
pelab1 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

PackagesPackages

pelab2 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Packages for Avoiding Name Collisions Packages for Avoiding Name Collisions

• Modelica provide a safe and systematic way of avoiding
name collisions through the package concept

• A package is simply a container or name space for
names of classes, functions, constants and other
allowed definitions

pelab3 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Packages as Abstract Data Type: Packages as Abstract Data Type:
Data and Operations in the Same PlaceData and Operations in the Same Place

encapsulated package ComplexNumber

record Complex
Real re;
Real im;

end Complex;

function add
input Complex x,y;
output Complex z;

algorithm
z.re := x.re + y.re;
z.im := x.im + y.im

end add;

function multiply
input Complex x,y;
output Complex z;

algorithm
z.re := x.re*y.re – x.im*y.im;
z.im := x.re*y.im + x.im*y.re;

end multiply;
……………………………………………………….

end ComplexMumbers

Keywords
denoting a
package

encapsulated
makes
package
dependencies
(i.e., imports)
explicit

Declarations of
substract,
divide,
realPart,
imaginaryPart,
etc are not shown
here

class ComplexUser
ComplexNumbers.Complex a(re=1.0, im=2.0);
ComplexNumbers.Complex b(re=1.0, im=2.0);
ComplexNumbers.Complex z,w;

equation
z = ComplexNumbers.multiply(a,b);
w = ComplexNumbers.add(a,b);

end ComplexUser

Usage of the
ComplexNumber
package

The type Complex and the
operations multiply and add
are referenced by prefixing
them with the package name
ComplexNumber

pelab4 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Accessing Definitions in PackagesAccessing Definitions in Packages
• Access reference by prefixing the package name to definition names

• Shorter access names (e.g. Complex, multiply) can be used if
definitions are first imported from a package (see next page).

class ComplexUser
ComplexNumbers.Complex a(re=1.0, im=2.0);
ComplexNumbers.Complex b(re=1.0, im=2.0);
ComplexNumbers.Complex z,w;

equation
z = ComplexNumbers.multiply(a,b);
w = ComplexNumbers.add(a,b);

end ComplexUser

pelab5 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Importing Definitions from PackagesImporting Definitions from Packages

The four forms of import are exemplified below assuming
that we want to access the addition operation (add) of the
package Modelica.Math.ComplexNumbers

import Modelica.Math.ComplexNumbers; //Access as ComplexNumbers.add
import Modelica.Math.ComplexNumbers.add; //Access as add
import Modelica.Math.ComplexNumbers.* //Access as add
import Co = Modelica.Math.ComplexNumbers //Access as Co.add

import <packagename>
import <packagename> . <definitionname>
import <packagename> . *
import <shortpackagename> = <packagename>

• Qualified import
• Single definition import
• Unqualified import
• Renaming import

pelab6 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Qualified ImportQualified Import
import <packagename>Qualified import

The qualified import statement
import <packagename>;
imports all definitions in a package, which subsequently can be
referred to by (usually shorter) names
simplepackagename . definitionname, where the simple
package name is the packagename without its prefix.

encapsulated package ComplexUser1
import Modelica.Math.ComplexNumbers;
class User
ComplexNumbers.Complex a(x=1.0, y=2.0);
ComplexNumbers.Complex b(x=1.0, y=2.0);
ComplexNumbers.Complex z,w;

equation
z = ComplexNumbers.multiply(a,b);
w = ComplexNumbers.add(a,b);

end User;
end ComplexUser1;

This is the most common
form of import that
eliminates the risk for
name collisions when
importing from several
packages

pelab7 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Single Definition ImportSingle Definition Import
import <packagename> . <definitionname>Single definition import

The single definition import of the form
import <packagename>.<definitionname>;
allows us to import a single specific definition (a constant or class but
not a subpackage) from a package and use that definition referred to
by its definitionname without the package prefix
encapsulated package ComplexUser2

import ComplexNumbers.Complex;
import ComplexNumbers.multiply;
import ComplexNumbers.add;

class User
Complex a(x=1.0, y=2.0);
Complex b(x=1.0, y=2.0);
Complex z,w;

equation
z = multiply(a,b);
w = add(a,b);

end User;
end ComplexUser2;

There is no risk for name
collision as long as we
do not try to import two
definitions with the same
short name

pelab8 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Unqualified ImportUnqualified Import
import <packagename> . *Unqualified import

The unqualified import statement of the form
import packagename.*;
imports all definitions from the package using their short names without
qualification prefixes.
Danger: Can give rise to name collisions if imported package is changed.

class ComplexUser3
import ComplexNumbers.*;
Complex a(x=1.0, y=2.0);
Complex b(x=1.0, y=2.0);
Complex z,w;

equation
z = multiply(a,b);
w = add(a,b);

end ComplexUser3;

