Modeling, Simulation, and Development of Cyber-Physical Systems with OpenModelica and FMI

Presentation at RISE SICS East, Sweden

October 6, 2018

Peter Fritzson peter.fritzson@liu.se

Full Professor at Linköping University Director Open Source Modelica Consortium Vice Chairman of Modelica Association Director of the MODPROD Center for model-based development

Industrial Challenges for Complex Cyber-Physical System Products of both Software and Hardware

- Increased Software Fraction
- Shorter Time-to-Market
- Higher demands on effective strategic **decision** making
- Cyber-Physical (CPS) Cyber (software)
 Physical (hardware) products

Big Book on Modelica and Technology, Dec 2014 Download Free OpenModelica Software

Peter Fritzson Principles of Object Oriented Modeling and Simulation with Modelica 3.3 A Cyber-Physical Approach

Can be ordered from Wiley or Amazon

Wiley-IEEE Press, 2014, 1250 pages

- OpenModelica
 - <u>www.openmodelica.org</u>
- Modelica Association
 - <u>www.modelica.org</u>

Introductory Modelica Book

September 2011 232 pages

Translations available in Chinese, —— Japanese, Spanish

Wiley IEEE Press

For Introductory Short Courses on Object Oriented Mathematical Modeling

Introduction to Modeling and Simulation のf Technical and りhysical Systems (中文版) with Modelica

陈立平译

WILEY

Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica[®]

PERFORMANCE.

1 并有素成效

PETER FRITZSON

EEE

IEEE PRESS

Part I

Introduction to Modelica

Modelica Background: Stored Knowledge

Model knowledge is stored in books and human minds which computers cannot access

"The change of motion is proportional to the motive force impressed" – Newton

Mutationem motus proportionalem effe vi motrici impressa, & fieri secundum lineam restam qua vis illa imprimitur.

Lex. II.

Modelica Background: The Form – Equations

- Equations were used in the third millennium B.C.
- Equality sign was introduced by Robert Recorde in 1557

Newton still wrote text (Principia, vol. 1, 1686) "The change of motion is proportional to the motive force impressed"

CSSL (1967) introduced a special form of "equation": variable = expression

v = INTEG(F)/m

Programming languages usually do not allow equations!

What is Modelica?

A language for modeling of complex cyber-physical systems

- Robotics
- Automotive
- Aircrafts
- Satellites
- Power plants
- Systems biology

What is Modelica?

A language for modeling of complex cyber-physical systems

Primary designed for **simulation**, but there are also other usages of models, e.g. optimization.

What is Modelica?

A language for modeling of complex cyber-physical systems

i.e., Modelica is <u>not</u> a tool

Free, open language specification:

Available at: www.modelica.org

Developed and standardized by Modelica Association

There exist several free and commercial tools, for example:

OpenModelica from OSMC

- Dymola from Dassault systems
- Wolfram System Modeler fr Wolfram MathCore
- SimulationX from ITI ESI Group
- MapleSim from MapleSoft
- AMESIM from LMS
- JModelica.org from Modelon
- MWORKS from Tongyang Sw & Control
- IDA Simulation Env, from Equa

Modelica – The Next Generation Modeling Language

Declarative language

Equations and mathematical functions allow acausal modeling, high level specification, increased correctness

Multi-domain modeling

Combine electrical, mechanical, thermodynamic, hydraulic, biological, control, event, real-time, etc...

Everything is a class

Strongly typed object-oriented language with a general class concept, Java & MATLAB-like syntax

Visual component programming

Hierarchical system architecture capabilities

Efficient, non-proprietary

Efficiency comparable to C; advanced equation compilation, e.g. 300 000 equations, ~150 000 lines on standard PC

What is *acausal* modeling/design?

Why does it increase *reuse*?

The acausality makes Modelica library classes *more reusable* than traditional classes containing assignment statements where the input-output causality is fixed.

Example: a resistor *equation*:

R*i = v;

can be used in three ways:

```
i := v/R;
v := R*i;
R := v/i;
```


- Multi-Domain Modeling
- Visual acausal hierarchical component modeling
- Typed declarative equation-based textual language
- Hybrid modeling and simulation

Modelica vs Simulink Block Oriented Modeling Simple Electrical Model

OpenModelica Tool Graphical Editor and Plotting Graphical Modeling Using Drag and Drop

Graphical Modeling with OpenModelica Environment

Comedia - OpenModelica Connection Editor	
File Edit View Simulation FMI Tools Help	
SALE RADIE SALE AND S	of Modeling Plotting
Components & X	
Modelica Standard Library	
E Complex	
Modelica	
ModelicaReference	
ModelicaServices ModelicaServices	
Madda theory Madda Che	
Modelica Library Modelica Piles	1
Model Browser 8 × Kind Time Resource Location Message	θ
Outine	
5	8
Gess	<u>.</u>
2	ó
Create New Model	

Multi-Domain (Electro-Mechanical) Modelica Model

 A DC motor can be thought of as an electrical circuit which also contains an electromechanical component

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

0 == DC.p.i + R.n.i	EM.u == EM.p.v – EM.n.v	R.u = R.p.v - R.n.v
DC.p.v == R.n.v	0 == EM.p.i + EM.n.i	0 == R.p.i + R.n.i
	EM.i == EM.p.i	R.i == R.p.i
0 == R.p.i + L.n.i	$EM.u = EM.k * EM.\omega$	R.u == R.R * R.i
R.p.v == L.n.v	EM.i == EM.M/EM.k	
	$EM.J * EM.\omega == EM.M - EM.b * EM.\omega$	L.u == L.p.v - L.n.v
0 == L.p.i + EM.n.i		0 == L.p.i + L.n.i
L.p.v == EM.n.v	DC.u = DC.p.v - DC.n.v	L.i == L.p.i
	0 == DC.p.i + DC.n.i	L.u == L.L * L.i '
0 == EM.p.i + DC.n.i	DC.i == DC.p.i	
EM.p.v == DC.n.v	DC.u == DC.Amp * Sin[2πDC.f *t]	
0 == DC.n.i + G.p.i	(load component not included)	
DC.n.v = G.p.v		

Automatic transformation to ODE or DAE for simulation:

 $\frac{dx}{dt} = f[x, u, t] \qquad g\left[\frac{dx}{dt}, x, u, t\right] = 0$

Model Translation Process to Hybrid DAE to Code

Brief Modelica History

- First Modelica design group meeting in fall 1996
 - International group of people with expert knowledge in both language design and physical modeling
 - Industry and academia
- Modelica Versions
 - 1.0 released September 1997
 - 2.0 released March 2002
 - 2.2 released March 2005
 - 3.0 released September 2007
 - 3.1 released May 2009
 - 3.2 released March 2010
 - 3.3 released May 2012
 - 3.2 rev 2 released November 2013
 - 3.3 rev 1 released July 2014
 - 3.4 released May 2017
- Modelica Association established 2000 in Linköping
 - Open, non-profit organization

Modelica in Power Generation GTX Gas Turbine Power Cutoff Mechanism

Modelica in Automotive Industry

Modelica in Avionics

Application of Modelica in Robotics Models Real-time Training Simulator for Flight, Driving

- Using Modelica models generating real-time code
- Different simulation environments (e.g. Flight, Car Driving, Helicopter)
- Developed at DLR Munich, Germany
- Dymola Modelica tool

Courtesy of Tobias Bellmann, DLR, Oberphaffenhofen, Germany

Large Robotic Flight Simulator (Demo)

Combined-Cycle Power Plant Plant model – system level

- GT unit, ST unit, Drum boilers unit and HRSG units, connected by thermo-fluid ports and by signal buses
- Low-temperature parts (condenser, feedwater system, LP circuits) are represented by trivial boundary conditions.
- GT model: simple law relating the electrical load request with the exhaust gas temperature and flow rate.

