OpenModelica User’s Guide
Release v1.16.0-dev.03

Open Source Modelica Consortium

Sep 29, 2020

1 Introduction

1.1 SystemOverview
1.2 Interactive Session with Examples

1.3 Summary of Commands for the Interactive Session Handler

1.4 Running the compiler from command line

2 OMEdit - OpenModelica Connection Editor

2.1 StartingOMEdit
2.2 MainWindow & Browsers,
2.3 Perspectives it e e e e e e e e e e e e e
24 FileMenu. e
25 EditMenu
26 ViewMenu
2.7 SimulationMenu e
2.8 Debugger Menu e
2.9 OMSimulatorMenu
210 ToolsMenu e e e
211 HelpMenu e
2.12 ModelingaModel o
2.13 SimulatingaModel s
2.14 2DPIotting e e e e
2.15 Re-simulatingaModel o000
2.16 3D Visualization
2.17 Animation of Realtime FMUs
2.18 [Interactive Simulation, .
2.19 How to Create User Defined Shapes —Icons
2.20 Global head section in documentation
221 OpHONS . . v v v v e e e e e e e e e e
2.22 __OpenModelica_commandLineOptions Annotation
2.23 __OpenModelica_simulationFlags Annotation
224 Debuggero e e e e e e e e e e
2.25 Editing Modelica Standard Library
226 StateMachines
2.27 Using OMEditas Text Editor

3 2D Plotting

3.1 Example
3.2 Plot Command Interface

4 Solving Modelica Models

4.1 Integration Methods L.
4.2 DAE Mode Simulation oL oo

5 Debugging

5.1 The Equation-based Debugger

CONTENTS

10

11

12

13

14

15

16

17

18

19

5.2 The Algorithmic Debugger L
Generating Graph Representations for Models

FMI and TLM-Based Simulation and Co-simulation of External Models

7.1 Functional Mock-up Interface -FMI L .
7.2 Transmission Line Modeling (TLM) Based Co-Simulation
7.3 Composite Model Editing of External Models

OMSimulator
System Identification

OpenModelica Encryption

10.1 Encrypting the Library o o e e e e e e e
10.2 Loading an Encrypted Library 0 0 e e e
103 NOES . . o o oo e e e e e e e e e

OMNotebook with DrModelica and DrControl

11.1 Interactive Notebooks with Literate Programming
11.2 DrModelica Tutoring System — an Application of OMNotebook
11.3 DrControl Tutorial for Teaching Control Theory
11.4 OpenModelica Notebook Commands
11.5 References e

Optimization with OpenModelica

12.1 Builtin Dynamic Optimization with OpenModelicaand IpOpt
12.2 Compiling the Modelicacode i e e
123 AnExample e e e e e
12.4 Different Options for the Optimizer IPOPT
12.5 Dynamic Optimization with OpenModelica and CasADi
12.6 Parameter Sweep Optimization using OMOptim o

Parameter Sensitivities with OpenModelica
13.1 Background. L e e e e
13.2 AnExample e e

PDEModelical

14.1 PDEModelical language elementso
142 Limitations ot e e e e e e e e e e e
14.3 Viewingresults o o e e e e e e e e e e e

MDT - The OpenModelica Development Tooling Eclipse Plugin

15.1 Introduction e e e e e e
15.2 Installation e e e e e
15.3 Getting Started L. e e e e e e e e e

MDT Debugger for Algorithmic Modelica
16.1 The Eclipse-based Debugger for Algorithmic Modelica.

Modelica Performance Analyzer

17.1 Profiling information for ProfilingTest
17.2 Genenerated JSON for the Example e
17.3 Using the Profiler from OMEdit

Simulation in Web Browser

Interoperability — C and Python
19.1 Calling External Cfunctions o o 0 i e e e
19.2 Calling external Python Code from a Modelicamodel

101

103

105
105
105
105

107
107
108
114
126
133

135
135
135
135
138
138
143

151
151
151

155
155
156
156

157
157
157
158

171
171

177
178
180
181

183

20

21

22

19.3 Calling OpenModelica from Python Code

OpenModelica Python Interface and PySimulator
20.1 OMPython — OpenModelica Python Interface

20.2 Enhanced OMPython Features
20.3 PySimulator

OMMatlab — OpenModelica Matlab Interface
21.1 Features of OMMatlab
21.2 Test Commands
21.3 WorkDirectory

21.4 BuildModel
21.5 Standard get methods
21.6 Usage of getMethods
21.7 Standard set methods
21.8 UsageofsetMethods
21.9 Advanced Simulation
21.10 Linearization
21.11 Usage of Linearization methods

OM Julia — OpenModelica Julia Scripting
22.1 Features of OMJulia
22.2 Test Commands
22.3 WorkDirectory

224 BuildModel oL
22.5 Standard get methods
22.6 Usage of getMethods
22.7 Standard set methods
22.8 Usage of setMethods
22.9 Advanced Simulation
22.10 Linearization
22.11 Usage of Linearization methods
22.12 Sensitivity Analysis
22.13 Usage

23 Jupyter-OpenModelica

24

25

26

27

28

29

Scripting API
24.1 OpenModelica Scripting Commands
24.2 Simulation Parameter Sweep
24.3 Examples

Package manager
25.1 Installing packages
25.2 How the package index works

OpenModelica Compiler Flags
26.1 Options
26.2 Debug flags
26.3 Flags for Optimization Modules

Small Overview of Simulation Flags
27.1 OpenModelica (C-runtime) Simulation Flags

Technical Details
28.1 The MATv4 Result File Format

DataReconciliation

29.1 Defining DataReconciliation Problem in OpenModelica
29.2 DataReconcilation Support with Scripting Interface

191
191
194
198

199
199
199
201
201
201
201
203
203
204
204
205

207
207
207
209
209
209
209
210
211
211
212
212
212
213

215

217
217
287
287

293
293
295

297
297
313
319

321
321

329
329

331
331
332

29.3 DataReconciliation Supportin OMEdit
29.4 DataReconcilation Results oL

30 Frequently Asked Questions (FAQ)
30.1 OpenModelica General L e
30.2 OMNotebook o e e e e e
30.3 OMDeyv - OpenModelica Development Environment

31 Major OpenModelica Releases
31.1 Release Notes for OpenModelica 1.16.0
31.2 Release Notes for OpenModelica 1.15.0
31.3 Release Notes for OpenModelica 1.14.0 i
31.4 Release Notes for OpenModelica 1.13.0 o i
31.5 Release Notes for OpenModelica 1.12.0 o o o s
31.6 Release Notes for OpenModelica 1.11.0 i i
31.7 Release Notes for OpenModelica 1.10.0
31.8 Release Notes for OpenModelica 1.9.4 o o
31.9 Release Notes for OpenModelica 1.9.3 o .
31.10 Release Notes for OpenModelica 1.9.2 e
31.11 Release Notes for OpenModelica 1.9.1 i
31.12 Release Notes for OpenModelica 1.9.0 e
31.13 Release Notes for OpenModelica 1.8.1
31.14 OpenModelica 1.8.0, November 2011 o o
31.15 OpenModelica 1.7.0, April 2011 o o 0 e
31.16 OpenModelica 1.6.0, November 2010 i it e e
31.17 OpenModelica 1.5.0, July 2010 o e e e
31.18 OpenModelica 1.4.5, January 2009 e
31.19 OpenModelica 1.4.4, Feb 2008 o e e e
31.20 OpenModelica 1.4.3,June 2007 o o i i e e
31.21 OpenModelica 1.4.2, October 2006 o i i it e
31.22 OpenModelica 1.4.1,June 2006 o 0 i e e e e e e
31.23 OpenModelica 1.4.0, May 2006 o 0 i e e e e e
31.24 OpenModelica 1.3.1, November 2005 o it

32 Contributors to OpenModelica
32.1 OpenModelica Contributors 2015 e
32.2 OpenModelica Contributors 2014 o e e e
32.3 OpenModelica Contributors 2013 L
32.4 OpenModelica Contributors 2012 e
32.5 OpenModelica Contributors 2011 o e e e
32.6 OpenModelica Contributors 2010 oo e e e
327 OpenModelica Contributors 2009 L e
32.8 OpenModelica Contributors 2008
32.9 OpenModelica Contributors 2007 o e
32.10 OpenModelica Contributors 2000 o 0 i i e e e e e e e e
32.11 OpenModelica Contributors 2005 o i e e e e
32.12 OpenModelica Contributors 2004 e
32.13 OpenModelica Contributors 2003 o e e e e
32.14 OpenModelica Contributors 2002 L e
32.15 OpenModelica Contributors 2001 e
32.16 OpenModelica Contributors 2000 o o it e e e e e e e e
32.17 OpenModelica Contributors 1999
32.18 OpenModelica Contributors 1998 Lo

Bibliography

339
339
339
340

341
341
342
342
344
344
346
348
348
349
351
352
354
356
357
359
359
360
361
362
362
363
364
364
365

367
367
369
370
372
374
375
377
378
379
380
380
381
381
381
382
382
382
382

383

OpenModelica User’s Guide, Release v1.16.0-dev.03

Generated on 2020-09-29 at 08:50
Open Source Modelica Consortium

Copyright © 1998-CurrentYear, Open Source Modelica Consortium (OSMC), c/o Linkdpings universitet, Depart-
ment of Computer and Information Science, SE-58183 Link&ping, Sweden

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF GPL VERSION 3 LICENSE OR THIS OSMC
PUBLIC LICENSE (OSMC-PL). ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS PROGRAM
CONSTITUTES RECIPIENT’S ACCEPTANCE OF THE OSMC PUBLIC LICENSE OR THE GPL VERSION
3, ACCORDING TO RECIPIENTS CHOICE.

The OpenModelica software and the OSMC (Open Source Modelica Consortium) Public License (OSMC-PL)
are obtained from OSMC, either from the above address, from the URLs: https://www.openmodelica.org or http:
/lwww.ida.liu.se/projects/OpenModelica, and in the OpenModelica distribution. GNU version 3 is obtained from:
http://www.gnu.org/copyleft/gpl.html.

This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET FORTH
IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF OSMC-PL.

See the full OSMC Public License conditions for more details.

This document is part of OpenModelica: https://www.openmodelica.org
Contact: OpenModelica@ida.liu.se

Modelica® is a registered trademark of the Modelica Association, https://www.Modelica.org
Mathematica® is a registered trademark of Wolfram Research Inc, http://www.wolfram.com

This users guide provides documentation and examples on how to use the OpenModelica system, both for the
Modelica beginners and advanced users.

