icaObject = model ica . get_objects_node ()

modelicaID = {}
model icaVars = {}

i=0
tmp={}

modelicaID = model icaObject . get_chi ldren ()

for i in range (len (modelicaID)) :
model icaVars [i] = modelicaID [i] . get_browse_name () #Browse Name
i f i >4:

80

tmp [i] = modelicaID [i] . get_value ()
print i , model icaVars [i] , tmp [i]

else :
print i , model icaVars [i]

f ina l ly :
model ica . d i s connec t ()

Python script to intiate communication between Raspberry Pi and OpenModel-
ica

import sys , t raceback
sys . path . i n s e r t (0 , " . . ")
import l o gg ing
from opcua import Cl i en t
from opcua import ua
from opcua import Node
from opcua import crypto
from opcua . t o o l s import endpoint_to_str ings

from time import s l e e p

i f __name__ == "__main__" :

l ogg ing . bas i cCon f i g (l e v e l=logg ing .WARN)
model ica = Cl i en t ("opc . tcp :// l o c a l h o s t :4841 ")

try :
model ica . connect ()
model icaObject = model ica . get_objects_node ()
runModelID = 2
varWriteID=5 # ID of Modelica v a r i a b l e to wr i t e
varReadID=6
modelicaID = {}
modelicaID = model icaObject . get_chi ldren ()
modelicaID [runModelID] . set_value (True)
s l e e p (0 . 0 5)
while True :

sensorData = fun ()
modelicaID [varWriteID] . se t_va lue (sensorData)
ledOp = modelicaID [varReadID] . get_value ()
print ledOp
s l e ep (0 . 0 5)

except KeyboardInterrupt :
print "Stopping ␣Sequence"

f ina l ly :
model ica . d i s connec t ()

81

Appendix D

PID Structured text code for 4DIAC

PID structured text code

VAR
propor t i ona lPar t : REAL;
i n t e g r a lPa r t : REAL;
de r i va t i v ePa r t : REAL;
Ydes ired : REAL;
e r r o r F i l t e r e d : REAL;

END_VAR;

IF ABS(InError) <= Noise THEN
e r r o rF i l t e r e d := 0 ;

ELSE
e r r o rF i l t e r e d := InError ;

END_IF;
(∗ c a l c u l a t e p ropo r t i ona l part ∗)
p ropor t i ona lPar t := Kp ∗ e r r o r F i l t e r e d ;

(∗ run i n t e g r a t o r ∗)
i n t e g r a lPa r t := e r r o rF i l t e r e d ∗ I n t e r v a l ∗ Ki + INTEGRATION_ACCUM;

(∗ run d e r i v a t i v e ∗)

d e r i v a t i v ePa r t := (e r r o r F i l t e r e d − LAST_ERROR) ∗ Kd / In t e r v a l ;

LAST_ERROR := e r r o rF i l t e r e d ;

(∗ c a l c u l a t e output Y ∗)
Ydes ired := propor t i ona lPar t + in t e g r a lPa r t + de r i va t i v ePa r t ;

(∗ check output for l im i t s ∗)
IF Ydesired >= LIM_H THEN

Y := LIM_H;
IF Ki <> 0.0 THEN

82

IF (e r r o r F i l t e r e d < 0 AND Kp > 0) OR (e r r o r F i l t e r e d > 0 AND Kp < 0) THEN
INTEGRATION_ACCUM := in t e g r a lPa r t ;

END_IF;
ELSE

INTEGRATION_ACCUM := 0 . 0 ;
END_IF;
LIM := TRUE;

ELSIF Ydesired <= LIM_L THEN
Y := LIM_L;
IF Ki <> 0.0 THEN

IF (e r r o r F i l t e r e d > 0 AND Kp > 0) OR (e r r o r F i l t e r e d < 0 AND Kp < 0)THEN
INTEGRATION_ACCUM := in t e g r a lPa r t ;

END_IF;
ELSE

INTEGRATION_ACCUM := 0 . 0 ;
END_IF;
LIM := TRUE;

ELSE
Y := Ydesired ;
INTEGRATION_ACCUM := in t e g r a lPa r t ;
LIM := FALSE;

END_IF;

83

Appendix E

Arduino & Energia PID

Arduino implementation of PID for ATmega controllers

void setup ()
{

S e r i a l . begin (115200) ; // s e r i a l beg in
}

unsigned long lastTime ;
double Input , Output , Setpo int ;
double errSum , l a s tE r r ;
double kp = 15 ;
double k i =0;
double kd =0;
void Compute ()
{