Courtesy Francesco Casella, Politecnico di Milano – Italy and Francesco Pretolani, CESI SpA - Italy

Modelica Spacecraft Dynamics Library

Formation flying on elliptical orbits

Control the relative motion of two or more spacecraft

Attitude control for satellites using magnetic coils as actuators

Torque generation mechanism: interaction between coils and geomagnetic field

Courtesy of Francesco Casella, Politecnico di Milano, Italy

Biggest Immediate Challenge for Humanity – Create a Sustainable Society – Avoid Global Collapse in 50 Years

World System Dynamics Simulation with OpenModelica – World3 model, Meadows et al

World3 Model in Modelica, Meadows et al, Cellier Comprehensive model – 13 areas

- Population dynamics
- Human fertility
 - Human ecological footprint
 - Pollution dynamics
- Industrial investment
- Human welfare
- Arable land
- Labor utilization
- Life expectancy
- Food production
- Land fertility
- Non-recover
 resource
- Service sector

Each Year New Record for Global Mean Temperature This is February 2016

World3 Simulations with Different Start Years for Sustainable Policies – Collapse if starting too late

LIMITS TO GROWTH

The 30-Year Update

DONELLA MEADOWS | JORGEN RANDERS | DENNIS MEADOWS

THE NEW YORK TIMES BESTSELLER COLLAPSE

How Societies Choose

TO FAIL OR SUCCEED

JARED DIAMOND

author of the Pulitzer Prize-winning

GUNS, GERMS, and STEEL

WITH A NEW AFTERWORD

How the world could be in 80-100 years at a global warming of 4 degrees

Business-as-usual scenario, IPCC

A Unique Point in History – Exponential Trends Approaches Planet Earth Boundaries _{Year 1750-2000}:

- Mean temperature north hemisphere,
- Population,
- CO₂-concentration,
- BNP,
- Loss av rain forest,
- Water usage
- Paper consumption,
- Exterminated species
- Oil consumtion,
- Motor vehicles
- Destroyed fish populations
- Destruction of ozon layer
- Foreign investments

Need Smart Systems to Support a Circular Economy for a Sustainable Society

- Circular management of products, material, throughout the life-cycle
- Optimize manufacturing and usage over the entire life cycle

What Can You Do? Need Global Sustainability Mass Movement

- Develop smart Cyber-Physical systems for reduced energy and material footprint
- Model-based circular economy for re-use of products and materials
- Promote sustainable lifestyle and technology
- Install electric solar PV panels
- Buy shares in cooperative wind power

20 sqm solar panels on garage roof, Nov 2012 Generated 2700 W at noon March 10, 2013

Expanded to 93 sqm, 12 kW, March 2013 House produced 11600 kwh, used 9500 kwh Avoids 10 ton CO2 emission per year

Example Electric Cars Can be charged by electricity from own solar panels

Renault ZOE; 5 seat; Range: 22kw (2014) vs 41 kw battery (2017)

- Realistic Swedish drive cycle:
- Summer: 165 km, now 300 km
- Winter: 110 km, now 200 km

Cheap fast AC chargers (22kw, 43kw)

DLR ROboMObil

- experimental electric car
- Modelica models

Tesla model S range 480 km

What Can You Do? More Train Travel – Less Air Travel

- Air travel by Swedish Citizens

 about the same emissions
 as all personal car traffic in
 Sweden!
- By train from Linköping to Munich and back – saves almost 1 ton of CO2e emissions compared to flight
- Leave Linköping 07.00 in Munich 23.14

More Examples, PF travel 2016:

- Train Linköping-Paris, Dec 3 6, EU project meeting
- Train Linköping-Dresden,
 Dec 10-16, 1 week workshop

Train travel Linköping - Munich

Small rectangles – surface needed for 100% solar energy for humanity

Part II

Introduction to the OpenModelica Environment

The OpenModelica Environment www.openmodelica.org

OpenModelica – Free Open Source Tool Developed by the Open Source Modelica Consortium (OSMC)

- Graphical editor
- Model compiler and simulator
- Debugger
- Performance
 analyzer
- Dynamic optimizer
- Symbolic modeling
- Parallelization
- Electronic Notebook and OMWebbook for teaching
- Spokentutorial for teaching

The OpenModelica Open Source Environment www.openmodelica.org

- Advanced Interactive Modelica compiler (OMC)
 - Supports most of the Modelica Language
 - Modelica and Python scripting
- Basic environment for creating models
 - OMShell an interactive command handler
 - **OMNotebook** a literate programming notebook
 - MDT an advanced textual environment in Eclipse

new

- OMEdit graphic Editor
- OMDebugger for equations
- OMOptim optimization tool
- OM Dynamic optimizer collocation
- ModelicaML UML Profile
- MetaModelica extension
- ParModelica extension
- **OMSimulator** FMI/TLM simulator

The OpenModelica Tool Architecture

OSMC – International Consortium for Open Source Model-based Development Tools, 53 members Febr 2018

Founded Dec 4, 2007

Open-source community services

- Website and Support Forum ٠
- Version-controlled source base ٠
- Bug database ٠
- **Development courses** ٠
- www.openmodelica.org

Code Statistics

/trunk: Lines of Code

Industrial members

- ABB AB, Sweden
- Berger IT-Cosmos, Germany
- Bosch Rexroth AG, Germany
- Brainheart Energy AB, Sweden
- CDAC Centre, Kerala, India
- Creative Connections, Prague
- DHI, Aarhus, Denmark
- Dynamica s.r.l., Cremona, Italy
- EDF, Paris, France
- Equa Simulation AB, Sweden
- Fraunhofer IWES, Bremerhaven
- INRIA, Rennes, France
- ISID Dentsu, Tokyo, Japan

University members

- FH Bielefeld, Bielefeld, Germany
- University of Bolivar, Colombia
- TU Braunschweig, Germany
- University of Calabria, Italy
- Univ California, Berkeley, USA
- Chalmers Univ, Control, Sweden
- Chalmers Univ, Machine, Sweden
 Univ of Maryland, CEEE, USA
- TU Darmstadt, Germany
- TU Delft, The Netherlands
- TU Dresden, Germany
- Université Laval, Canada
- Georgia Inst of Technology, USA
- Ghent University, Belgium
- Halmstad University, Sweden

- Maplesoft, Canada
- RTE France, Paris, France
- Saab AB, Linköping, Sweden
- Scilab Enterprises, France
- SKF, Göteborg, Sweden
- TLK Thermo, Germany
- Siemens Turbo, Sweden
- Sozhou Tongyuan, China
- Talent Swarm, Spain
- VTI, Linköping, Sweden
- VTT, Finland
- Wolfram MathCore, Sweden
- Heidelberg University, Germany
- •TU Hamburg/Harburg Germany
- IIT Bombay, Mumbai, India
- KTH, Stockholm, Sweden
- Linköping University, Sweden
- Univ of Maryland, Syst Eng USA
- Politecnico di Milano, Italy
- Ecoles des Mines, CEP, France
- Mälardalen University, Sweden
- Univ Pisa, Italy
- Univ College SouthEast Norway
- Tsinghua Univ, Beijing, China
- Vanderbilt Univ, USA