CONTENTS 1

https://www.openmodelica.org
http://www.ida.liu.se/projects/OpenModelica
http://www.ida.liu.se/projects/OpenModelica
http://www.gnu.org/copyleft/gpl.html
https://www.openmodelica.org
mailto:OpenModelica@ida.liu.se
https://www.Modelica.org
http://www.wolfram.com

OpenModelica User’s Guide, Release v1.16.0-dev.03

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The 0penM°de"cq system described in this document has both short-term and long-term goals:

The short-term goal is to develop an efficient interactive computational environment for the Modelica lan-
guage, as well as a rather complete implementation of the language. It turns out that with support of
appropriate tools and libraries, Modelica is very well suited as a computational language for development
and execution of both low level and high level numerical algorithms, e.g. for control system design, solving
nonlinear equation systems, or to develop optimization algorithms that are applied to complex applications.

The long-term goal is to have a complete reference implementation of the Modelica language, including
simulation of equation based models and additional facilities in the programming environment, as well
as convenient facilities for research and experimentation in language design or other research activities.
However, our goal is not to reach the level of performance and quality provided by current commercial
Modelica environments that can handle large models requiring advanced analysis and optimization by the
Modelica compiler.

The long-term research related goals and issues of the OpenModelica open source implementation of a Modelica
environment include but are not limited to the following:

Development of a complete formal specification of Modelica, including both static and dynamic semantics.
Such a specification can be used to assist current and future Modelica implementers by providing a semantic
reference, as a kind of reference implementation.

Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as modeling problems that require extensions such as partial
differential equations, enlarged scope for discrete modeling and simulation, etc.

Language design to improve abstract properties such as expressiveness, orthogonality, declarativity, reuse,
configurability, architectural properties, etc.

Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by gen-
erating code for parallel hardware.

Improved debugging support for equation based languages such as Modelica, to make them even easier to
use.

Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.
Visualization and animation techniques for interpretation and presentation of results.

Application usage and model library development by researchers in various application areas.

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be submit-
ted to the Modelica Association for consideration regarding possible inclusion in the official Modelica standard.

The current version of the OpenModelica environment allows most of the expression, algorithm, and function
parts of Modelica to be executed interactively, as well as equation models and Modelica functions to be compiled
into efficient C code. The generated C code is combined with a library of utility functions, a run-time library, and
a numerical DAE solver.

https://openmodelica.org

OpenModelica User’s Guide, Release v1.16.0-dev.03

1.1 System Overview

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1.1.

MDT Eclipse Plugir

Editor/Browser

GraphicalModel
Editor/Browser

3
OMODfi Interactive t
ptim sessionhandler
Optimization —— Mo-gee)l(téglitor
Subsystem
OMNotebook _
DrModelica Execution Model_lca
Model Editor Compiler
Modelica
Debugger

Figure 1.1: The architecture of the OpenModelica environment. Arrows denote data and control flow. The inter-
active session handler receives commands and shows results from evaluating commands and expressions that are
translated and executed. Several subsystems provide different forms of browsing and textual editing of Modelica
code. The debugger currently provides debugging of an extended algorithmic subset of Modelica.

The following subsystems are currently integrated in the OpenModelica environment:

* An interactive session handler, that parses and interprets commands and Modelica expressions for evalua-
tion, simulation, plotting, etc. The session handler also contains simple history facilities, and completion of
file names and certain identifiers in commands.

A Modelica compiler subsystem, translating Modelica to C code, with a symbol table containing definitions
of classes, functions, and variables. Such definitions can be predefined, user-defined, or obtained from
libraries. The compiler also includes a Modelica interpreter for interactive usage and constant expression
evaluation. The subsystem also includes facilities for building simulation executables linked with selected
numerical ODE or DAE solvers.

An execution and run-time module. This module currently executes compiled binary code from translated
expressions and functions, as well as simulation code from equation based models, linked with numerical
solvers. In the near future event handling facilities will be included for the discrete and hybrid parts of the
Modelica language.

Eclipse plugin editor/browser. The Eclipse plugin called MDT (Modelica Development Tooling) provides
file and class hierarchy browsing and text editing capabilities, rather analogous to previously described
Emacs editor/browser. Some syntax highlighting facilities are also included. The Eclipse framework has
the advantage of making it easier to add future extensions such as refactoring and cross referencing support.

OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor, compared
to the more advanced Mathematica notebooks available in MathModelica. This basic functionality still
allows essentially the whole DrModelica tutorial to be handled. Hierarchical text documents with chapters
and sections can be represented and edited, including basic formatting. Cells can contain ordinary text
or Modelica models and expressions, which can be evaluated and simulated. However, no mathematical
typesetting facilities are yet available in the cells of this notebook editor.

Graphical model editor/browser OMEdit. This is a graphical connection editor, for component based model
design by connecting instances of Modelica classes, and browsing Modelica model libraries for reading and
picking component models. The graphical model editor also includes a textual editor for editing model class
definitions, and a window for interactive Modelica command evaluation.

Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.0-dev.03

* Optimization subsystem OMOptim. This is an optimization subsystem for OpenModelica, currently for
design optimization choosing an optimal set of design parameters for a model. The current version has a
graphical user interface, provides genetic optimization algorithms and Pareto front optimization, works in-
tegrated with the simulators and automatically accesses variables and design parameters from the Modelica
model.

* Dynamic Optimization subsystem. This is dynamic optimization using collocation methods, for Model-
ica models extended with optimization specifications with goal functions and additional constraints. This
subsystem is integrated with in the OpenModelica compiler.

* Modelica equation model debugger. The equation model debugger shows the location of an error in the
model equation source code. It keeps track of the symbolic transformations done by the compiler on the
way from equations to low-level generated C code, and also explains which transformations have been done.

* Modelica algorithmic code debugger. The algorithmic code Modelica debugger provides debugging for an
extended algorithmic subset of Modelica, excluding equation-based models and some other features, but in-
cluding some meta-programming and model transformation extensions to Modelica. This is a conventional
full-feature debugger, using Eclipse for displaying the source code during stepping, setting breakpoints, etc.
Various back-trace and inspection commands are available. The debugger also includes a data-view browser
for browsing hierarchical data such as tree- or list structures in extended Modelica.

1.2 Interactive Session with Examples

The following is an interactive session using the interactive session handler in the OpenModelica environment,
called OMShell — the OpenModelica Shell). Most of these examples are also available in the OMNotebook with
DrModelica and DrControl UsersGuideExamples.onb as well as the testmodels in:

>>> getInstallationDirectoryPath() + "/share/doc/omc/testmodels/"
"«OPENMODELICAHOME»/share/doc/omc/testmodels/"

The following commands were run using OpenModelica version:

>>> getVersion ()
"OMCompiler v1.16.0-dev.03"

1.2.1 Starting the Interactive Session

The Windows version which at installation is made available in the start menu as OpenModelica->OpenModelica
Shell which responds with an interaction window:

We enter an assignment of a vector expression, created by the range construction expression 1:12, to be stored in
the variable x. The value of the expression is returned.

>>> x = 1:12
{1,2,3,4,5,6,7,8,9,10,11,12}

1.2.2 Using the Interactive Mode

When running OMC in interactive mode (for instance using OMShell) one can make load classes and execute
commands. Here we give a few example sessions.

Example Session 1

To get help on using OMShell and OpenModelica, type "help()" and press enter.

1.2. Interactive Session with Examples 5

OpenModelica User’s Guide, Release v1.16.0-dev.03

>>> model A Integer t = 1.5; end A; //The type is Integer but 1.5 is of Real Type
{A}

>>> instantiateModel (A7)

nmn

"[<interactive>:1:9-1:23:writable] Error: Type mismatch in binding t = 1.5
—expected subtype of Integer, got type Real.

Error: Error occurred while flattening model A

[

Example Session 2

To get help on using OMShell and OpenModelica, type "help()" and press enter.

model C
Integer a;
Real b;
equation
der (a) = b;
der(b) = 12.0;
end C;

>>> instantiateModel (C)

nn

Error:

[<interactive>:5:3-5:13:writable] Error: Argument ’a’ to der has illegal type Integer, must be a subtype of
Real.

Error: Error occurred while flattening model C

1.2.3 Trying the Bubblesort Function

Load the function bubblesort, either by using the pull-down menu File->Load Model, or by explicitly giving the
command:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—bubblesort.mo")
true

The function bubblesort is called below to sort the vector x in descending order. The sorted result is returned to-
gether with its type. Note that the result vector is of type Real[:], instantiated as Real[12], since this is the declared
type of the function result. The input Integer vector was automatically converted to a Real vector according to
the Modelica type coercion rules. The function is automatically compiled when called if this has not been done
before.

>>> bubblesort (x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:

>>> bubblesort ({4,6,2,5,8})
{8.0,6.0,5.0,4.0,2.0}

6 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.0-dev.03

1.2.4 Trying the system and cd Commands

It is also possible to give operating system commands via the system utility function. A command is provided as
a string argument. The example below shows the system utility applied to the UNIX command cat, which here
outputs the contents of the file bubblesort.mo to the output stream when running omc from the command-line.

>>> gystem("cat '"+getInstallationDirectoryPath()+"/share/doc/omc/testmodels/
—bubblesort.mo' > bubblesort.mo")
0

function bubblesort

input Real[:] x;

output Real[size(x,1)] y;
protected

Real t;
algorithm

Yy T X

for i in l:size(x,1l) loop

for j in 1l:size(x,1) loop
if y[i] > yI[J] then

t o= ylil;
y[i] = y[31;
yI[3l = t;
end if;
end for;
end for;

end bubblesort;

Note: The output emitted into stdout by system commands is put into log-files when running the CORBA-based
clients, not into the visible GUI windows. Thus the text emitted by the above cat command would not be returned,
which is why it is redirected to another file.

A better way to read the content of files would be the readFile command:

>>> readFile ("bubblesort.mo")
function bubblesort

input Real[:] x;

output Real[size(x,1)] vy;
protected

Real t;
algorithm

y 1= X

for i in 1l:size(x,1) loop

for j in 1l:size(x,1) loop
if y[i] > y[Jj] then

t o= ylil;
yl[il = y[3];
yI[3l = t;
end if;
end for;
end for;

end bubblesort;

The system command only returns a success code (0 = success).

>>> sgystem("dir")

0

>>> system("Non-existing command")
127

Another built-in command is cd, the change current directory command. The resulting current directory is returned
as a string.

1.2. Interactive Session with Examples 7

OpenModelica User’s Guide, Release v1.16.0-dev.03

>>> dir:=cd ()

"«DOCHOME»"

>>> cd("source")

"«DOCHOME»/source"

>>> cd(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/")
"/var/lib/jenkins/ws/OpenModelica_betal/build/share/doc/omc/testmodels”
>>> cd(dir)

"«DOCHOME»"

1.2.5 Modelica Library and DCMotor Model

We load a model, here the whole Modelica standard library, which also can be done through the File->Load
Modelica Library menu item:

>>> loadModel (Modelica)
false

Error:

Error: Failed to load package Modelica (default) using MODELICAPATH «OPENMODELICA-
HOMEp»/lib/omlibrary.