/∗How long s ince we l a s t c a l c u l a t e d ∗/
unsigned long now = m i l l i s () ;
double timeChange = (double) (now − lastTime)/10 ;

/∗Compute a l l the working error v a r i a b l e s ∗/
double e r r o r = Setpo int − Input ;
errSum += (e r r o r ∗ timeChange) ;
double dErr = (e r r o r − l a s tE r r) / timeChange ;

/∗Compute PID Output∗/
Output = kp ∗ e r r o r + k i ∗ errSum + kd ∗ dErr ;

/∗Remember some v a r i a b l e s f o r next time ∗/
l a s tE r r = e r r o r ;
lastTime = now ;

}

void loop ()

84

{
St r ing readStr = "" ; //some v a r i a b l e s
St r ing readVal = "" ;

i f (S e r i a l . a v a i l a b l e ())
{ //when s e r i a l data comes from model ica
while (S e r i a l . a v a i l a b l e ())
{

char readChar = (char) S e r i a l . read () ;
r eadStr+=readChar ;
i f (readChar == ’ \n ’) break ;

} // read the data and s t o r e in a s t r i n g
for (int i = 1 ; i < (readStr . l ength ()−1); i++)
{

readVal += readStr [i] ;
}

Setpo int = 100∗ s i n (m i l l i s ()∗3 .1412/(20∗180))+100 ;
// Se tpo in t = doub le (analogRead (A5)) ;

Input = readVal . toDouble () ; // e x t r a c t va lue
Compute () ;
S e r i a l . p r i n t l n (" 1 , "+St r ing (Output)+"\n") ;
de lay (5) ;

}
}

ARM implementation of PID for TIVA C series

#define AREAD_PIN A2

#define PID_OUTPUT_MIN −512.0
#define PID_OUTPUT_MAX 512.0
#define PID_KP 5
#define PID_KI 3
#define PID_KD 3
#define PID_BANG_BANG 40
#define PID_INTERVAL 100

#define I2C_WRITE B00000000
#define I2C_READ B00001000
#define I2C_READ_CONTINUOUSLY B00010000
#define I2C_STOP_READING B00011000
#define I2C_READ_WRITE_MODE_MASK B00011000
#define I2C_10BIT_ADDRESS_MODE_MASK B00100000

85

#define I2C_END_TX_MASK B01000000
#define I2C_STOP_TX 1
#define I2C_RESTART_TX 0
#define I2C_MAX_QUERIES 8
#define I2C_REGISTER_NOT_SPECIFIED −1

86

Appendix F

Sample C drivers for digital data
exchange with OpenModelica

C drivers for digital data exchange for ATmega and OpenModelica

#include <errno . h>
#include <termios . h>
#include <unis td . h>
#include <f c n t l . h>
#include <s t r i n g . h> /∗ memset ∗/
#include <s td i o . h>
#include <s t d l i b . h>
#include " . . / Inc lude / s e r i a l . h"
#include " . . / Inc lude / d i g i t a l . h"

int cmd_digital_out (int h , int pin_no , int va l)
{

int wr ;
char pin [6]= "Da" ;

char v [2] , temp [2] ;
s p r i n t f (temp , "%c" , pin_no+48);
s t r c a t (pin , temp) ;
s t r c a t (pin , "1") ;

// p r i n t f ("%s " , pin) ;
wr=wr i t e_s e r i a l (h , pin , 4) ;
i f (va l > 0 . 5)
va l = 1 ;
else
va l = 0 ;

s p r i n t f (v , "%d" , va l) ;
s t r cpy (pin , "Dw") ;

s t r c a t (pin , temp) ;
s t r c a t (pin , v) ;

// p r i n t f ("%s " , pin) ;

87

wr=wr i t e_s e r i a l (h , pin , 4) ;
return wr ;

}

int cmd_digital_in (int h , int pin_no)
{

int value = 0 ;
char pin [6]= "Da" ;
char v1 [2] , v2 [2] ;
int wr1 , wr2 ;
s p r i n t f (v1 , "%c" , pin_no+48);
s t r c a t (pin , v1) ;
s t r c a t (pin , "0") ;
// p r i n t f ("%s\n" , pin) ;
wr1=wr i t e_s e r i a l (h , pin , 4) ;

s t r cpy (pin , "Dr") ;
s p r i n t f (v2 , "%c" , pin_no+48);
s t r c a t (pin , v2) ;
wr2=wr i t e_s e r i a l (1 , pin , 3) ;
// b inary t r an s f e r
int s t a t ;
int num_bytes [2] ;
char s t [1 0] ;
s t a t=s t a t u s_ s e r i a l (h , num_bytes) ;
while (num_bytes [0] <1)

s t a t=s t a t u s_ s e r i a l (h , num_bytes) ;
char∗ temp ;
int wr=read_se r i a l (h , st , 1) ;
va lue=s t r t od (st ,&temp) ;
// p r i n t f ("%d\n" , va lue) ;
return value ;

