

Outline
 Introduction to Modeling and Simulation
 Modelica - The next generation modeling and Simulation Language
 Modeling and Simulation Environments and OpenModelica
Classes
 Components, Connectors and Connections
Equations
 Discrete Events and Hybrid Systems
 Algorithms and Functions
Demonstrations
6 Peter Fritzson Copyright © Open Source Modelica Consortium

Model concept

A *model* of a system is anything an *experiment* can be applied to in order to answer questions about that *system*

Kinds of models:

- Mental model statement like "a person is reliable"
- Verbal model model expressed in words
- **Physical model** a physical object that mimics the system
- **Mathematical model** a description of a system where the relationships are expressed in mathematical form – a *virtual prototype*
- **Physical modeling** also used for mathematical models built/structured in the same way as physical models

HODELICA pelab

```
11 Peter Fritzson Copyright © Open Source Modelica Consortium
```

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><table-container>

Modelica – The Next Generation Modeling Language
Declarative language
Equations and mathematical functions allow acausal modeling, high level specification, increased correctness
Multi-domain modeling
Combine electrical, mechanical, thermodynamic, hydraulic, biological, control, event, real-time, etc
Everything is a class Strongly typed object-oriented language with a general class concept, Java & MATLAB-like syntax
Visual component programming Hierarchical system architecture capabilities
Efficient, non-proprietary
Efficiency comparable to C; advanced equation compilation, e.g. 300 000 equations, ~150 000 lines on standard PC
33 Peter Fritzson Copyright © Open Source Modelica Consortium

Modelica – The Next Generation Modeling Language

High level language

MATLAB-style array operations; Functional style; iterators, constructors, object orientation, equations, etc.

MATLAB similarities

MATLAB-like array and scalar arithmetic, but strongly typed and efficiency comparable to C.

Non-Proprietary

- Open Language Standard
- Both Open-Source and Commercial implementations

Flexible and powerful external function facility

• LAPACK interface effort started

34 Peter Fritzson Copyright © Open Source Modelica Consortium

MODELICA pelab