This example also shows
direct import into a class
instead of into an enclosing
package

pelab9 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Renaming ImportRenaming Import
import <shortpackagename> = <packagename>Renaming import

The renaming import statement of the form:
import <shortpackagename> = <packagename>;
imports a package and renames it locally to shortpackagename.
One can refer to imported definitions using shortpackagename as
a presumably shorter package prefix.

class ComplexUser4
import Co = ComplexNumbers;
Co.Complex a(x=1.0, y=2.0);
Co.Complex b(x=1.0, y=2.0);
Co.Complex z,w;

equation
z = Co.multiply(a,b);
w = Co.add(a,b);

end ComplexUser4;

This is as safe as qualified
import but gives more
concise code

pelab10 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Package and Library StructuringPackage and Library Structuring
A well-designed package structure is one of the most
important aspects that influences the complexity,
understandability, and maintainability of large software
systems. There are many factors to consider when
designing a package, e.g.:

• The name of the package.

• Structuring of the package into subpackages.

• Reusability and encapsulation of the package.

• Dependencies on other packages.

pelab11 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Subpackages and Hierarchical Libraries Subpackages and Hierarchical Libraries

encapsulated package Modelica // Modelica
encapsulated package Mechanics // Modelica.Mechanics

encapsulated package Rotational // Modelica.Mechanics.Rotational
model Inertia // Modelica.Mechanics.Rotational.Inertia
...

end Inertia;
model Torque // Modelica.Mechanics.Rotational.Torque
...

end Torque;
...

end Rotational;
...

end Mechanics;
...
end Modelica;

The main use for Modelica packages and subpackages is to structure
hierarchical model libraries, of which the standard Modelica library is a
good example.

pelab12 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Ecapsulated Packages and ClassesEcapsulated Packages and Classes
An encapsulated package or class prevents direct reference to public
definitions outside itself, but as usual allows access to public subpackages
and classes inside itself.

• Dependencies on other packages become explicit
– more readable and understandable models!

encapsulated model TorqueUserExample1
import Modelica.Mechanics.Rotational; // Import package Rotational
Rotational.Torque t2; // Use Torque, OK!
Modelica.Mechanics.Rotational.Inertia w2;

//Error! No direct reference to the top-level Modelica package
... // to outside an encapsulated class

end TorqueUserExample1;

• Used packages from outside must be imported.

pelab13 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

withinwithin Declaration for Package PlacementDeclaration for Package Placement
Use short names without dots when declaring the package or class in
question, e.g. on a separate file or storage unit. Use within to specify
within which package it is to be placed.

within Modelica.Mechanics;
encapsulated package Rotational // Modelica.Mechanics.Rotational

encapsulated package Interfaces
import ...;
connector Flange_a;

...
end Flange_a;
...

end Interfaces;
model Inertia

...
end Inertia;
...

end Rotational;

The within
declaration
states the prefix
needed to form
the fully
qualified name

The subpackage Rotational declared
within Modelica.Mechanics has the fully
qualified name
Modelica.Mechanics.Rotational,
by concatenating the packageprefix with the
short name of the package.

pelab14 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Mapping a Package Hierachy into a Directory Mapping a Package Hierachy into a Directory
HirarchyHirarchy

A Modelica package hierarchy can be mapped into a
corresponding directory hierarchy in the file system

Interfaces

Modelica

Mechanics

Continuous
Examples

Rotational

Blocks

...

Example1

C:\library
\Modelica

package.mo
\Blocks

package.mo
Continuous.mo
Interfaces.mo
\Examples
package.mo
Example1.mo

\Mechanics
package.mo
Rotational.mo
...

pelab15 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Mapping a Package Hierachy into a Directory Mapping a Package Hierachy into a Directory
HirarchyHirarchy

C:\library
\Modelica

package.mo
\Blocks

package.mo
Continuous.mo
Interfaces.mo
\Examples
package.mo
Example1.mo

\Mechanics
package.mo
Rotational.mo
...

within Modelica.Blocks;
encapsulated package Examples

"Examples for Modelica.Blocks";
import ...;

end Examples; within Modelica.Blocks.Examples;
model Example1

"Usage example 1 for Modelica.Blocks";
...

end Example1;

within;
encapsulated package Modelica

"Modelica root package";
end Modelica;

It contains an empty Modelica package declaration since all
subpackages under Modelica are represented as subdirectories of
their own. The empty within statement can be left out if desired

within Modelica.Mechanics;
encapsulated package Rotational

encapsulated package Interfaces
import ...;
connector Flange_a;

...
end Flange_a;
...

end Interfaces;
model Inertia

...
end Inertia;
...

end Rotational;

The subpackage
Rotational stored as the
file Rotational.mo. Note
that Rotational contains
the subpackage
Interfaces, which also
is stored in the same file
since we chose not to
represent Rotational as
a directory