}

88

Bibliography

[1] Arduino home. https://www.arduino.cc/. Accessed: 2018-10-25.

[2] ATmega16 data sheet. http://ww1.microchip.com/downloads/en/
DeviceDoc/doc2466.pdf. Accessed: 2018-07-15.

[3] GitHub firmata processing. https://github.com/firmata/processing. Ac-
cessed: 2018-06-20.

[4] Interoperability c and python. https://openmodelica.org/doc/
OpenModelicaUsersGuide/latest/interop_c_python.html. Accessed:
2018-05-23.

[5] Modelica information. https://build.openmodelica.org/Documentation/
Modelica.html. Accessed: 2017-09-30.

[6] OPC Foundation opc unified architecture. https:
//opcfoundation.org/wp-content/uploads/2016/05/
OPC-UA-Interoperability-For-Industrie4-and-IoT-EN-v5.pdf. Ac-
cessed: 2019-05-03.

[7] open62541 an open source implementation of opc ua. https://open62541.org.
Accessed: 2019-03-25.

[8] OpenModelica introduction. https://www.openmodelica.org/. Accessed:
2018-09-30.

[9] Tuomas Miettinen opc interfaces in openmodelica – technical specifica-
tion (task 5.3). tech. rep. 2011. https://github.com/OpenModelica/
OpenModelica-doc/blob/476cafa/opc/OPC_Interfaces_in_OpenModelica.
doc. Accessed: 2019-02-02.

[10] Uaexpert—a full-featured opc ua client. https://www.unified-automation.
com/products/development-tools/uaexpert.html. Accessed: 2019-05-03.

[11] Marco Bonvini, Filippo Donido, and Alberto Leva. Modelica as a design tool
for hardware-in-the-loop simulation. In Proceedings of the 7th International
Modelica Conference; Como; Italy; 20-22 September 2009, number 043, pages
378–385. Linköping University Electronic Press, 2009.

89

https://www.arduino.cc/
http://ww1.microchip.com/downloads/en/DeviceDoc/doc2466.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/doc2466.pdf
https://github.com/firmata/processing
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/interop_c_python.html
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/interop_c_python.html
https://build.openmodelica.org/Documentation/Modelica.html
https://build.openmodelica.org/Documentation/Modelica.html
https://opcfoundation.org/ wp-content/uploads/2016/05/OPC-UA-Interoperability-For- Industrie4-and-IoT-EN-v5.pdf
https://opcfoundation.org/ wp-content/uploads/2016/05/OPC-UA-Interoperability-For- Industrie4-and-IoT-EN-v5.pdf
https://opcfoundation.org/ wp-content/uploads/2016/05/OPC-UA-Interoperability-For- Industrie4-and-IoT-EN-v5.pdf
https://open62541.org
https://www.openmodelica.org/
https://github.com/OpenModelica/OpenModelica- doc/blob/476cafa/opc/OPC_Interfaces_in_OpenModelica.doc
https://github.com/OpenModelica/OpenModelica- doc/blob/476cafa/opc/OPC_Interfaces_in_OpenModelica.doc
https://github.com/OpenModelica/OpenModelica- doc/blob/476cafa/opc/OPC_Interfaces_in_OpenModelica.doc
https://www.unified-automation.com/products/development-tools/uaexpert.html
https://www.unified-automation.com/products/development-tools/uaexpert.html

[12] Mako D Cvetkovic and Milun S Jevtic. Interprocess communication in real-time
linux. In Telecommunications in Modern Satellite, Cable and Broadcasting Ser-
vice, 2003. TELSIKS 2003. 6th International Conference on, volume 2, pages
618–621. IEEE, 2003.

[13] Li Da Xu, Wu He, and Shancang Li. Internet of things in industries: A survey.
IEEE Transactions on industrial informatics, 10(4):2233–2243, 2014.