OpenModelica Graphical Editor and Plotting

OpenModelica Simulation in Web Browser Client

← → A http://tshort.github.io/mdpad/mdpad.html?Modelica. P - 2 C O File Edit View Favorites Tools Help	tshort/openmodešca-javas 🥭 MD live page 🛛 ×	MultiBody RobotR3.FullRobot
Sector Control Con	2.	E C O tshort/openmodelica-lavas. /2 MD live page × ↑ ★ ↔
OpenModelica simulation example Modelica.Mechanics.MultiBody.Example	es.Systems.RobotR3.fullRobot	in ☺ ķ
Simul	ation finished. Time: 00:40	xample
Stop time, sec 1.8 Cutput intervals 500 Toterance 0.0001	Model Results	Simulation finished. Time: 00.40 Model Results Piot variable Image: Control of the second
OpenModelica compiles to efficient Java Script code which is executed in web browser		-1.5 -2.0 -2.5 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Spoken-Tutorial step-by-step OpenModelica and Modelica Tutorial Using OMEdit. Link from www.openmodelica.org

To learn about Modelica, read a book or a tutorial about Modelica®. Interactive step-by-step beginners Modelica on-line spoken tutorials Interactive OMWebbook with examples of Modelica textual modeling

Submit Reset dropdowns

OpenModelica is an open source modelling and simulation environment intended for industrial and academic usage. It is an object oriented declarative multi domain modelling language for complex systems. This environment can be used to work for both steady state as well as dynamic systems. Attractive strategy when dealing with design and optimization problems. As all the equations are solved simultaneously it doesn't matter whether the unknown variable in an input or output variable. Read more

Outline: Introduction to OMEdit Declaration of variables and equations Simulation of a model in

MODELIC

1,600,000 1.400.000

1,200,000

1,000,000

800,000

600,000 400.000

200,000

2 0 1 1

2 0 1 2

OMnotebook Interactive Electronic Notebook Here Used for Teaching Control Theory

OM Web Notebook Generated from OMNotebook Edit, Simulate, Plot Models on a Web Page http://omwebbook.openmodelica.org/

OMPython – Python Scripting with OpenModelica

Interpretation of Modelica test merute makery - Ditter/garant/Ditest merute maker Fis fait Annual Run Cations Mindows Hat commands and expressions import OMPython CMEPython.execute("loadFile(\"c:/OpenModelica1.8.1/testmodels/BouncingBall.mo\")" result=CMEPython.execute("simulate(BouncingBall, stopTime=2, method=\'Euler\')") Interactive Session handling • print result OMPython.execute("plot(h)") CHindowlayten@cnd.ext C:\Users\ganan642>python test_execute_mode.py Library / Tool OMC Server is up and running at file:///c:\users\ganan642\appdata \local\temp\openmodelica.objid.20120825120756188000 OMPython.execute("quit()") • {'SimulationOptions': {'options': "'', 'storeInTemp': False, 'cf lags': ", 'simflags': ", 'variableFilter': ", 'noclean : False, 'outputFormat': "mat", 'method': "dassl", 'measureT ime': False, 'stopTime': 2.0, 'startTime': 0.0, 'numberofInterval s': 500, 'tolerance': le-06, 'fileNamePrefix': "BouncingBall"}, 'SimulationResults': { 'timeCompile': 6.89815662792063, 'timeBack end': 0.0229111689831523, 'messages': ", 'timeFrontend': 0.024 5992104508437, 'timeSimulation': 0.131418166559841, 'timeTemplate s': 0.0206379911344139, 'timeSimCode': 0.00999736303670383, 'time Total': 7.1078098383753, 'resultFile': "C:/Users/ganan642/Bounci neBall res.mat") **Optimized Parser results** Helper functions Deployable, Extensible and • ngBall_res.mat"}} Distributable Childred - Countribution Per OMC has been shutdown Atalas has not the Dust Dust C:\Users\ganan642> **Plot by OpenModelica** OMPython Parser **CORBA Strings** CORBA Session Modes of operation Get/Set Helpers pulate on the Dictionary

General Tool Interoperability & Model Exchange Functional Mock-up Interface (FMI)

- FMI development was started by ITEA2 MODELISAR project. FMI is a Modelica Association Project now
- Version 1.0
- FMI for Model Exchange (released Jan 26,2010)
- FMI for Co-Simulation (released Oct 12,2010)
- Version 2.0
- FMI for Model Exchange and Co-Simulation (released July 25,2014)
- > 80 tools supporting it (https://www.fmi-standard.org/tools)

Functional Mockup Units

- Import and export of input/output blocks –
 Functional Mock-Up Units FMUs, described by
 - differential-, algebraic-, discrete equations,
 - with time-, state, and step-events
- An FMU consists of (compiled) C-code, + interface description in XML
- An FMU can be large (e.g. 100 000 variables)
- An FMU can be used in an embedded system (small overhead)
- FMUs can be connected together

OpenModelica Functional Mockup Interface (FMI)

OMSimulator Composite Model Editor with 3D Viewer Combine External (FMI) Models into New Models

- Composite model editor with 3D visualization of connected mechanical model components which can be FMUs, Modelica models, etc., or co-simulated components
- 3D animation possible
- Composite model saved as
 XML-file

OMSimulator – Integrated FMI and TLM-based Cosimulator/Simulator in OpenModelica

Embedded System Support in OpenModelica

 Code generation of real-time Controllers from Modelica models for small foot-print platforms

Use Case: SBHS (Single Board Heating System)

Single board heating system (IIT Bombay)

- Use for teaching basic control theory
- Usually controlled by serial port (set fan value, read temperature, etc)
- OpenModelica can generate code targeting the ATmega16 on the board (AVR-ISP programmer in the lower left). Program size is 4090 bytes including LCD driver and PID-controller (out of 16 kB flash memory available).

Movie Demo!

Example – Code Generation to SHBS

Code Generator Comparison, Full vs Simple

	Full Source-code FMU targeting 8-bit AVR proc	Simple code generator targeting 8-bit AVR proc	
Hello World	43 kB flash memory	130 B flash memory	
(0 equations)	23 kB variables (RAM)	0 B variables (RAM)	
SBHS Board (real-time	68 kB flash memory	4090 B flash memory	
PID controller, LCD, etc)	25 kB variables (RAM)	151 B variables (RAM)	

The largest 8-bit AVR processor MCUs (Micro Controller Units) have 16 kB SRAM.

One of the more (ATmega328p; Arduino Uno) has 2 kB SRAM.

The ATmega16 we target has 1 kB SRAM available (stack, heap, and global variable

Communication & I/O Devices: MODELICA_DEVICEDRIVERS Library

- Modelica_DeviceDrivers
- 🚯 User's Guide
- Blocks
- 🗄 🕨 Examples
- 🗄 🔤 Packaging
- Communication
 - SharedMemoryRead
 - SharedMemoryWrite

 - 🔚 Serial Port Send
 - 🗄 🔤 SoftingCAN
 - 🗄 🔄 SocketCAN
 - 🗄 🗍 Internal
- InputDevices
 - JoystickInput
 - KeyboardKeyInput
 - SpaceMouseInput
 - 🛃 KeyboardInput
- Types
- OperatingSystem
- 🗄 🔤 Hardwarel O
- 🗄 🚯 Interfaces

- Free library for interfacing hardware drivers
- Cross-platform (Windows and Linux)
- UDP, SharedMemory, CAN, Keyboard, Joystick/Gamepad
- DAQ cards for digital and analog IO (only Linux)
- Developed for interactive realtime simulations

OMEdit 3D Visualization of Multi-Body Systems

- Built-in feature of OMEdit to animate MSL-Multi-Body shapes
- Visualization of simulation results
- Animation of geometric
 primitives and CAD-Files