We also load a file containing the dcmotor model:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/dcmotor.mo
N ")

true

Note:

Notification: ~Skipped loading package Modelica (3.2.2) using MODELICAPATH «OPENMODELICA-
HOMEp»/lib/omlibrary (uses-annotation may be wrong).

It is simulated:

>>> simulate (dcmotor, startTime=0.0, stopTime=10.0)
record SimulationResult

resultFile = "",

simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500,
— tolerance = le-06, method = 'dassl', fileNamePrefix = 'dcmotor', options = '"', |,
—outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",

messages = "Failed to build model: dcmotor",

timeFrontend = 0.001873277,

timeBackend = 0.0,

timeSimCode = 0.0,

timeTemplates = 0.0,

timeCompile = 0.0,

timeSimulation = 0.0,

timeTotal = 0.001912311
end SimulationResult;

Error:

Notification: Skipped loading package Modelica (3.2.2,default) using MODELICAPATH «OPENMODELIC-
AHOMEp»/lib/omlibrary (uses-annotation may be wrong).

8 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.0-dev.03

[/var/lib/jenkins/ws/OpenModelica_betal/build/share/doc/omc/testmodels/dcmotor.mo:3:3-3:35:writable] Er-
ror: Class Basic.Resistor not found in scope dcmotor.

Error: Error occurred while flattening model dcmotor

‘We list the source code of the model:

>>> list (dcmotor)
model dcmotor
import Modelica.Electrical.Analog.Basic;

Basic.Resistor resistorl(R = 10);

Basic.Inductor inductorl(L = 0.2, 1i.fixed = true);

Basic.Ground groundl;

Modelica.Mechanics.Rotational.Components.Inertia load(J = 1, phi.fixed = true, w.

—~fixed = true);
Basic.EMF emfl(k = 1.0);
Modelica.Blocks.Sources.Step stepl;
Modelica.Electrical.Analog.Sources.SignalVoltage signalVoltagel;
equation
connect (stepl.y, signalVoltagel.v);
connect (signalVoltagel.p, resistorl.p);
connect (resistorl.n, inductorl.p);
connect (inductorl.n, emfl.p);
connect (emfl.flange, load.flange_a);
connect (signalVoltagel.n, groundl.p);
connect (groundl.p, emfl.n);
annotation (
uses (Modelica (version = "3.2.2")));
end dcmotor;

We test code instantiation of the model to flat code:

>>> instantiateModel (dcmotor)

Error:

Notification: Skipped loading package Modelica (3.2.2,default) using MODELICAPATH «OPENMODELIC-
AHOMEp»/lib/omlibrary (uses-annotation may be wrong).

[/var/lib/jenkins/ws/OpenModelica_betal/build/share/doc/omc/testmodels/dcmotor.mo:3:3-3:35:writable] Er-
ror: Class Basic.Resistor not found in scope dcmotor.

Error: Error occurred while flattening model demotor

We plot part of the simulated result:

Error: Unable to execute gnuplot directive

Expected {quoted string, starting with " ending with " | Combine:({["-"] {"0" | W:(1234...,0123...)}
[{"." W:(0123..)}] [{W:(eE) W:(0123...,0123...)}]1}) | Forward: Group:({{{{{Suppress:("record") Sup-
press:(Forward: {{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with '} "." For-
ward: {{{W:(ABCD..,ABCD...) | quoted string, starting with ’ ending with ’} "." Forward: ...} |
{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with "}}} | W:(ABCD...,ABCD...) | quoted
string, starting with ° ending with ’})} Dict:(Group:({{{W:(ABCD...,ABCD...) | quoted string, starting
with ’ ending with *} Suppress:("=")} Forward: {{{{{{{{{quoted string, starting with " ending with "
| Combine:({{{["-"] {"0" | W:(1234...,0123...)}} [{"." W:(0123..)}1} [{W:(eE) W:(0123...,0123..)}1P} |
Forward: None} | Group:({{Suppress:("{") [Forward: None [, Forward: None]...]} Suppress:("}")})} |
Group:({ {Suppress:("(") [Forward: None [, Forward: None]...]} Suppress:(")")})} | {{{Suppress:("SOME")
Suppress:("(")} Forward: ...} Suppress:(")")}} | "true"} | "false"} | {{"NONE" Suppress:("(")} Sup-

1.2. Interactive Session with Examples 9

OpenModelica User’s Guide, Release v1.16.0-dev.03

press:(")")}} | Combine:(Forward: {{{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with
7} "."} Forward: {{{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with *} "."} Forward:
..} I {W:(ABCD...,ABCD...) | quoted string, starting with * ending with "}}} | {W:(ABCD...,ABCD...) |
quoted string, starting with * ending with *}})}}) [, Group:({ {{ W:(ABCD...,ABCD...) | quoted string, start-
ing with * ending with ’} Suppress:("=")} Forward: {{{{{{{{{quoted string, starting with " ending with
" | Combine:({{{["-"] {"0" | W:(1234...,0123...)}} [{"." W:(0123..)}]1} [{W:(eE) W:(0123...,0123..)}1D}
| Forward: None} | Group:({{Suppress:("{") [Forward: None [, Forward: None]...]} Suppress:("}")})} |
Group:({ {Suppress:("(") [Forward: None [, Forward: None]...]} Suppress:(")")}} | {{{Suppress:("SOME")
Suppress:("(")} Forward: ...} Suppress:(")")}} | "true"} | "false"} | {{"NONE" Suppress:("(")} Sup-
press:(")")}} | Combine:(Forward: {{{{W:(ABCD...,ABCD...) | quoted string, starting with ’ end-
ing with ’} "."} Forward: {{{{W:(ABCD..,ABCD...) | quoted string, starting with ’ ending with
'} "."} Forward: ..} | {W:(ABCD..,ABCD...) | quoted string, starting with ° ending with *}}} |
{W:(ABCD...,ABCD...) | quoted string, starting with > ending with *}})}})]...)} Suppress:("end")} Sup-
press:(Forward: {{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with ’} "." For-
ward: {{{W:(ABCD..,ABCD...) | quoted string, starting with ’ ending with ’} "." Forward: ...} |
{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with "}}} | W:(ABCD...,ABCD...) | quoted
string, starting with > ending with *})} Suppress:(";")}) | Group:({Suppress:("{") [Forward: None [, Forward:
None]...] Suppress:("}")}) | Group:({Suppress:("(") [Forward: None [, Forward: None]...] Suppress:(")")})
| {Suppress:("SOME") Suppress:("(") Forward: {{{{{{{{{quoted string, starting with " ending with " |
Combine:({["-"] {"0" | W:(1234...,0123...)} [{"." W:(0123...)}] [{W:(eE) W:(0123...,0123...)}1})} | Forward:
Group:({ { { { {Suppress:("record") Suppress:(Forward: {{{W:(ABCD...,ABCD...) | quoted string, starting with
> ending with *} "." Forward: {{{W:(ABCD...,ABCD...) | quoted string, starting with > ending with *} "." For-
ward: ...} | {W:(ABCD...,ABCD...) | quoted string, starting with > ending with *}}} | W:(ABCD...,ABCD...)
| quoted string, starting with > ending with *})} Dict:(Group:({ { { W:(ABCD...,ABCD...) | quoted string, start-
ing with * ending with ’} Suppress:("=")} Forward: {{{{{{{{{quoted string, starting with " ending with
" | Combine:({{{["-"] {"0" | W:(1234...,0123...)}} [{"." W:(0123..)}]1} [{W:(eE) W:(0123...,0123..)}1D}
| Forward: None} | Group:({{Suppress:("{") [Forward: None [, Forward: None]...]} Suppress:("}")})} |
Group:({ {Suppress:("(") [Forward: None [, Forward: None]...]} Suppress:(")")}} | {{{Suppress:("SOME")
Suppress:("(")} Forward: ...} Suppress:(")")}} | "true"} | "false"} | {{"NONE" Suppress:("(")} Sup-
press:(")")}} | Combine:(Forward: {{{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with
’} """} Forward: {{{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with *} "."} Forward:
..} 1 {W:(ABCD...,ABCD...) | quoted string, starting with * ending with *}}} | {W:(ABCD...,ABCD...) |
quoted string, starting with * ending with "} })}}) [, Group:({ {{ W:(ABCD...,ABCD...) | quoted string, start-
ing with * ending with °} Suppress:("=")} Forward: {{{{{{{{{quoted string, starting with " ending with
" | Combine:({ {{["-"] {"0" | W:(1234...,0123...)}} [{"." W:(0123..)}1} [{W:(eE) W:(0123...,0123..)}1})}
| Forward: None} | Group:({{Suppress:("{") [Forward: None [, Forward: None]...]} Suppress:("}")})} |
Group:({ {Suppress:("(") [Forward: None [, Forward: None]...]} Suppress:(")")})} | {{{Suppress:("SOME")
Suppress:("(")} Forward: ..} Suppress:(")")}} | "true"} | "false"} | {{"NONE" Suppress:("(")} Sup-
press:(")")}} | Combine:(Forward: {{{{W:(ABCD..,ABCD...) | quoted string, starting with ’ end-
ing with ’} "."} Forward: {{{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with
'} """} Forward: ..} | {W:(ABCD..,ABCD...) | quoted string, starting with ’ ending with ’}}} |
{W:(ABCD...,ABCD...) | quoted string, starting with > ending with "} })}})]...)} Suppress:("end")} Sup-
press:(Forward: {{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with ’} "." For-
ward: {{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with ’} "." Forward: ..} |
{W:(ABCD...,ABCD...) | quoted string, starting with ° ending with "}}} | W:(ABCD...,ABCD...) | quoted
string, starting with ° ending with *})} Suppress:(";")})} | Group:({{Suppress:("{") [Forward: None [, For-
ward: None]...]} Suppress:("}")})} | Group:({{Suppress:("(") [Forward: None [, Forward: None]...]} Sup-
press:("M"M D} | {{{Suppress:("SOME") Suppress:("(")} Forward: ...} Suppress:(")")}} | "true"} | "false"} |
{{"NONE" Suppress:("(")} Suppress:(")")}} | Combine:(Forward: {{{{W:(ABCD...,ABCD...) | quoted string,
starting with * ending with °} "."} Forward: {{{{W:(ABCD...,ABCD...) | quoted string, starting with > end-
ing with *} "."} Forward: ...} | {W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with *}}} |
{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with ’}})} Suppress:(")")} | "true" | "false"
| {"NONE" Suppress:("(") Suppress:(")")} | Combine:(Forward: {{{W:(ABCD...,ABCD...) | quoted string,
starting with > ending with ’} "." Forward: ...} | W:(ABCD...,ABCD...) | quoted string, starting with ’ end-
ing with *})} (at char 1), (line:2, col:1) Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-
packages/pyparsing.py", line 1562, in _parseNoCache loc,tokens = self.parselmpl(instring, preloc, doActions
) File "/usr/local/lib/python3.6/dist-packages/pyparsing.py", line 3235, in parselmpl result = instring[loc] ==