[14] Peter Fritzson. Principles of object-oriented modeling and simulation with Mod-
elica 3.3: a cyber-physical approach. John Wiley & Sons, 2014.

[15] Wojciech Grega. Hardware-in-the-loop simulation and its application in control
education. In Frontiers in Education Conference, 1999. FIE’99. 29th Annual,
volume 2, pages 12B6–7. IEEE, 1999.

[16] Vasile Gheorghita Gaitan Ioan Ungurean, Nicoleta-Cristina Gaitan. An iot
architecture for things from industrial environment. 2014 10th International
Conference on Communications (COMM), 10(4):2233–2243, 2014.

[17] Rolf Isermann, Jochen Schaffnit, and Stefan Sinsel. Hardware-in-the-loop simu-
lation for the design and testing of engine-control systems. Control Engineering
Practice, 7(5):643–653, 1999.

[18] Pieter Mosterman. Model-based design of embedded systems. In IEEE In-
ternational Conference on Microelectronic Systems Education, pages 373–389.
IEEE, 2007.

[19] Kannan M. Moudgalya. Digital Control. John Wiley & Sons, 2007.

[20] Luis Ribeiro. Cyber-physical production systems’ design challenges. In 2017
IEEE 26th International Symposium on Industrial Electronics (ISIE), pages
1189–1194. IEEE, 2017.

[21] Miriam Schleipen, Syed-Shiraz Gilani, Tino Bischoff, and Julius Pfrommer.
Opc ua & industrie 4.0-enabling technology with high diversity and variability.
Procedia Cirp, 57:315–320, 2016.

[22] Michael H Schwarz and Josef Börcsök. A survey on opc and opc-ua: About the
standard, developments and investigations. In 2013 XXIV International Con-
ference on Information, Communication and Automation Technologies (ICAT),
pages 1–6. IEEE, 2013.

90

	Introduction
	OpenModelica for Embedded Applications
	Motivation
	Issues

	UART Protocol for Interfacing AVR ATmega family of controllers
	Motivation
	Algorithm
	Implementation on OpenModelica part
	Functionalities added to OpenModelica

	Implementation on Controller part
	Firmware Structure

	Issues

	IPC Protocol for Interfacing AVR ATmega family of controllers
	Motivation
	Algorithm
	Implementation on OpenModelica part
	Implementation on Controller part
	Issues

	Firmata protocol for Interfacing ARM Cortex-M4 series of controllers
	Motivation
	Algorithm
	Implementation on OpenModelica part
	Functionalities added to OpenModelica

	Implementation on Controller part

	Open Platform Communications Unified Architecture (OPC UA)
	Motivation
	Technical Overview
	Classic OPC
	OPC UA

	Basic Building Blocks of OPC UA
	Protocol Implementation - OPC UA Stacks
	OPC UA Services - Generic UA API
	OPC UA built-in Information Models
	OPC Companion Model
	Overall OPC UA Model

	OPC UA on 4DIAC
	Motivation
	IEC 61499
	IEC 61499 Base Model
	IEC 61499 applications
	The 4DIAC initiative
	4DIAC IDE & Runtime Environment
	4DIAC IDE
	4DIAC RUNTIME ENVIRONMENT - FORTE

	open62541 stack
	Integration of open62541 stack for OPC UA in 4DIAC

	OPC UA in OpenModelica
	Motivation
	Previous and Related Work
	OPC Interfaces
	Implementation
	Testing with UaExpert

	OPC UA for interfacing Single Board Computers (SBCs) & OpenModelica
	Motivation
	Architecture
	Testing & Evaluation on Raspberry Pi
	Generic Implementation for all Embedded hardwares

	Software In Loop (SIL) simulation with 4DIAC and OpenModelica
	Motivation
	Architecture of SIL simulation
	PID controller in 4DIAC
	Models in OpenModelica

	Testing & Evaluation

	Hardware In Loop (HIL) simulation with Different Embedded hardware and OpenModelica
	Motivation
	Architecture of HIL simulation
	Models on OpenModelica
	The Interface
	PID controller on Embedded hardware

	Testing & Evaluation
	DC motor
	RLC Circuit
	Spring-Mass Model
	Flight Pitch Control Model

	SIL & HIL Comparison
	Motivation
	Error Comparison
	Timing Comparison
	Applications

	Conclusion
	Future Work
	Appendices
	Linux
	OpenModelica
	Python
	PID Structured text code for 4DIAC
	Arduino & Energia PID
	Sample C drivers for digital data exchange with OpenModelica