OpenModelica 3D Animation Demo

OpenModelica 3D Animation Demo – Excavator

OMEdit OpenMedelics Con	action Editor		x
Sile Edit - OpenModelica Com			
		- L &	
	、 V 🖉 🖬 🖉 I 📓 🔨 🖾 🗸 🖾 🖉 🐼 🖉 🖉 🖉 🖗 🏀 🔽 🔯 🌾	7- 9	
Libraries Browser 🛛 🗗 🗙	MH_City_RT_meca_Test_Gesamtmodel_Gesamtmodel_omc_workingGear.fmu	Variables Browser	₽×
Filter Classes	Time [s]:0 Speed: 1 V Pront V Time	Filter Variables	_ •
Libraries		Simulation Time Unit	-
P OpenModelica		Variables	1 *
ModelicaReference		🖻 🏧 Modelicaanalyti	ic
Madellan Constant		i body1	
		body2 body3	
E Complex		iointRRR1	
🗉 7 Modelica		jointRRR2	
		jointRRR3	
		mounting1D ■ mounting1D ■	
Blocks		position	-
E ComplexBlocks		r1a[1]	0=
T D+D StateGraph			ć
		r1b[1]	ċ
		r1b[2]	C
🗄 📶 Magnetic		r1b[3]	C
Mechanics		r 2a[1]	C
		r2a[2]	C
HaltiBody		r2a[3]	
🗉 🚺 UsersGuide		r2b[2]	
🗉 🚺 World		r2b[3]	Ċ
		r 3a[1]	C
- Examples		🔲 r3a[2]	
🗄 🕨 Eleary		🔲 r3a[3]	C
🗉 🕟 Loops		r3b[1]	C
En 13		[] [3b[2]	
		t rev	
En1b		< III	•
	X: 23.88 Y: 13.29 Kelcome 🔥 Modeling	🔜 Plotting 🛛 😻 Debuggin	g

Visualization using Third-Party Libraries: DLR Visualization Library

- Advanced, model-integrated and vendor-unspecific visualization tool for Modelica models
- Offline, online and real-time animation
- Video-export function
- Commercial library, feature reduced free Community Edition exists

Courtesy of Dr. Tobias Bellmann (DLR)

OMOptim – Parameter Sweep Design Optimization

Solved problems	Result plot	Export result data .csv
MinEIT File Project Problems Project Optimization E Problems Plot X global.gaincoutoperationnel Y global.coutdinvestissement Pareto only Point 0 1 2 3 4 5 6 7 8 9 9 EI result Optimization result Blocks Recomp. vars 1	I EI result Optimization result	Here Pareto front optimiza tion
Calculate all variables from set	lected points 🔲 Force recomputation	Export M D D E LI C A

Problems

Optimization of Dynamic Trajectories Using Multiple-Shooting and Collocation

- Minimize a goal function subject to model equation constraints, useful e.g. for NMPC
- Multiple Shooting/Collocation
 - Solve sub-problem in each sub-interval

$$x_i(t_{i+1}) = h_i + \int_{t_i}^{t_{i+1}} f(x_i(t), u(t), t) dt \approx F(t_i, t_{i+1}, h_i, u_i), \qquad x_i(t_i) = h_i$$

In OpenModelica 1.9.1 beta release Jan 2014.

Example speedup, 16 cores:

MULTIPLE_COLLOCATION

OpenModelica Dynamic Optimization Collocation

Failure Mode and Effects Analysis (FMEA) in OM

- Modelica models augmented with reliability properties can be used to generate reliability models in Figaro, which in turn can be used for static reliability analysis
- Prototype in OpenModelica integrated with Figaro tool

OpenModelica Model Parallelization Faster Simulation on Multi-Core

Parallelizing numeric Jacobian computations in simulation

Recent Large-scale ABB OpenModelica Application Generate code for controlling 7.5 to 10% of German Power Production

ABB OPTIMAX PowerFit

- Real-time optimizing control of largescale virtual power plant for system integration
- Software including OpenModelica now used in managing more than 2500 renewable plants, total up to 1.5 GW

High scalability supporting growth

- 2012: initial delivery (for 50 plants)
- 2013: SW extension (500 plants)
- 2014: HW+SW extension (> 2000)
- 2015: HW+SW extension, incl. OpenModelica generating optimizing controller code in FMI 2.0 form

Manage 7.5% - 10% of German Power

 2015, Aug: OpenModelica Exports FMUs for real-time optimizing control (seconds) of about 5.000 MW (7.5%) of power in Germany

Part III

Equation-Based Model Dynamic Debugging and Performance Analysis

Need for Debugging Tools Map Low vs High Abstraction Level

- A major part of the total cost of software projects is due to testing and debugging
- US-Study 2002: Software errors cost the US economy annually~ 60 Billion \$
- Problem: Large Gap in Abstraction Level from Equations to Executable Code
- Example error message (hard to understand)
 Error solving nonlinear system 132
 time = 0.002
 residual[0] = 0.288956
 x[0] = 1.105149
 residual[1] = 17.000400
 x[1] = 1.248448

. . .

OpenModelica Equation Model Debugger

				Source Browser
Variables Browser Defined In Equations Used In Equations		Used In Equations	C:/OpenModelica/trunk/build/li/Mechanics/MultiBody/Joints.mo	
frame		Index Type Equation	Index Type Equation	317 // relationships between
Case Sensitive	Regular Expression 🔻			quantities of frame a and of
Expand All	Collapse All			
/ariables	Comment			³¹⁹ transformations
hovBodul	Absolut frame a			= 320 if rooted(frame_a.R) then
		Variable Operations		$\frac{321}{100}$ $\frac{R_{rel}}{100}$ on a model:
	Absoluttrame_a	Operations		Frames.planarRotation(e,
⊟ frame_a	Positiod frame	solved: boxBody1.body.frame_a.R.T[1,	1] = boxBody1.frame_b.R.T[1,1]	322 frame b.R =
ER	AbsolutI frame	L substitute: boxBody1.body.frame_a.R. [*]	T[1,xBody1.frameTranslation.frame_a.R.T[1,1	Frames.absoluteRotation $0 = x + der(x + time + z); z = 1.0$
- T	Transfol frame 💂			a.R, R_rel);
Equations View			1	323 frame a.f = - Framea resolution (1) substitution:
quations				frame b.f); $v + der(x * (time * z))$
quations Browser	rowser Defines Depends		Depends	$324 \text{frame_a.t} = - = >$
ndex Type	Equation ^	Variable	Variable	Frames.resolve1(R_rel, v + der(x * (time * 1.0))
-819 regular	(assignmer.a_rel	world.frame_b.f[2]	boxBody1.frame_b.R.T[1,2]	all frame b.t); g to dol (in (olimo 1.0,))
-820 regular	(assignmolute2.a		- boxBody1.frame_b.R.T[2,2]	326 R rel = (2) simplify:
-821 regular	(assignmer.a_rel		- revolute1.frame_b.f[1]	Frames.planarRotation $v + der(x * (time * 1.0))$
-822 regular	(assignme a.f[2]		revolute1.frame b.f[2]	phi_offset + phi, w); =>
-823 regular	(assignme.a.f[1]	Equation Operations		
ozo regular	(assignm_e_b_f[2]	Curanting		b.R, R rel);
- 924 regular	(assignme_b.i(2)			328 frame_b.f = - (3) expand derivative (symbolic
-824 regular	(assignme p.t)1	<pre>resolve: -world.trame_b.t[2] = (-boxBody1ame_b.R.1[2,2] * revolute1.frame_b.t[2]</pre>		Frames.resolve1(R_rel, diff):
-824 regular -825 regular		+ scalarize(2): {-world.frame_b.f[1], -worlrame_b.R.T[2,2]) * revolute1.frame_b.f[2]		$\frac{1}{2} \frac{1}{2} \frac{1}$
-824 regular -825 regular -826 regular	(assignme_b.t[2]	- scalarize(2): {-world.frame_b.f[1], -wor		
-824 regular -825 regular -826 regular -827 regular	(assignme_b.f[2] (assignme_b.f[2]	- scalarize(2): {-world.frame_b.f[1], -world. - simplify: -{boxBody1.frame_b.R.T[1,1]	*1.frame_b.f[2], -revolute1.frame_b.f[3]}	Frames.resolve1(R rel, $=>y + (x + der(x) + time)$
- 824 regular - 825 regular - 826 regular - 827 regular - 828 regular	(assignme_b.f[2] (assignme_b.f[2] (assignme_b.t[2]	scalarize(2): {-world.frame_b.f[1], -world.frame_b.f[1], -world.frame_b.f[1], -world.frame_b.R.T[1,1] inline: -Modelica.Mechanics.MultiBod	*1.frame_b.f[2], -revolute1.frame_b.f[3]} ly.Fre_b.f[2] + 1.0 * revolute1.frame_b.f[3]}	Frame_B.t = - y + der(x - time) Frames.resolvel(R_rel, =>y + (x + der(x) * time) frame_a.t);
-824 regular -825 regular -826 regular -827 regular -828 regular -829 regular	(assignme_b.t[2] (assignme_b.t[2] (assignme_b.t[2] (assignmxed.phi0	 scalarize(2): {-world.frame_b.f[1], -world.frame_b.f[1], -world.frame_b.R.T[1,1] simplify: -{boxBody1.frame_b.R.T[1,1] inline: -Modelica.Mechanics.MultiBoc substitute: -Modelica.Mechanics.Multi 	*1.frame_b.f[2], -revolute1.frame_b.f[3]} ly.Fre_b.f[2] + 1.0 * revolute1.frame_b.f[3]} iBoframe_b.f[2], revolute1.frame_b.f[3]})	Frame_b.t = - $y + der(x - crime)$ Frame_s.resolve1(R_rel, => $y + (x + der(x) + time)$ frame_a.t); and if; (4) solve:

time <> 0

Integrated Static-Dynamic OpenModelica Equation Model Debugger

Mapping dynamic run-time error to source model position

Transformations Browser – EngineV6 Overview (11 116 equations in model)

Case Sensitive Regular Expression Defined in Equations Jourite Browser Phi Case Sensitive Regular Expression Source Browser Variables Defined in Equations Jourite Growser Variables Collapse All Collapse All Collapse All Variables Collapse All Collapse All Connection Stranch (frame, a, R, regular (ssignment) quinderso(quinder 3.8.2,h) Phi Relat,web 240 Journel Tomos, Trans Trans. Source Browser Phi Relat,web 242 Journel Tomos, Trans Trans. Absol Trans Trans. Connection Strans. Phi Dommbody 805 Journel Tomos, Trans Trans. Operations Depretions Operations Operations Operations Operations Trans T	Activities OME	dit mational Debugger	T	ue 12:06	sv 🕫 🤽 📼 🖾 Martin Sjölund		
Variables Used in Equations Used in Equations Source Browser Case Sensitive Regular Expression In < Type Equation In < Type Equation Case Sensitive Collapse All Collapse All Collapse All Collapse All Collapse All Collapse All Concertion Expression Source Browser Variables * Commet Ion Equations In < Type Equation Frame D.R1; Source Browser Variables * Commet Ion Equations In Type Equation Source Browser Variables * Commet Ion Equations In Type Equation Source Browser Phi Extended Londers Type Equation Source Browser Source Browser Phi Dormbody 805 / usrlatsme Variable Operations Source Browser Source Browser Phi Dormbody 805 / usrlatsme Variable Variable Variable Source Browser Phi Dormbody 805 / usrlatsme Variable Variable Variable Source Browser Implif Dormbody 805 / usrlatsme	/tmp/OpenModel	lica marsi/OMEdit/Modelica.Mechanics.M	IultiBody.Examples.Loops.EngineV6 info.xml				
Variables Used In Equations Variables Used In Equations Variables Variable	/ariables				Source Browser		
hile Index * Type Equation In x * Type Equation In x * Type Equation Case Sentitive Reguler Expression 2 587 initial (nonlinear) regular (assignment) Qindercos(q)inder3.82,ph) regular (assignment) Qindersin(Qinder3.82,ph) Artables * Comment. Line Location 596 for egular (nonlinear) regular (assignment) Qindersin(Qinder3.82,ph) regular (assignment) Qindersin(Qinder3.82,ph) Ph/ Relatame_b 266 ////////////////////////////////////	Variables Browser		Defined In Equations	Used In Equations	/usr/lib/omlibrary/Modelica 3.2.1/Mechanics/MultiBody/J		
Case Sensitive Regular Expression	hi		Index * Type Equation	Inc • Type Equation	306 Connections.branch(frame_a.R,		
Expand All Collapse All L phi Collapse All L phi Determent L phi Relatsmb 260 phi Relatsmb 260 phi Relatsmb 260 phi Relatsmb 10/200 phi Relatsmb 260 phi Relatsmb 10/200 phi Relatsmb 10/200 phi Relatsmb 10/200 phi Relatsmb 260 phi Grank1 phi Dummbody 805 phi Dummbody 805 phi Operations phi Grank1 phi Grank1 phi Grank1 phi Operations phi Operations operations Operations	Case Sensitive Regular Expression :		587 initial (nonlinear)	regular (assignment) cylindercos(cylinder3.B2.phi)	frame_b.R);		
ariables Comment Line Location Phi Exterphi Gravia Phi Statu Phi Defines Phi Phi Dummbody 805 Jurglian Phi Phi Dumm.body 805 Jurglian Phi Phi Phi Dumm.body 805 Jurglian Phi Phi Phi Phi Phi Phi Phi Phi Phi	Expand All Collapse All		^L 5016 regular (nonlinear)	regular (assignment) cylinder3 sin(cylinder3.B2.phi)	308 assert(cardinality(frame_a) > 0,		
Image: Project State St	ariables v	Comment Line Location		regular (assignment) cylindersin(cylinder3.B2.phi)	309 "Connector frame a of revolute		
phi Relatsme_b 260 /usr/liintsmo phi Relatsme_b 260 /usr/liintsmo phi Offset Relatsphi 242 phi Dummbody 805 /usr/liartsmo 24 phi Granch Seguard (assignment) der(cylder3.Rod.body.w_a(1) 333 phi Operations 334 4 a = der(h) phi Dummbody 805 /usr/liartsmo 0 frame_a.f = - pranes.atsource Ype Equation Variable Variable Variable regular (assignment) cylindlinder3.gasForcex J Variable Variable Variable 7 regular (assignment) cylindlinder3.gasForcex J Pereators Paresstourellar (1, us	Lohi	Exterphi) 6616 /usr/lional.mo		regular (assignment) cylindercos(cylinder3.B2.phi)	<pre>310 assert(cardinality(frame b) > 0.</pre>		
Philoffset Relati+ ph) 242 Just/iiints.mo iii not connected?); Body Transframe 10 Just/iimes.mo iii not connected?); Body Transframe 10 Just/iimes.mo iii not connected?); Phil Dummbody 805 Just/iimes.mo iii not connected?); Phil Dummbody 805 Just/iiarts.mo iii not connected?); Phil Dummbody 805 Just/iiarts.mo iii not connected?); Phil Dummbody 805 Just/iiarts.mo iii not connected?); Implif.1 edr(phil) 809 Just/iiarts.mo iii not connected?); Implif.1 edr(phil) Body Defines Variable iii not connected?); Implif.2 Uariable iii not connected?); iii not connected?); Implif.2 Uariable iii not connected?); iii not connected?);	phi	Relatame b 260 /usr/liints.mo		regular (assignment) der(cylder3.Rod.body.w_a[1]	311 "Connector frame b of revolute		
3 Grankt Absolframe 11 /usr/Lmes.mo angle = phi offset + phi; w = der(phi) 1 p-phi -phi /usr/Lmes.mo image: phi offset + phi; w = der(phi) angle = phi offset + phi; w = der(phi) 1 p-phi Dummbody 805 /usr/Larts.mo /usr/Larts.mo image: phi offset + phi; w = der(phi) 1 p-phi Operations //relationships between quantions //relationships between quantions - phi = der(phi) 809 /usr/Larts.mo //relationships between quantions - phi = der(phi) 809 /usr/Larts.mo //relationships between quantions - phi = der(phi) 809 /usr/Larts.mo //relationships between quantions - phi = der(phi) 809 /usr/Larts.mo //relationships between quantions c * Type Equation //relationships between quantions //relationships between quantionships between qu	phi offset	Relati+ phi) 242 /usr/liints.mo		regular (assignment) der(cylder3.Rod.body.w_a[1]	joint is not connected");		
B body Transframe 10 /usr/Lmes.mo /usr/L.mes.mo /usr/L.mes.mo B body Transframe 10 /usr/L.mes.mo /usr/L.mes.mo /usr/L.mes.mo B body Dummbody 805 /usr/Larts.mo /usr/L.mes.mo /usr/L.mes.mo /usr/L.mes.mo D phi (1) Dummbody 805 /usr/Larts.mo /usr/L.mes.mo //usr/L.mes.mo //usr/L.mes.mo D phi (2) Dummbody 805 /usr/Larts.mo /usr/L.mes.mo //usr/L.mes.mo //usr/L.mes.mo D phi (2) Dummbody 805 /usr/L.arts.mo //usr/L.mes.mo //usr/L.mes.mo //usr/L.mes.mo D phi (2) Dummbody 805 /usr/L.arts.mo //usr/L.mes.mo //usr/L.mes.mo //usr/L.mes.mo D phi (2) Dummbody 805 /usr/L.arts.mo //usr/L.mes.mo //usr/L.mes.mo //usr/L.mes.mo D phi (2) Dummbody 805 /usr/L.mes.mo /usr/L.mes.mo //usr/L.mes.mo //usr/L.mes.mo D phi (2) Dummbody 805 /usr/L.mes.mo /usr/L.mes.mo //usr/L.mes.mo //usr/L.mes.mo D phi (2) Dummbody 805 /usr/L.mes.mo /usr/L.mes.mo //usr/L.mes.mo //usr/L.mes.mo D phi (2) Dummbody 805 /usr/L.mes.mo /usr/L.mes.mo </td <td>Crank1</td> <td>Absolframe 11 /usr/lmes.mo</td> <td></td> <td> regular (assignment) der(cylder3.Rod.body.w_a[1] </td> <td><pre>313 angle = phi offset + phi;</pre></td>	Crank1	Absolframe 11 /usr/lmes.mo		 regular (assignment) der(cylder3.Rod.body.w_a[1] 	<pre>313 angle = phi offset + phi;</pre>		
Image: phi im	⊟ body	Transframe 10 /usr/lmes.mo	0	regular (assignment) der(cylder3.Rod.body.w_a[1]	<pre>314 w = der(phi);</pre>		
ph[1] Dummbody 805 /usr/liarts.mo ph[2] Ph[2] Ph[2] Ph[2] Ph[2] Ph[2] Ph[2] Ph[2] Ph[2]	- phi	Dummbody 805 /usr/liarts.mo	Variable Operations	315 a = der(w);			
<pre></pre>	- phi[1]	Dummbody 805 /usr/liarts.mo	317 // relationships between quantities of frame_a and of frame_b				