10 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.0-dev.03

self.firstQuoteChar and self.re.match(instring,loc) or None IndexError: string index out of range
During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "/var/lib/jenkins/ws/OpenModelica_betal/doc/UsersGuide/source/sphinx¢ontribopenmodel;
line 173, in run filename = os.path.abspath(self.options.get(’filename’) or
omc.sendExpression("currentSimulationResult")) File "fusr/local/lib/python3.6/dist-
packages/OMPython/__init__.py", line 606, in sendExpression answer = OMTypedParser.parseString(result)
File "/usr/local/lib/python3.6/dist-packages/OMPython/OMTypedParser.py", line 120, in parseString return
omcGrammar.parseString(string)[0] File "/usr/local/lib/python3.6/dist-packages/pyparsing.py", line 1828, in
parseString raise exc File "/usr/local/lib/python3.6/dist-packages/pyparsing.py", line 1818, in parseString loc,
tokens = self._parse(instring, 0) File "/usr/local/lib/python3.6/dist-packages/pyparsing.py", line 1562, in
_parseNoCache loc,tokens = self.parselmpl(instring, preloc, doActions) File "/usr/local/lib/python3.6/dist-
packages/pyparsing.py”, line 3735, in parselmpl loc, resultlist = self.exprs[0]._parse(instring, loc,
doActions, callPreParse=False) File "/usr/local/lib/python3.6/dist-packages/pyparsing.py”, line 1562, in
_parseNoCache loc,tokens = self.parselmpl(instring, preloc, doActions) File "/usr/local/lib/python3.6/dist-
packages/pyparsing.py", line 4098, in parselmpl return self.expr._parse(instring, loc, doActions, call-
PreParse=False) File "/ust/local/lib/python3.6/dist-packages/pyparsing.py”, line 1562, in _parseNo-
Cache loc,tokens = self.parselmpl(instring, preloc, doActions) File "/usr/local/lib/python3.6/dist-
packages/pyparsing.py”, line 3917, in parselmpl raise maxException File "/ustr/local/lib/python3.6/dist-
packages/pyparsing.py”, line 3902, in parselmpl ret = e._parse(instring, loc, doActions) File
"fusr/local/lib/python3.6/dist-packages/pyparsing.py", line 1564, in _parseNoCache raise ParseException(in-
string, len(instring), self.errmsg, self) pyparsing.ParseException: Expected {quoted string, starting with " end-
ing with " | Combine:({["-"] {"0" | W:(1234...,0123...)} [{"." W:(0123...))}] [{W:(eE) W:(0123...,0123...))}1})
| Forward: Group:({{{{{Suppress:("record") Suppress:(Forward: {{{W:(ABCD...,ABCD...) | quoted
string, starting with ° ending with ’} "." Forward: {{{W:(ABCD..,ABCD...) | quoted string, start-
ing with ’ ending with ’} "." Forward: ..} | {W:(ABCD..,ABCD..) | quoted string, starting
with > ending with "}}} | W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with ’})}
Dict:(Group:({ {{ W:(ABCD...,ABCD...) | quoted string, starting with * ending with ’} Suppress:("=")} For-
ward: {{{{{{{{{quoted string, starting with " ending with " | Combine:({{{["-"] {"0" | W:(1234...,0123...)}}
[{"." W:(0123...)}]1} [{W:(eE) W:(0123...,0123...)}1})} | Forward: None} | Group:({{Suppress:("{") [For-
ward: None [, Forward: None]...]} Suppress:("}")})} | Group:({{Suppress:("(") [Forward: None [, Forward:
Nonel]...]} Suppress:(")")})} | {{{Suppress:("SOME") Suppress:("(")} Forward: ...} Suppress:(")")}} | "true"}
| "false"} | {{"NONE" Suppress:("(")} Suppress:(")")}} | Combine:(Forward: {{{{W:(ABCD...,ABCD...)
| quoted string, starting with * ending with ’} "."} Forward: {{{{W:(ABCD...,ABCD...) | quoted string,
starting with ° ending with ’} "."} Forward: ..} | {W:(ABCD...,ABCD...) | quoted string, starting with
> ending with *}}} | {W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with "} })}}) [,
Group:({ {{W:(ABCD...,ABCD...) | quoted string, starting with * ending with ’} Suppress:("=")} Forward:
{{{{{{{{{quoted string, starting with " ending with " | Combine:({{{["-"] {"0" | W:(1234...,0123..)}} [{"."
W:(0123..)}]} [{W:(eE) W:(0123...,0123...)}1})} | Forward: None} | Group:({{Suppress:("{") [Forward:
None [, Forward: None]...]} Suppress:("}")})} | Group:({{Suppress:("(") [Forward: None [, Forward:
None]...]} Suppress:(")") D} | {{{Suppress:("SOME") Suppress:("(")} Forward: ...} Suppress:(")")}} | "true"}
| "false"} | {{"NONE" Suppress:("(")} Suppress:(")")}} | Combine:(Forward: {{{{W:(ABCD...,ABCD...)
| quoted string, starting with > ending with *} "."} Forward: {{{{W:(ABCD...,ABCD...) | quoted string,
starting with > ending with *} "."} Forward: ...} | {W:(ABCD...,ABCD...) | quoted string, starting with
> ending with "}}} | {W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with ’}})} }D]...)}
Suppress:("end")} Suppress:(Forward: {{{W:(ABCD...,ABCD...) | quoted string, starting with > ending with
’} " Forward: {{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with ’} "." Forward: ...} |
{W:(ABCD...,ABCD...) | quoted string, starting with *~ ending with "}}} | W:(ABCD...,ABCD...) | quoted
string, starting with > ending with *})} Suppress:(";")}) | Group:({Suppress:("{") [Forward: None [, Forward:
None]...] Suppress:("}")}) | Group:({Suppress:("(") [Forward: None [, Forward: None]...] Suppress:(")")})
| {Suppress:("SOME") Suppress:("(") Forward: {{{{{{{{{quoted string, starting with " ending with " |
Combine:({["-"] {"0" | W:(1234...,0123...)} [{"." W:(0123...))}] [{W:(eE) W:(0123...,0123...)}1})} | Forward:
Group:({ { {{ {Suppress:("record") Suppress:(Forward: {{{W:(ABCD...,ABCD...) | quoted string, starting with
> ending with *} "." Forward: {{{W:(ABCD...,ABCD...) | quoted string, starting with > ending with *} "." For-
ward: ...} | {W:(ABCD...,ABCD...) | quoted string, starting with * ending with ’}}} | W:(ABCD...,ABCD...)
| quoted string, starting with ° ending with ’})} Dict:(Group:({ {{ W:(ABCD...,ABCD...) | quoted string,
starting with ’ ending with °} Suppress:("=")} Forward: {{{{{{{{{quoted string, starting with " ending with

1.2. Interactive Session with Examples 11

OpenModelica User’s Guide, Release v1.16.0-dev.03

" | Combine:({{{["-"] {"0" | W:(1234...,0123...)}} [{"." W:(0123..)}]1} [{W:(eE) W:(0123...,0123..)}1D}
| Forward: None} | Group:({{Suppress:("{") [Forward: None [, Forward: None]...]} Suppress:("}")})} |
Group:({ {Suppress:("(") [Forward: None [, Forward: None]...]} Suppress:(")")})} | {{{Suppress:("SOME")
Suppress:("(")} Forward: ...} Suppress:(")")}} | "true"} | "false"} | {{"NONE" Suppress:("(")} Sup-
press:(")")}} | Combine:(Forward: {{{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with
’} "."} Forward: {{{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with *} "."} Forward:
..} I {W:(ABCD...,ABCD...) | quoted string, starting with * ending with "}}} | {W:(ABCD...,ABCD...)
| quoted string, starting with * ending with ’}})}}) [, Group:({{{W:(ABCD...,ABCD...) | quoted
string, starting with ’ ending with ’} Suppress:("=")} Forward: {{{{{{{{{quoted string, starting
with " ending with " | Combine:({{{["-"] {"0" | W:(1234...,0123...)}} [{"." W:(0123...)}]} [{W:(eE)
W:(0123...,0123..)}1})} | Forward: None} | Group:({ { Suppress:("{") [Forward: None [, Forward: None]...]}
Suppress:("}")})} | Group:({{Suppress:("(") [Forward: None [, Forward: None]...]} Suppress:(")")})} |
{{{Suppress:("SOME") Suppress:("(")} Forward: ...} Suppress:(")")}} | "true"} | "false"} | {{"NONE"
Suppress:("(")} Suppress:(")")}} | Combine:(Forward: {{{{W:(ABCD...,ABCD...) | quoted string, starting
with > ending with *} "."} Forward: {{{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending
with *} "."} Forward: ..} | {W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with ’}}}
| {W:(ABCD...,ABCD...) | quoted string, starting with * ending with *}})}})]...)} Suppress:("end")}
Suppress:(Forward: {{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with ’} "." For-
ward: {{{W:(ABCD...,ABCD...) | quoted string, starting with ’ ending with ’} "." Forward: ...} |
{W:(ABCD...,ABCD...) | quoted string, starting with > ending with "}}} | W:(ABCD...,ABCD...) | quoted
string, starting with > ending with *})} Suppress:(";")})} | Group:({{Suppress:("{") [Forward: None [,
Forward: None]...]} Suppress:("}")})} | Group:({{Suppress:("(") [Forward: None [, Forward: None]...]}
Suppress:(")") P} | {{{Suppress:("SOME") Suppress:("(")} Forward: ...} Suppress:(")")}} | "true"} | "false"}
| {{"NONE" Suppress:("(")} Suppress:(")")}} | Combine:(Forward: {{{{W:(ABCD...,ABCD...) | quoted
string, starting with > ending with *} "."} Forward: {{{{W:(ABCD...,ABCD...) | quoted string, starting with
> ending with *} "."} Forward: ...} | {W:(ABCD...,ABCD...) | quoted string, starting with > ending with "}}}
| {W:(ABCD...,ABCD...) | quoted string, starting with * ending with *}})} Suppress:(")")} | "true" | "false"
| {"NONE" Suppress:("(") Suppress:(")")} | Combine:(Forward: {{{W:(ABCD...,ABCD...) | quoted string,
starting with * ending with *} "." Forward: ...} | W:(ABCD...,ABCD...) | quoted string, starting with * ending
with ’})} (at char 1), (line:2, col:1)

1.2.6 The val() function

The val(variableName,time) scription function can be used to retrieve the interpolated value of a simulation result
variable at a certain point in the simulation time, see usage in the BouncingBall simulation below.

1.2.7 BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations and if-expressions (the Modelica
keywords have been bold-faced by hand for better readability):

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")
true

Error:

[<interactive>:1:1-1:0:writable] Error: Variable currentSimulationResult not found in scope <global scope>.

>>> list (BouncingBall)

model BouncingBall
parameter Real e = 0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravity acceleration";
Real h(fixed = true, start = 1) "height of ball";

(continues on next page)

12 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.0-dev.03

(continued from previous page)

Real v (fixed = true) "velocity of ball";
Boolean flying(fixed = true, start = true) "true, if ball is flying";
Boolean impact;
Real v_new (fixed = true);
Integer foo;
equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der(v) = if flying then -g else 0;
der (h) v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new = if edge (impact) then -e * pre(v) else 0;
flying = v_new > 0O;
reinit (v, v_new);
end when;
end BouncingBall;

Instead of just giving a simulate and plot command, we perform a runScript command on a .mos (Modelica script)

file sim_BouncingBall.mos that contains these commands:

>>> writeFile ("sim_BouncingBall.mos", "

loadFile (getInstallationDirectoryPath() + \"/share/doc/omc/testmodels/
—BouncingBall.mo\");

simulate (BouncingBall, stopTime=3.0);

/+ plot ({h, flying}); =/
")
true
>>> runScript ("sim_BouncingBall.mos")
"true
record SimulationResult

resultFile = \"«DOCHOME»/BouncingBall_res.mat\",

simulationOptions = \"startTime = 0.0, stopTime = 3.0, numberOfIntervals = 500
— tolerance = le-06, method = 'dassl', fileNamePrefix = 'BouncingBall', options =
—'', outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''\",
messages = \"LOG_SUCCESS | info | The initialization finished
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

\",
timeFrontend = 0.003491716,
timeBackend = 0.010675044,
timeSimCode = 0.001011108,
timeTemplates = 0.134389769,
timeCompile = 0.427056207,
timeSimulation = 0.023568513,
timeTotal = 0.600291325

end SimulationResult;
n

’

model Switch
Real v;
Real 1i;
Real 1i1;
Real itot;
Boolean open;
equation
itot = 1 + 1il;
if open then
v = 0;
else
i = 0;
end if;

(continues on next page)

1.2. Interactive Session with Examples

13

OpenModelica User’s Guide, Release v1.16.0-dev.03

(continued from previous page)

1 - i1 0;
1 -v —-1i=20;
open = time >= 0.5;

end Switch;

>>> gimulate (Switch, startTime=0, stopTime=1)
record SimulationResult
resultFile = "«DOCHOME»/Switch_res.mat",

simulationOptions "startTime 0.0, stopTime = 1.0, numberOfIntervals = 500,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'Switch', options = '"', |
—outputFormat = 'mat', variableFilter = '.x', cflags = "', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.

LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.009867087,
timeBackend = 0.005682279,
timeSimCode = 0.008502475000000001,
timeTemplates = 0.003265772,
timeCompile = 0.409275341,
timeSimulation = 0.020390847,
timeTotal = 0.457070784

end SimulationResult;

Retrieve the value of itot at time=0 using the val(variableName, time) function:

>>> val (itot, 0)
1.0

Plot itot and open:

2 T T T T
itot
open
15 —
1
05 _
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 1.2: Plot when the switch opens

We note that the variable open switches from false (0) to true (1), causing itot to increase from 1.0 to 2.0.

1.2.8 Clear All Models

Now, first clear all loaded libraries and models:

14 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.0-dev.03

>>> clear ()
true

List the loaded models — nothing left:

>>> list ()
nn

1.2.9 VanDerPol Model and Parametric Plot

We load another model, the VanDerPol model (or via the menu File->Load Model):

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/VanDerPol.
—mo")
true

It is simulated:

>>> simulate (VanDerPol, stopTime=80)
record SimulationResult

resultFile = "«DOCHOME»/VanDerPol_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 80.0, numberOfIntervals = 500,
— tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'VanDerPol', options = '',
— outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.011840012,
timeBackend = 0.001451275,
timeSimCode = 0.000486233,
timeTemplates = 0.003170203,
timeCompile = 0.417775471,
timeSimulation = 0.020436182,
timeTotal = 0.455243252

end SimulationResult;

0
0

It is plotted:

>>> plotParametric("x","y")

Perform code instantiation to flat form of the VanDerPol model:

>>> instantiateModel (VanDerPol)
class VanDerPol "Van der Pol oscillator model"
Real x(start 1.0, fixed = true);
Real y(start = 1.0, fixed = true);
parameter Real lambda = 0.3;
equation
der (x) = y;
der(y) = lambda * (1.0 — x ©~ 2.0) % y — x%;
end VanDerPol;

1.2.10 Using Japanese or Chinese Characters

Japenese, Chinese, and other kinds of UniCode characters can be used within quoted (single quote) identifiers, see
for example the variable name to the right in the plot below:

1.2. Interactive Session with Examples 15

OpenModelica User’s Guide, Release v1.16.0-dev.03

Figure 1.3: VanDerPol plotParametric(x,y)

File Edit Special

Plot by OpenModelica

0.6 }

0.4r }

0.0

0.0 0.3 1.0 1.5 2.0 2.2

1.2.11 Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation at each line into OMShell requires
copy-paste as one operation from another document):

>>> k 1= 0;

>>> for i in 1:1000 loop
k =k + 1i;

end for;

>>> k

500500

A nested loop summing reals and integers:

16 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.0-dev.03

>>> g := 0.0;
>>> h := 5;
>>> for i in {23.0,77.12,88.23} loop
for j in 1:0.5:(i+1) loop
g =g+ 3J;
g :=g + h / 2;
end for;
h := h + g;
end for;

By putting two (or more) variables or assignment statements separated by semicolon(s), ending with a variable,
one can observe more than one variable value:

>>> h; g
1997.45
1479.09

A for-loop with vector traversal and concatenation of string elements:

>>> j.="";
>>> 1lst := {"Here ", "are ","some ","strings."};
>>> g = "";
>>> for i in lst loop
s := s + ij
end for;
>>> 5

"Here are some strings."

Normal while-loop with concatenation of 10 "abc " strings:

>>> g:="";
>>> i:=1;
>>> while i<=10 loop
s:="abc "+s;
i:=1+1;
end while;
>>> g
"abc abc abc abc abc abc abc abc abc abc "

A simple if-statement. By putting the variable last, after the semicolon, its value is returned after evaluation:

>>> if 5>2 then a := 77; end if; a
77

An if-then-else statement with elseif"

>>> if false then

a := 5;
elseif a > 50 then
b:= "test"; a:= 100;
else
a:=34;
end if;

Take a look at the variables a and b:

>>> a;b
100
"test"

1.2. Interactive Session with Examples 17

OpenModelica User’s Guide, Release v1.16.0-dev.03

1.2.12 Variables, Functions, and Types of Variables

Assign a vector to a variable:

>>> a:=1:5
{1,2,3,4,5}

Type in a function:

function mySqr
input Real x;
output Real y;

algorithm
ViI=X*X;

end mySqr;

Call the function:

>>> b:=mySqr (2)
4.0

Look at the value of variable a:

>>> a
{1,2,3,4,5}

Look at the type of a:

>>> typeOf (a)
"Integer[5]"

Retrieve the type of b:

>>> typeOf (b)
Y’Realﬂ

What is the type of mySqr? Cannot currently be handled.

>>> typeOf (mySqr)

List the available variables:

>>> listVariables ()
{b,a,s,1lst,i,h,g,k,currentSimulationResult}

Clear again:

>>> clear ()
true

1.2.13 Getting Information about Error Cause

Call the function getErrorString() in order to get more information about the error cause after a simulation failure:

>>> getErrorString()

nn

1.2.14 Alternative Simulation Output Formats

There are several output format possibilities, with mat being the default. plt and mat are the only formats that
allow you to use the val() or plot() functions after a simulation. Compared to the speed of plt, mat is roughly 5

18 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.0-dev.03

times for small files, and scales better for larger files due to being a binary format. The csv format is roughly twice
as fast as plt on data-heavy simulations. The plt format allocates all output data in RAM during simulation, which
means that simulations may fail due applications only being able to address 4GB of memory on 32-bit platforms.
Empty does no output at all and should be by far the fastest. The csv and plt formats are suitable when using an
external scripts or tools like gnuplot to generate plots or process data. The mat format can be post-processed in
MATLAB or Octave.

>>> simulate(... , outputFormat="mat")
(... , outputFormat="csv")
(, outputFormat="plt")
(’

outputFormat="empty")

>>> simulate
>>> simulate (...
>>> gsimulate (...

It is also possible to specify which variables should be present in the result-file. This is done by using POSIX
Extended Regular Expressions. The given expression must match the full variable name (* and $ symbols are
automatically added to the given regular expression).

/I Default, match everything

’>>> simulate (... , variableFilter=".x+")

// match indices of variable my Var that only contain the numbers using combinations

/1 of the letters 1 through 3

’>>> simulate (... , variableFilter="myVar\\\[[1-31+«\\\1")

// match x or y or z

>>> simulate (... , variableFilter="x|y|z")

1.2.15 Using External Functions

See Chapter Interoperability — C and Python for more information about calling functions in other programming
languages.

1.2.16 Using Parallel Simulation via OpenMP Multi-Core Support

Faster simulations on multi-core computers can be obtained by using a new OpenModelica feature that auto-
matically partitions the system of equations and schedules the parts for execution on different cores using shared-
memory OpenMP based execution. The speedup obtained is dependent on the model structure, whether the system
of equations can be partitioned well. This version in the current OpenModelica release is an experimental ver-
sion without load balancing. The following command, not yet available from the OpenModelica GUI, will run a
parallel simulation on a model:

>>> omc —d=openmp model.mo

1.2.17 Loading Specific Library Version

There exist many different versiosn of Modelica libraries which are not compatible. It is possible to keep mul-
tiple versions of the same library stored in the directory given by calling getModelicaPath(). By calling load-
Model(Modelica,{"3.2"}), OpenModelica will search for a directory called "Modelica 3.2" or a file called "Mod-
elica3.2.mo". Itis possible to give several library versions to search for, giving preference for a pre-release version
of a library if it is installed. If the searched version is "default", the priority is: no version name (Modelica), main
release version (Modelica 3.1), pre-release version (Modelica 3.1Beta 1) and unordered versions (Modelica Spe-
cial Release).

The loadModel command will also look at the uses annotation of the top-level class after it has been loaded. Given
the following package, Complex 1.0 and ModelicaServices 1.1 will also be loaded into the AST automatically.