<pre>bi[3] Dummbody 805 /usr/liarts.mo phi_d = der(phi) 809 /usr/liarts.mo phi_d = der(phi) 809 /usr/liarts.mo phi_d[1] = der(phi) 809 /usr/liarts.mo phi_d[2] = der(phi) 809 /usr/liarts.mo phi_d[3] Defines Defines Depends Variable v Type Equation regular (assignment) cylindlinder3.gasForce.1) regular (assignment) cylindlinder3.gasForce.2) regular (assignment) cylindlinder3.gasForce.2)</pre>	- phi[2]	Dummbody 805 /usr/liarts.mo					
-phi_d[1] = der(ph) 809 /usr/liarts.mo if rooted[rame s.R] then -phi_d[1] = der(ph) 809 /usr/liarts.mo if rooted[rame s.R] then -phi_d[1] = der(ph) 809 /usr/liarts.mo if rooted[rame s.R] then add on the phi_d[2] = der(ph) 809 /usr/liarts.mo if rooted[rame s.R] then add on the phi_d[2] = der(ph) 809 /usr/liarts.mo if rooted[rame s.R] then add on the phi_d[2] = der(ph) 809 /usr/liarts.mo if rooted[rame s.R] then add on the phi_d[2] = der(ph) 809 /usr/liarts.mo if rooted[rame s.R] then add on the phi_d[2] = der(ph) 809 /usr/liarts.mo if rooted[rame s.R] then add on the phi_d[2] = der(ph) 809 /usr/liarts.mo if rooted[rame s.R] then add on the phi_d[2] = der(phi) 809 /usr/liarts.mo if rooted[rame s.R] then add on the phi_d[2] = der(phi) add on the phi_d[2] if rame s.R] if rame s.R] add on the phi_d[2] add on the phi_d[2] add on the phi_d[2] if rame s.R] if rame s.R] add on the phi_d[2] add on the phi_d[2] add on the phi_d[2] add on the phi_d[2] if rame s.R] if rame s.R] if rame s.R] add on the phi_d[2] <td< td=""><td>- phi[3]</td><td>Dummbody 805 /usr/liarts.mo</td><td></td><td></td><td>319 Traile_0.r_0 = Traile_0.r_0;</td></td<>	- phi[3]	Dummbody 805 /usr/liarts.mo			319 Traile_0.r_0 = Traile_0.r_0;		
Image: philog [1] and edit [2] and edit	-phi_d	= der(phi) 809 /usr/liarts.mo			<pre>320 if rooted(frame_a.R) then</pre>		
I L - Endi d/21 = der(nbi) B09 Aisr/ILarts.mo. (V) uations mutations Frames.insoluteRotation(frame_a.R.R.rel]; uations Frames.insoluteRotation(frame_a.R.R.rel]; c * Type Equation Variable * regular (assignment) cylindlinder3.gasForce.J) Defines Variable * ergular (assignment) cylindlinder3.gasForce.J) edr(cylinder3.B2.R.relT[3,3]) - cylinder3.B2.R.phi cylinder3.B2.R.phi regular (assignment) cylindlinder3.gasForce.J) cylinder3.B2.R.relT[3,3]) - cylinder3.B2.R.phi cylinder3.B2.R.phi regular (assignment) cylindlinder3.gasForce.J) Coperations Equation Operations Equation Operations regular (assignment) cylindlinder3.gasForce.J) - solvect: der(cylinder3.B2.R.relT[3,3]) = (sin(cylinder3.B2.Phi)) * cylinder3.B2.A.phi) * cylinder3.B2.A.R.relT[3,3]) 228 frame b.t = - Frames. resolvel(R.rel, frame_b.T) - offferentiate: docs(cylinder3.B2.P.phi) * cylinder3.B2.A.phi) * cylinder3.B2.A.Phi) * cylinder3.B2.A.Phi) cylinder3.B2.A.Phi 1//// cylinder3.B2.A.Phi regular (assignment) cylindlinder3.gasForce.p) - offferenti	- phi_d[1]	= der(phi) 809 /usr/liarts.mo			321 <u>R_rel = Frames.planarRotation(e,</u>		
Durticitions Defines Depends Frames.absoluteRotation(frame_a.R c * Type Equation * Variable * Variable * Variable * College and the construction of the construction o	I Fohi di2i	= der(ohi) 809 /usr/liarts.mo			322 frame b.R =		
c* Type Equation Frame	quations auations Defines Depends			Frames.absoluteRotation(frame_a.R,			
<pre>regular (assignment) cylindlinder3.gasForce.l) regular (assignment) cylindlinder3.gasFo</pre>	Inc x Type Foultion			• Variable •	323 frame a.f = -		
<pre>image: image: imag</pre>	regular (assignment) ovlind vlinder3 Ovlinders der(ovlinder3 B2 B rel T[3 3])			- cylinder3.82.phi	<pre>Frames.resolvel(R_rel, frame_b.f);</pre>		
<pre>In regular (assignment) cylindlinder3.gasForce.x) In regular (assignment) cylindlinder3.gasForce.y) In regular (assignment) cyl</pre>	regular (assign	nment) cylindlinder3.gasForce.L)	(J	cylinder3.Rod.body.w a[1]	324 frame a.t = - Frames recolvel(B rel, frame b t);		
<pre> regular (assignment) cylindlinder3.gasForce.V) regular (assignment) cylindlinder3.gasForce.V) regular (assignment) cylindlinder3.gasForce.I) regular (assignment) cylindlinder3.gasForce.p) regular (assignment) cylindlinder3.g</pre>	regular (assign	nment) cylindlinder3.gasForce.x)	325 else				
<pre> regular (assignment) cylindlinder3.gasForce.L) regular (assignment) cylindlinder3.gasForce.L) regular (assignment) cylindk2.frame_b.R.T[2,3] regular (linear,r_ret_a = Frar_0 - frame_b.r_0);,, regular (linear,frame_b.r_0 = * (s_offset + s));,) regular (assignment) cylindlinder3.gasForce.p regular (assignment) cylindlinder3.gasForce.p) regular (assignment) cylindlinder3.gasForce.p regular (assignment) cylindlinder3.gasForce.p) regular (assignment) cylindlinder3.gasForce.p)</pre>	regular (assign	nment) cylindlinder3.gasForce.V)	<pre>326 R_rel = Frames.planarRotation(-e,</pre>				
<pre>coperations coperations c</pre>	regular (assign	nment) cylindlinder3.gasForce.L)	quation Operations	pn1_offset + pn1, w); 327 frame a.R =			
<pre> regular (assignment) cylindk2.frame_b.RT[2,3] regular (linear,r_rel_a = Frar_0 - frame_a.r_0);, regular (linear,frame_b.r_0 = * (s_offset + s));,) regular (assignment) cylindlinder3.gasForce.y regular (assignment) cylindr3.gasForce.d ^ 2.0 regular (assignment) cylindlinder3.gasForce.k) regular (assignment) cylindlin</pre>	regular (assign	nment) cylindlinder.s else 1e-06 🛛 🖓	perations	Frames.absoluteRotation(frame_b.R,			
<pre> regular (linear,r_rel_a = Frar_0 - frame_a.r_0);, regular (linear,frame_b.r_0 = * (s_offset + s));,) regular (assignment) cylindlinder3.gasForce.x) regular (assignment) cylindr3.gasForce.d ^ 2.0 regular (assignment) cylindlinder3.gasForce.k)</pre>	regular (assign	nment) cylindk2.frame_b.R.T[2,3]	solved: der(cylinder3.B2.R_rel.T[3,3]) = (-sin(cylinder3.	R_rel);			
<pre> regular (linear,frame_b.r_0 = * (s_offset + s));) regular (assignment) cylindlinder3.gasForce.x) regular (assignment) cylindr3.gasForce.d ^ 2.0 regular (assignment) cylindlinder3.gasForce.k) regular (assignment) cylindr3.gasForce.k)</pre> regular (assignment) cylindlinder3.gasForce.k) regular (assignment) cylindlinde	regular (linear	r,r_rel_a = Frar_0 - frame_a.r_0);,)	subscitute: (-sin(cylinder3.B2.phi)) * cylinder3.B2.W =>	Frames.resolvel(R rel, frame a.f);			
<pre> regular (assignment) cylindlinder3.gasForce.x) regular (assignment) cylindlinder3.gasForce.x) regular (assignment) cylindr3.gasForce.d ^ 2.0 regular (assignment) cylindlinder3.gasForce.k) regul</pre>	regular (linear	r,frame_b.r_0 = * (s_offset + s));,)	differentiate: dculinder3.B2.D. rel T[3.3]/dtime = der/c	329 frame_b.t = -			
<pre> regular (assignment) cylindr3.gasForce.p regular (assignment) cylindr3.gasForce.d ^ 2.0 regular (assignment) cylindInder3.gasForce.k)</pre>	regular (assign	nment) cylindlinder3.gasForce.x)	scalarize(9): cylinder3.B2.R rel.T = {{1.0.0.0.0.0}.{.0.0	<pre>Frames.resolvel(R_rel, Trame_a.t); and if:</pre>			
regular (assignment) cylindInder3.gasForce.d ^ 2.0 - substitute: {{cylinder3.B2.e[1] + cylinder3.B2.e[1] + (1.0 - cy2.phi), 0.0 * 0.0 + (1.0 - 0.0 * 0.0) * cos(cylinder3.B2.phi)}} 332 // d'Alemberts principle	regular (assign	nment) cytinlinder3.gasForce.p	simplify: cylinder3.B2.R_rel.T = {{1.0 * 1.0 + (1.0 - 1.0 *	331			
requiar (assignment) cyungunger3.gasrorce.k) as the end of	regular (assign	nment) cylindr3.gasForce.d ^ 2.0	332 // d'Alemberts principle				
regular (springenent) orlind, odum a[1] loodum [inline: cylinder3.B2.R. rel = Modelica.Mechanics.MultiBody[2] * cylinder3.B2.e[3] * cylinder3.B2.e[3] * cylinder3.B2.w])	regular (assigi	nmenc) cyundunder3.gasForce.k)	334 tau = -trame_b.t*e;				
conjunction to internal dar(c_c_c_c_c_c_c_c_c_c_c_c_c_c_c_c_c_c_c_	regular (assignment) cyundody.w_a[1] - load.w original: R_rel = Frames.planarRotation(e, phi_offset + phi, w); => flattened:				335 // Connection to internal		