1.2. Interactive Session with Examples 19

http://www.mathworks.com/products/matlab
http://www.gnu.org/software/octave/
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

OpenModelica User’s Guide, Release v1.16.0-dev.03

package Modelica
annotation (uses (Complex (version="1.0"),
ModelicaServices (version="1.1")));

end Modelica;

>>> clear ()
true

Packages will also be loaded if a model has a uses-annotation:

model M
annotation (uses (Modelica (version="3.2.1")));
end M;

>>> instantiateModel (M)
class M
end M;

Note:

Notification: Skipped loading package Modelica (3.2.1,default) using MODELICAPATH «OPENMODELICA-
HOME»/lib/omlibrary (uses-annotation may be wrong).

Packages will also be loaded by looking at the first identifier in the path:

>>> instantiateModel (Modelica.Electrical.Analog.Basic.Ground)

Error:

Error: Failed to load package Modelica (default) using MODELICAPATH «OPENMODELICA-
HOME»/lib/omlibrary.

Error: Class Modelica.Electrical. Analog.Basic.Ground not found in scope <TOP>.

1.2.18 Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external API (application programming interface) is described
which returns information about models and/or allows manipulation of models. Calls to these functions can be
done interactively as below, but more typically by program clients to the OpenModelica Compiler (OMC) server.
Current examples of such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the OMEdit graphic
model editor, etc. This API is untyped for performance reasons, i.e., no type checking and minimal error checking
is done on the calls. The results of a call is returned as a text string in Modelica syntax form, which the client has
to parse. An example parser in C++ is available in the OMNotebook source code, whereas another example parser
in Java is available in the MDT Eclipse plugin.

Below we show a few calls on the previously simulated BouncingBall model. The full documentation on this API
is available in the system documentation. First we load and list the model again to show its structure:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo");
>>> list (BouncingBall)
model BouncingBall
parameter Real e = 0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravity acceleration";
Real h(fixed = true, start = 1) "height of ball";
Real v (fixed = true) "velocity of ball";
Boolean flying(fixed = true, start = true) "true, if ball is flying";

(continues on next page)

20 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.0-dev.03

(continued from previous page)

Boolean impact;
Real v_new(fixed = true);
Integer foo;
equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der(v) = if flying then -g else 0;
der (h) = v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new if edge (impact) then -e * pre(v) else 0;
flying = v_new > O;
reinit (v, v_new);
end when;
end BouncingBall;

Different kinds of calls with returned results:

>>> getClassRestriction (BouncingBall)

"model"

>>> getClassInformation (BouncingBall)

("model","", false, false, false, "/var/lib/jenkins/ws/OpenModelica_betal/build/share/
—doc/omc/testmodels/BouncingBall .mo", false,1,1,23,17,{}, false, false,"","", false,"
")

>>> isFunction (BouncingBall)

false

>>> existClass (BouncingBall)

true

>>> getComponents (BouncingBall)

{{Real,e,"coefficient of restitution", "public", false, false, false, false,
—"parameter", "none", "unspecified",{}},{Real,qg,"gravity acceleration", "public",
—false, false, false, false, "parameter", "none", "unspecified",{}}, {Real,h,
—"height of ball", "public", false, false, false, false, "unspecified", "none",
—"unspecified", {}}, {Real,v,"velocity of ball", "public", false, false, false,
—false, "unspecified", "none", "unspecified", {}}, {Boolean,flying,"true, if ball
—~is flying", "public", false, false, false, false, "unspecified", "none",
—"unspecified", {}}, {Boolean, impact,"", "public", false, false, false, false,
—"unspecified", "none", "unspecified", {}}, {Real,v_new,"", "public", false, false,
—false, false, "unspecified", "none", "unspecified",{}}, {Integer,foo,"", "public",
— false, false, false, false, "unspecified", "none", "unspecified",{}}}

>>> getConnectionCount (BouncingBall)

0

>>> getInheritanceCount (BouncingBall)

0

>>> getComponentModifierValue (BouncingBall, e)

"O.7"

>>> getComponentModifierNames (BouncingBall, "e")

{}

>>> getClassRestriction (BouncingBall)

"model"

>>> getVersion() // Version of the currently running OMC

"OMCompiler v1.16.0-dev.03"

1.2.19 Quit OpenModelica

Leave and quit OpenModelica:

>>> quit ()

1.2. Interactive Session with Examples 21

OpenModelica User’s Guide, Release v1.16.0-dev.03

1.2.20 Dump XML Representation

The command dumpXMLDAE dumps an XML representation of a model, according to several optional parame-
ters.

dumpXMLDAE(modelnamel ,asInSimulationCode=<Boolean>] [filePrefix=<String>] [,storeln-
Temp=<Boolean>] [,addMathMLCode =<Boolean>])

This command dumps the mathematical representation of a model using an XML representation, with optional
parameters. In particular, asInSimulationCode defines where to stop in the translation process (before dumping the
model), the other options are relative to the file storage: filePrefix for specifying a different name and storeInTemp
to use the temporary directory. The optional parameter addMathMLCode gives the possibility to don’t print the
MathML code within the xml file, to make it more readable. Usage is trivial, just: addMathMLCode=true/false
(default value is false).

1.2.21 Dump Matlab Representation

The command export dumps an XML representation of a model, according to several optional parameters.
exportDAEtoMatlab(modelname);

This command dumps the mathematical representation of a model using a Matlab representation. Example:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")

true

>>> exportDAEtoMatlab (BouncingBall)

"The equation system was dumped to Matlab file:BouncingBall_imatrix.m"

% Adjacency Matrix

% number of rows: 6

IM={{3,6},{1,{"if", "true','=='" {3}, {},}},{{"1f", 'true','==" {4},{},}}, {5}, {2, {"1if
—', 'edge (impact)' {3},{5},}},{4,2}};

VL = {'foo','v_new', "impact', 'flying','v', 'h'};

EgStr = {'impact = h <= 0.0;"',"'"foo = if impact then 1 else 2;','der(v) = if flying,
—then -g else 0.0;','der(h) = v;','when {h <= 0.0 and v <= 0.0, impact} then v_
—new = 1f edge (impact) then (-e) * pre(v) else 0.0; end when;', 'when {h <= 0.0,
—and v <= 0.0, impact} then flying = v_new > 0.0; end when;'};

OldEgStr={'class BouncingBall',' parameter Real e = 0.7 "coefficient of

—restitution";',' parameter Real g = 9.81 "gravity acceleration";',' Real
—h(start = 1.0, fixed = true) "height of ball";',' Real v (fixed = true)
—"velocity of ball";',' Boolean flying(start = true, fixed = true) "true, if
—ball is flying";',' Boolean impact;',' Real v_new(fixed = true);"',"' Integer,,
—~foo; ', 'equation', ' impact = h <= 0.0;"'," foo = if impact then 1 else 2;','
—der(v) = if flying then -g else 0.0;"'," der(h) = v;',"' when {h <= 0.0 and v <=_
—0.0, impact} then',' v_new = if edge (impact) then (-e) x pre(v) else 0.0;',"' _
— flying = v_new > 0.0;"'," reinit (v, v_new);',' end when;','end BouncingBall;

Y

1.3 Summary of Commands for the Interactive Session Handler

The following is the complete list of commands currently available in the interactive session hander.

simulate(modelname) Translate a model named modelname and simulate it.

22 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.0-dev.03

simulate(modelnamel startTime=<Real>][,stopTime=<Real>][,numberOflntervals
=<Integer>][,outputlnterval=<Real>][,method=<String>]
[,tolerance=<Real>][,fixedStepSize=<Real>]

[,outputFormat=<String>]) Translate and simulate a model, with optional start time, stop time, and optional
number of simulation intervals or steps for which the simulation results will be computed. More intervals will
give higher time resolution, but occupy more space and take longer to compute. The default number of intervals
is 500. It is possible to choose solving method, default is “dassl”, “euler” and “rungekutta” are also available.
Output format “mat” is default. “plt” and “mat” (MATLAB) are the only ones that work with the val() command,
“csv” (comma separated values) and “empty” (no output) are also available (see section Alternative Simulation
Output Formats).

plot(vars) Plot the variables given as a vector or a scalar, e.g. plot({x1,x2}) or plot(x1).

plotParametric(var!, var2) Plot var2 relative to varl from the most recently simulated model, e.g. plotParamet-
ric(x,y).

cd() Return the current directory.

cd(dir) Change directory to the directory given as string.

clear() Clear all loaded definitions.

clearVariables() Clear all defined variables.

dumpXMLDAE(modelname, ...) Dumps an XML representation of a model, according to several optional param-
eters.

exportDAEtoMatlab(name) Dumps a Matlab representation of a model.

instantiateModel(modelname)Performs code instantiation of a model/class and return a string containing the flat
class definition.

list() Return a string containing all loaded class definitions.
list(modelname) Return a string containing the class definition of the named class.
listVariables() Return a vector of the names of the currently defined variables.

loadModel(classname) Load model or package of name classname from the path indicated by the environment
variable OPENMODELICALIBRARY.

loadFile(str) Load Modelica file (.mo) with name given as string argument str.
readFile(str) Load file given as string str and return a string containing the file content.
runScript(str) Execute script file with file name given as string argument str.

system(str) Execute str as a system(shell) command in the operating system; return integer success value. Output
into stdout from a shell command is put into the console window.

timing(expr) Evaluate expression expr and return the number of seconds (elapsed time) the evaluation took.
typeOf(variable) Return the type of the variable as a string.

saveModel(str,modelname) Save the model/class with name modelname in the file given by the string argument
str.

val(variable,timePoint) Return the (interpolated) value of the variable at time timePoint.
help() Print this helptext (returned as a string).

quit() Leave and quit the OpenModelica environment

1.4 Running the compiler from command line

The OpenModelica compiler can also be used from command line, in Windows cmd.exe.

Example Session 1 — obtaining information about command line parameters

1.4. Running the compiler from command line 23

OpenModelica User’s Guide, Release v1.16.0-dev.03

C:\dev> C:\OpenModelical.9.2 \bin\omc -h

OpenModelica Compiler 1.9.2

Copyright © 2015 Open Source Modelica Consortium (OSMC)
Distributed under OMSC-PL and GPL, see https://www.openmodelica.org/
Usage: omc [Options] (Model.mo | Script.mos) [Libraries | .mo-files]

Example Session 2 - create an TestModel.mo file and run omc on it

C:\dev> echo model TestModel parameter Real x = 1; end TestModel; > TestModel.mo
C:\dev> C:\OpenModelical.9.2 \bin\omc TestModel.mo
class TestModel
parameter Real x = 1.0;
end TestModel,
C:\dev>

Example Session 3 - create an script.mos file and run omc on it

Create a file script.mos using your editor containing these commands:
/1 start script.mos
loadModel(Modelica); getErrorString();
simulate(Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum); getErrorString();
// end script.mos
C:\dev> notepad script.mos
C:\dev> C:\OpenModelical.9.2 \bin\omc script.mos
true
record SimulationResult
resultFile = "C:/dev/Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 5.0, numberOfIntervals = 500, tolerance = 1e-006,
method = "dassl’, fileNamePrefix = "Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum’,

> ko s

options = ", outputFormat = *mat’, variableFilter = ’.*’, cflags = ”, simflags =",
messages = "",

timeFrontend = 1.245787339209033,

timeBackend = 20.51007138993843,

timeSimCode = 0.1510248469321959,

timeTemplates = 0.5052317333954395,

timeCompile = 5.128213942691722,

timeSimulation = 0.4049189573103951,

timeTotal = 27.9458487395605

end SimulationResult;

"

In order to obtain more information from the compiler one can use the command line options —
showErrorMessages -d=failtrace when running the compiler:

C:\dev> C:\OpenModelical.9.2 \bin\omc —showErrorMessages -d=failtrace script.mos

24 Chapter 1. Introduction

https://www.openmodelica.org/

CHAPTER
TWO

OMEDIT — OPENMODELICA CONNECTION EDITOR

OMEdit — OpenModelica Connection Editor is the new Graphical User Interface for graphical model editing in
OpenModelica. It is implemented in C++ using the Qt graphical user interface library and supports the Modelica
Standard Library that is included in the latest OpenModelica installation. This chapter gives a brief introduction
to OMEdit and also demonstrates how to create a DCMotor model using the editor.

OMEdit provides several user friendly features for creating, browsing, editing, and simulating models:
* Modeling — Easy model creation for Modelica models.
* Pre-defined models — Browsing the Modelica Standard library to access the provided models.
 User defined models — Users can create their own models for immediate usage and later reuse.

* Component interfaces — Smart connection editing for drawing and editing connections between model in-
terfaces.

* Simulation — Subsystem for running simulations and specifying simulation parameters start and stop time,
etc.

* Plotting — Interface to plot variables from simulated models.

2.1 Starting OMEdit

A splash screen similar to the one shown in Figure 2.1 will appear indicating that it is starting OMEdit. The
executable is found in different places depending on the platform (see below).

2.1.1 Microsoft Windows
OMEdit can be launched wusing the executable placed in OpenModelicalnstallationDirec-

tory/bin/OMEdit/OMEdit.exe. Alternately, choose OpenModelica > OpenModelica Connection Editor from the
start menu in Windows.

2.1.2 Linux

Start OMEdit by either selecting the corresponding menu application item or typing “OMEdit” at the shell or
command prompt.

2.1.3 Mac OS X

The default installation is /Application/MacPorts/OMEdit.app.

25

OpenModelica User’s Guide, Release v1.16.0-dev.03

OMEdit

—
. L L
{

Figure 2.1: OMEdit Splash Screen.

2.2 MainWindow & Browsers

The MainWindow contains several dockable browsers,
e Libraries Browser
* Documentation Browser
* Variables Browser
* Messages Browser
Figure 2.2 shows the MainWindow and browsers.

The default location of the browsers are shown in Figure 2.2. All browsers except for Message Browser can
be docked into left or right column. The Messages Browser can be docked into top or bottom areas. If you
want OMEdit to remember the new docked position of the browsers then you must enable Preserve User’s GUI
Customizations option, see section General.

2.2.1 Filter Classes

To filter a class click Edit > Filter Classes or press keyboard shortcut Ctrl+Shift+F. The loaded Modelica classes
can be filtered by typing any part of the class name.

2.2.2 Libraries Browser

To view the Libraries Browser click View > Windows > Libraries Browser. Shows the list of loaded Modelica
classes. Each item of the Libraries Browser has right click menu for easy manipulation and usage of the class. The

26 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.0-dev.03

o OMEdit - OpenModelica Connection Editor = B

File Edit View Simulation FMI Export Tools Help
BB 9%

FwHB - @Heee \OHNOTH
Libraries Browser Documentation Browser @ X

& X
|Search Classes | \ < Previous | [Next

v

Libraries

4 E OpenModelica

3 D MeodelicaServices
> . Complex

b P7%2] Modelica

[o ModelicaReference

Variables Browser g X

|Find Variables | ¥

Variables Value

£ >
F X

X:108.62 ¥:-16.90 o Modeling 8

Figure 2.2: OMEdit MainWindow and Browsers.

2.2. MainWindow & Browsers 27

OpenModelica User’s Guide, Release v1.16.0-dev.03

classes are shown in a tree structure with name and icon. The protected classes are not shown by default. If you
want to see the protected classes then you must enable the Show Protected Classes option, see section General.

ot OMEdit - OpenModelica Connection Editor - ':'
File Edit View Simulation FMI Export TJools Help

FeB8 R Heee \oHOTH E-H- 9 ¢

Libraries Browser

| chua

OMEdit - OpenModelica Connection Editor

Libraries

4 @ Modelica

e @ Electrical i
4 BB Analog Recent Files Latest News
“ Bxamples E> C:/Users/adeas31/Desktop/EigenTes E',\) September 8, 2015 OpenModelica 1.9.3 released
o View Class 10, 2015: SIMS 2015 registration open
0 View Documentation
£ 18, 2013 Mew version scheme for nightly builds
Save Total
13, 2015: OpenModelica migrated from Subversion to
E Instantiate Model
o Check Model fch 17, 2015: OpenModelica 1.9.2 released
@ Check All Models uary 02, 2013: OpenMeodelica 1.9.2 Betal released
= Simulate Ctrl+B
& Simulate with Transformational Debugger hram CpenModelica Annual Workshop 2015
@ Simulate with Algorithmic Debugger fram OpenModelica Annual Workshop 2016
S| Simulation Setup >
Wl Duplicate [For more details visit our website www.openmodelica.org
‘& Export FMU
& Export XML Open Model/Library File(s)
B Export Figaro

t Welcome gﬁ Modeling ﬂ Plotting

Figure 2.3: Libraries Browser.

2.2.3 Documentation Browser

Displays the HTML documentation of Modelica classes. It contains the navigation buttons for moving forward and
backward. It also contains a WYSIWYG editor which allows writing class documentation in HTML format. To see
documentation of any class, right click the Modelica class in Libraries Browser and choose View Documentation.

2.2.4 Variables Browser

The class variables are structured in the form of the tree and are displayed in the Variables Browser. Each variable
has a checkbox. Ticking the checkbox will plot the variable values. There is a find box on the top for filtering the
variable in the tree. The filtering can be done using Regular Expression, Wildcard and Fixed String. The complete
Variables Browser can be collapsed and expanded using the Collapse All and Expand All buttons.

The browser allows manipulation of changeable parameters for Re-simulating a Model. It also displays the unit
and description of the variable.

The browser also contains the slider and animation buttons. These controls are used for variable graphics and
schematic animation of models i.e., DynamicSelect annotation. They are also used for debugging of state ma-
chines. Open the Diagram Window for animation. It is only possible to animate one model at a time. This is
achieved by marking the result file active in the Variables Browser. The animation only read the values from the
active result file. It is possible to simulate several models. In that case, the user will see a list of result files in

28 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.0-dev.03

Documentation Browser n
~# P =
info rev headr Lol
. ~
Modelica

Modelica Standard Library - Version 3.2.2

Information

Package Modelica® is a standardized and free package that is developed together with the Modelica® language from the Modelica
Association, see hitps://'www.Modelica.org. It is also caled Modelica Standard Library. It provides model components in many dormains
that are based on standardized interface definitions. Some typical examples are shown in the next figure:

ambiant

pipe .

— -5
e

g O

Ll
AIMCA

For an introduction, have especialy a look at:

Qverview provides an overview of the Modelica Standard Library inside the User's Guide.

Release MNotes surmmarizes the changes of new versions of this package.

Contact lists the contributors of the Modelica Standard Library.

The Examples packages in the various libraries, dermonstrate how to use the components of the corresponding sublibrary.

This version of the Modelica Standard Library consists of

« 1600 models and blocks, and
+ 1350 functions

that are directly usable (= number of public, non-partial classes). It is fully compliant to Modelica Specification Version 2.2 Revision 2 and it
has heen tested with Madelica tanls fram different vendars. hd

Figure 2.4: Documentation Browser.

2.2. MainWindow & Browsers 29

OpenModelica User’s Guide, Release v1.16.0-dev.03

the Variables Browser. The user can switch between different result files by right clicking on the result file and
selecting Set Active in the context menu.

Variables Browser 8 X
|Filter variables o
[] Case Sensitive Regular Expression -

Expand All Collapse all
Simulation Time Unit g -

“ ’ II Time:|0.0 Speed:| 1w
o

Variables Value Display Unit Description
=] Modelica.E...huaCircuit
=
C 10.0 F Capacitance
[1derfv) 0.014557 kma...-1.g der(Voltage drop of..pins (= pv - nwv))
L] 0.14557 A Current flowing from pin p to pin n
n

Voltage drop of the.. pins (= pv - nw)

HEBEBDE

=R s I S]

[=] = =1 [R=]
[= 8

Figure 2.5: Variables Browser.

2.2.5 Messages Browser

Shows the list of errors. Following kinds of error can occur,
¢ Syntax
e Grammar
¢ Translation
* Symbolic
¢ Simulation
e Scripting

See section Messages for Messages Browser options.

2.3 Perspectives

The perspective tabs are loacted at the bottom right of the MainWindow:

¢ Welcome Perspective

30 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.0-dev.03

* Modeling Perspective
* Plotting Perspective

* Debugging Perspective

2.3.1 Welcome Perspective

&t OMEdit - OpenMadelica Connection Editor - O >

File Edit View Sirmulation FM| Export Debug Git Tools Help

Bl A=~ Hoee \® -8B O 39X~

Libraries Browser g X
|Filter Classes | @ AT - - - -
— . OMEdit - OpenModelica Connection Editor

¥ @ OpenModelica

> D ModelicaServices

Recent Files Latest News
> . Complex
» @ Modelica E:> C:/OpenModelica/OMCormpiler/Exan ED‘ February 6, 2017: OpenModelica 1.11.0 released
’ o ModelicaReference E:> C:/Users/adeas31/Desktop/Connecto ED‘ January 17, 2017: OpenModelica 1.11 Beta3 released

E:> C/Users/adeas31/Desktop/PhotoVolt ED‘ Decemnber 20, 2016: OpenModelica 1.11 Beta2 released
E:> C:/Users/adeas31/Desktop/OmcOmc ED‘ Novernber 22, 2016 OpenModelica 1.9.7 released

E:> C:/Users/adeas31/Desktop/Folder/pa ED‘ March 16, 2016: OpenModelica 1.9.6 released

ED‘ March 9, 2016: OpenModelica 1.9.4 released

ED‘ February 18, 2016: OpenModelica 1.9.4 betal released

ED‘ Program OpenMeodelica Annual Workshop 2016

£ >

Clear Recent Files For more details visit our website www.openmodelica.org
Create Mew Modelica Class Open Model/Library File(s)

t Welcome oﬁ Modeling ﬂ Plotting '» Debugging

Figure 2.6: OMEdit Welcome Perspective.