Performance Profiling

(Here: Profiling all equations in MSL 3.2.1 DoublePendulum)

- Measuring performance of equation blocks to find bottlenecks
 - Useful as input before model simplification for real-time platforms
- Integrated with the debugger so it is possible to show what the slow equations compute
- Suitable for real-time profiling (less information), or a complete view of all equation blocks and function calls

Equations Browser							Defines		
In	dex	Туре	Equation	Executi	Max time	Time	Fraction 🔺	A	Variable
E i	876	regular	linear, size 2	4602	0.000501	0.0134	75.7%	U	damper.a_rel
- :	836	regular	(assignment)evolute2.phi)	1534	2.57e-05	0.000377	2.12%		revolute2.frame_b.f[2]
- :	840	regular	(assignment)mper.phi_rel)	1534	1.38e-05	0.000237	1.33%		
- :	837	regular	(assignment)evolute2.phi)	1534	8.38e-06	0.000235	1.32%		
-	841	regular	(assignment)mper.phi_rel)	1534	8.48e-06	0.000192	1.08%		
-	849	regular	(assignment)mper.phi_rel)	1534	8.04e-06	0.000146	0.824%		

ABB Commercial Application Use of Debugger

• ABB OPTIMAX® provides advanced model based control products for power generation and water utilities.