The Welcome Perspective shows the list of recent files and the list of latest news from https://www.openmodelica.
org/. See Figure 2.6. The orientation of recent files and latest news can be horizontal or vertical. User is allowed
to show/hide the latest news. See section General.

2.3.2 Modeling Perspective

The Modeling Perpective provides the interface where user can create and design their models. See Figure 2.7.

The Modeling Perspective interface can be viewed in two different modes, the tabbed view and subwindow view,
see section General.

2.3.3 Plotting Perspective

The Plotting Perspective shows the simulation results of the models. Plotting Perspective will automatically
become active when the simulation of the model is finished successfully. It will also become active when user
opens any of the OpenModelica’s supported result file. Similar to Modeling Perspective this perspective can also
be viewed in two different modes, the tabbed view and subwindow view, see section General.

2.3. Perspectives 31

https://www.openmodelica.org/
https://www.openmodelica.org/

OpenModelica User’s Guide, Release v1.16.0-dev.03

ot OMEdit - OpenModelica Connection Editor O *
File Edit View Sirmulation FMI Export Debug Git Tools Help

teBB @oee \® -E-| QP9 X5
Libraries Browser T x| o4 DCMotor™® 8
[Fiter Classes | @ |.|.. A=) ‘szble |Mode| |Diagram View ‘DCI\"Iotor ‘DCI'\"Iotor |Une: 1,Cal: 0 ‘ h|
Libraries
@ OpenModelica
D ModelicaServices
. Complex
P72 Modelica
o MeodelicaReference

[

¥:-124.07 ¥:-32.34 t Welcome gﬁ Modeling ﬁ Plotting ‘» Debugging

Figure 2.7: OMEdit Modeling Perspective.

32 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.0-dev.03

ot OMEdit - OpenModelica Connection Editor - [Plot: 1] — O *,
IZ Eile Edit View Simulation FM| Export Debug Git Tools Help - &8 X
FeBB @O0 \® -E| Q][R]X 5
Libraries Browser @ %' Zoom Pan | AutoScale = FitinView Save | Print | Grid | Detailed Grid || Variables Browser g X
|Filter Classes | ¥ |Filter Variables | &
Libraries emf.phi [deg] Simulation Time Linit l:l

E OpenMeodelica 0 __\\\\- Variables Value
[] ModelicaServices E‘M
. Complex -1 = emf

P72 Modelica [dertph) -03403

-3 fined
o MaodelicaReference b flange
E DCMotor] i -0.53350
-3

internalSupport

[k 1.0

-4 n
\ p
-5 phi -7.23033

v -0.3403
dw -0.3403
ground?
inductorl

inertial

i i
=l a
L1l
[

=]

resistor]

=]

signalvoltagel
stepl

-8 — — — — —
0 0.2 0.4 0.6 0.8 1
time [s]

®

£ >

¥:-138.55 ¥:-43.45 t Welcome oﬁ Modeling m Flotting ‘ Debugging

Figure 2.8: OMEdit Plotting Perspective.

2.3. Perspectives 33

OpenModelica User’s Guide, Release v1.16.0-dev.03

2.3.4 Debugging Perspective

The application automatically switches to Debugging Perpective when user simulates the class with algorithmic
debugger. The prespective shows the list of stack frames, breakpoints and variables.

&% OMEdit - OpenModelica Connection Editor - O *

File Edit View Simulation FMI Export Debug Git Tools Help

z = N ; ;
w88 Hoee \PHOTE < EH-©-29>9 X5~
Libraries Browser & X Stack Frames Browser & X BreakPoints Browser & X | Locals Browser T X
L4 [] ||l§ N |Threads: 1 - |Shoppedatb.._inﬁ'1read1 Line File Mame Type Value
))) ® 5 C/Users/..dByTwo.mo inValue Real 0
L ~
Libraries Ft.lnctlon Line File outValue Real 4.1445)
E OpenModelica > getV.yTwo 5 C:/Users/adeas31/De...eMultipliedBy Two.mo
D ModelicaServices Simul...ion_1 3 C:/Users/adeas31/De.../SimulationModel.mo
Simu..ns_ 0 33 C:/Users/adeas31/App...ulationModel_12jac.h
. Complex . - r . - -
Simul..tions 43 C:/Users/adeas31/App...ulationModel_12jac.h
7 Modelica e tinn v
o ModelicaReference E getValueMultipliedByTwo @
m DCMotor |II-I oﬁ E o |Wrimble |Function |Tert View |get\|‘alueMuIﬁpIiedByTwo C:fUse.. Two.mo | Line: 5, Col: 0 | a |
getValueM...liedByTwo 1 function getValueMultipliedByTwo
M simulationModel 2 input Real inValue;
z output Real outValue;
algorithm
® = ocutValue := inValue * 2:
end getValueMultipliedByTwo;
£ >
4.1445230292290475e-316
Qutput Browser g X
Debugger CLI Qutput Browser

¥: -95,10 i 105.72 t Welcome o’.i Modeling g Plotting o Debugging

Figure 2.9: OMEdit Debugging Perspective.

2.4 File Menu

e New Modelica Class - Creates a new Modelica class.
* Open Model/Library File(s) - Opens the Modelica file or a library.

* Open/Convert Modelica File(s) With Encoding - Opens the Modelica file or a library with a specific encod-
ing. It is also possible to convert to UTF-8.

Load Library - Loads a Modelica library. Allows the user to select the library path assuming that the path
contains a package.mo file.

Load Encrypted Library - Loads an encrypted library. see OpenModelica Encryption
* Open Result File(s) - Opens a result file.

Open Transformations File - Opens a transformational debugger file.

New Composite Model - Creates a new composite model.

Open Composite Model(s) - Loads an existing composite model.

Load External Model(s) - Loads the external models that can be used within composite model.

34 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.0-dev.03

Open Directory - Loads the files of a directory recursively. The files are loaded as text files.

Save - Saves the class.

Save As - Save as the class.

Save Total - Saves the class and all the classes it uses in a single file. The class and its dependencies can
only be loaded later by using the loadFile() API function in a script. Allows third parties to reproduce an

issue with a class without worrying about library dependencies.

Import

FMU - Imports the FMU.

FMU Model Description - Imports the FMU model description.

From OMNotbook - Imports the Modelica models from OMNotebook.

Ngspice netlist - Imports the ngspice netlist to Modelica code.

"Export"

To Clipboard - Exports the current model to clipboard.

Image - Exports the current model to image.

FMU - Exports the current model to FMU.

Read-only Package - Exports a zipped Modelica library with file extension .mol
Encrypted Package - Exports an encrypted package. see OpenModelica Encryption
XML - Exports the current model to a xml file.

Figaro - Exports the current model to Figaro.

To OMNotebook - Exports the current model to a OMNotebook file.

System Libraries - Contains a list of system libraries.

Recent Files - Contains a list of recent files.

Clear Recent Files - Clears the list of recent files.

Print - Prints the current model.

Quit - Quit the OpenModelica Connection Editor.

Edit Menu

Undo - Undoes the last change.
Redo - Redoes the last undone change.

Filter Classes - Filters the classes in Libraries Browser. see Filter Classes

View Menu

Toolbars - Toggle visibility of toolbars.

Windows - Toggle visibility of windows.

Close Window - Closes the current model window.

Close All Windows - Closes all the model windows.

Close All Windows But This - Closes all the model windows except the current.

Cascade Windows - Arranges all the child windows in a cascade pattern.

Tile Windows Horizontally - Arranges all child windows in a horizontally tiled pattern.

Tile Windows Vertically - Arranges all child windows in a vertically tiled pattern.

2.5. Edit Menu

35

OpenModelica User’s Guide, Release v1.16.0-dev.03

Toggle Tab/Sub-window View - Switches between tab and subwindow view.
* Grid Lines - Toggle grid lines of the current model.

* Reset Zoom - Resets the zoom of the current model.

e Zoom In - Zoom in the current model.

e Zoom Out - Zoom out the current model.

2.7 Simulation Menu

* Instantiate Model - Instantiates the current model.

* Check Model - Checks the current model.

e Check All Models - Checks all the models of a library.
* Simulate - Simulates the current model.

* Simulate with Transformational Debugger - Simulates the current model and opens the transformational
debugger.

* Simulate with Algorithmic Debugger - Simulates the current model and opens the algorithmic debugger.
* Simulate with Animation - Simulates the current model and open the animation.

* Simulation Setup - Opens the simulation setup window.

2.8 Debugger Menu

* Debug Configurations - Opens the debug configurations window.

* Attach to Running Process - Attaches the algorithmic debugger to a running process.

2.9 OMSimulator Menu

* New OMSimulator Model - Creates a new OMSimulator model.

* Open OMSimulator Model(s) - Opens the OMSimulator model(s).
* Add System - Adds the system to a model.

* Add/Edit Icon - Add/Edit the system/submodel icon.

e Delete Icon - Deletes the system/submodel icon.

* Add Connector - Adds a connector to a system/submodel.

Add Bus - Adds a bus to a system/submodel.
Add TLM Bus - Adds a TLM bus to a system/submodel.
Add SubModel - Adds a submodel to a system.

e Instantiate Model - Instantiates the model.
e Simulate - Simulates the model.

* Archived Simulations - Opens the archived simulations window.

36 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.0-dev.03

2.10 Tools Menu

* OpenModelica Compiler CLI - Opens the OpenModelica Compiler command line interface window.

* OpenModelica Command Prompt - Opens the OpenModelica Command Prompt (Only available on Win-
dows).

* Open Working Directory - Opens the current working directory.
* Open Terminal - Runs the terminal command set in General.

* Options - Opens the options window.

2.11 Help Menu

* OpenModelica Users Guide - Opens the OpenModelica Users Guide.

* OpenModelica Users Guide (PDF) - Opens the OpenModelica Users Guide (PDF).

* OpenModelica System Documentation - Opens the OpenModelica System Documentation.

* OpenModelica Scripting Documentation - Opens the OpenModelica Scripting Documentation.

* Modelica Documentation - Opens the Modelica Documentation.

* OMSimulator Users Guide - Opens the OMSimulator Users Guide.

* OpenModelica TLM Simulator Documentation - Opens the OpenModelica TLM Simulator Documentation.

About OMEdit - Shows the information about OpenModelica Connection Editor.

2.12 Modeling a Model

2.12.1 Creating a New Modelica Class

Creating a new Modelica class in OMEdit is rather straightforward. Choose any of the following methods,
* Select File > New Modelica Class from the menu.
* C