• ABB: "OpenModelica provides outstanding debugging features that help to save a lot of time during model development."

Equation Model Debugging on Siemens Model

(used on Siemens Evaporator test model, 1100 equations)

Equation Model Debugger on Siemens Model (Siemens Evaporator test model, 1100 equations)

Performance Profiling for faster Simulation

(Here: Profiling equations of Siemens Drum boiler model with evaporator

- Measuring **performance** of equation blocks to find bottlenecks
 - Useful as input before model simplification for real-time applications
- Integrated with the debugger to **point out the slow equations**
- Suitable **for real-time profiling** (collect less information), or a complete view of all equation blocks and function calls

Part IV

Dynamic Verification/Testing of Requirements vs Usage Scenario Models

Wladimir Schamai, Lena Buffoni, Peter Fritzson and contributions from MODRIO partners

OpenModelica and Papyrus Based Model-Based Development Environment to Cover Product-Design V

Documentation, Version and Configuration Management

Business Process Control and Modeling

Requirement Capture

OpenModelica – ModelicaML UML Profile Based on Open-Source Papyrus UML and OpenModelica

- ModelicaML is a UML Profile for SW/HW modeling
 - Applicable to "pure" UML or to other UML profiles, e.g. SysML
- Standardized Mapping UML/SysML to Modelica
 - Defines transformation/mapping for **executable** models
 - Being standardized by OMG
- ModelicaML
 - Defines graphical concrete syntax (graphical notation for diagram) for representing Modelica constructs integrated with UML
 - Includes graphical formalisms (e.g. State Machines, Activities, Requirements)
 - Which do not yet exist in Modelica language (extension work ongoing)
 - Which are translated into executable Modelica code
 - Is defined towards generation of executable Modelica code
 - Current implementation based on the Papyrus UML tool + OpenModelica

Example: Simulation and Requirements Evaluation

ModelicaML: Graphical Notation

Example: Representation of System Structure

Example: Representation of System Behavior

Example: Representation of System Requirements

MODELICA

vVDR Method – virtual Verification of Designs vs Requirements

Challenge

We want to verify **different design alternatives** against **sets of requirements** using **different scenarios**. Questions:

- 1) How to **find valid combinations** of **design alternatives**, **scenarios** and **requirements** in order to enable an automated composition of verification models?
- 2) Having found a valid combination: How to bind all components correctly?

Composing Verification Models main idea

- Collect all scenarios, requirements, import mediators
- Generate/compose *verification models* automatically:
 - Select the **system model** to be verified
 - Find all **scenarios** that can stimulate the selected system model (i.e., for each mandatory client check whether the binding expression can be inferred)
 - Find requirements that are implemented in the selected system model (i.e., check whether for each requirement for all mandatory clients binding expressions can be inferred)
- Present the list of scenarios and requirements to the user
 - The user can select only a subset or scenarios or requirements he/she wishes to consider

Generating/Composing Verification Modelsalgorithm

Simulation and Report Generation in ModelicaML

Verification models are simulated.

The generated **Verification Report** is a prepared summary of:

- Configuration, bindings
- Violations of requirements
- etc.

Verification models number (3), executed (3), passed (0), failed (3)

 Failed
 VeM for: s1-Fill and Drain Tank (Plot)

 Failed
 VeM for: s2-Fill tank (Plot)

 Failed
 VeM for: s3-Drain tank (Plot)

Failed VeM for: s1-Fill and Drain Tank (Plot) (ModelicaMLModel::GenVeMs for: SPWS Environment_1::VeM for: s1-Fill and Drain Tank)

Settings: startTime = 0, stopTime = 1500, tolerance = default, intervals = 0, outputFormat = plt

verdict allRequirementsEvaluated : yes verdict someRequirementsViolated : yes

Model to be verified: <u>SPWS Environment</u> (ModelicaMLModel::Design::SPWS Environment)

Verification Scenario: <u>s1-Fill and Drain Tank</u> (ModelicaMLModel::Verification Scenarios::s1-Fill and Drain Tank)

madantory client: vs s1 fill and drain tank.tankHeight (changed its value)

Type := ModelicaReal Variability := continuous Binding code := sm_spws_environment.spws.tank.height

Violated Requirement: Drain mode behavior (ID 004)

(ModelicaMLModel::Requirements::Drain mode behavior)

Text: When the system is drained only the fill/drain valve should be open, all other valves should be closed.

verdict <u>evaluated</u> : yes verdict <u>violated</u> : yes

madantory client: req 004 drain mode behavior.fillDrainValveIsOpen (changed its value)

Type := ModelicaBoolean Variability := continuous

Binding code : = sm_spws_environment.spws.fillDrainValve.isFullyOpen

madantory client: reg 004 drain mode behavior.otherValvesAreClosed (changed its value)

Type := ModelicaBoolean Variability := continuous Binding := if sm_spws_environment.spws.overFlowValve.isFullyClosed and sm_spws_environment.spws.supplyVavle.isFullyClosed code then true else false

Continuous and Discrete Time Locators for Time-related Requirements

- A Continuous Time Locator(CTL) specifies one or more time intervals
 - Time intervals have a duration
 - They usually have a position in time, but a sliding time window defines any time period of a given duration
 - A Discrete Time Locator (DTL) defines one or more positions in time and has no duration
 - An event is associated with a DTL
 that specifies when the event occurred
 - The difference between events and DTLs is that a DTL is not an object
 - That position may be relative to the initialisation of the system or to another DTL

time

time

time

•

Special FORML-L syntax	Standard Modelica syntax
duringAny duration	duringAny(duration)
<i>after</i> event	after(event)
after event1 untilNext event2	afterUntil(event1, event2)
after event for duration	afterFor(event, duration)
after event within duration	afterWithin(event, duration)
<i>until</i> event	until(event)
every duration1 for duration2	everyFor(duration1, duration2)
when condition changes	Maps to Modelica if

From Text to Simulated Requirement – Modelica Extended with new Operators

From a text requirement expressing a condition:

A - In the absence of any Backup Power Supply (BPS) component failure or in the presence of a single sensor failure, when the BPS is not under maintenance, in case of loss of MPS, and if safety injection is required, Set1 must be powered within 20 s

model P2a extends Condition;

input ConditionStatus bPSNeeded, sARequired, set1Powered;

equation

status = if afterWithin (bPSNeeded == notViolated and

sARequired == notViolated, 20) then

```
if set1Powered == notViolated then
```

notViolated else violated else undefined;

end P2a;

From Text to Simulated Requirement – Requirement not Violated – OpenModelica Simulation

Outlook: New OpenModelica Frontend for Large-Scale models

- Soon: New OMC Compiler frontend for fast compilation and largescale models
- Been under development the past 2-3 years
- Now (sept 24) simulates
 67% of MSL models,
 coverage increases about
 6% per month
- About 10-200 times faster than the old frontend, depending on model

OpenModelica DAEMode for Large-Scale models

- Goal to handle hundreds of thousands to millions of equations
- Introduced sparse solvers in the solution chain:
 - KLU for linear algebraic equations,
 - Kinsol for nonlinear algebraic equations, and
 - IDA for causalized differential equations.
- Largest system so far: electro-mechanical power system model with about 600.000 differential-algebraic equations
- Under development for even larger systems

Summary and Questions

