
pelab1 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Discrete Events and Hybrid SystemsDiscrete Events and Hybrid Systems

Picture: Courtesy Hilding Elmqvist

pelab2 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

EventsEvents

Events are ordered in time and form an event history

time
event 1 event 2 event 3

• A point in time that is instantaneous, i.e., has zero duration
• An event condition that switches from false to true in order for the event

to take place
• A set of variables that are associated with the event, i.e. are referenced

or explicitly changed by equations associated with the event
• Some behavior associated with the event, expressed as conditional

equations that become active or are deactivated at the event.
Instantaneous equations is a special case of conditional equations that
are only active at events.

pelab3 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Hybrid ModelingHybrid Modeling

time

Continuous-time

Discrete-time

Hybrid modeling = continuous-time + discrete-time modeling

Real x;
Voltage v;
Current i;

Events

discrete Real x;
Integer i;
Boolean b;

• A point in time that is instantaneous, i.e., has zero duration
• An event condition so that the event can take place
• A set of variables that are associated with the event
• Some behavior associated with the event,

e.g. conditional equations that become active or are deactivated at
the event

pelab4 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

EventEvent creationcreation –– ifif

model Diode "Ideal diode"
extends TwoPin;
Real s;
Boolean off;

equation
off = s < 0;
if off then
v=s

else
v=0;

end if;
i = if off then 0 else s;

end Diode;

if <condition> then
<equations>

elseif <condition> then
<equations>

else
<equations>

end if;

if-equations, if-statements, and if-expressions

False if s<0

If-equation choosing
equation for v

If-expression

pelab5 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

EventEvent creationcreation –– whenwhen

when <conditions> then
<equations>

end when;

when-equations

Only dependent on time, can be
scheduled in advance

Time event
when time >= 10.0 then

...
end when;

time
event 1 event 2 event 3

Equations only active at event times

State event
when sin(x) > 0.5 then

...
end when;

Related to a state. Check for
zero-crossing

pelab6 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Generating Repeated EventsGenerating Repeated Events

The call sample(t0,d) returns
true and triggers events at times
t0+i*d, where i=0,1, …

model SamplingClock
Integer i;
discrete Real r;

equation
when sample(2,0.5) then
i = pre(i)+1;
r = pre(r)+0.3;

end when;
end SamplingClock;

time

sample(t0,d)

false

true

t0 t0+d t0+2d t0+3d t0+4d

Variables need to be
discrete

Creates an event
after 2 s, then
each 0.5 s

pre(...) takes the
previous value
before the event.

pelab7 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Reinit Reinit –– DiscontinuousDiscontinuous ChangesChanges

model BouncingBall "the bouncing ball model"
parameter Real g=9.81; //gravitational acc.
parameter Real c=0.90; //elasticity constant
Real height(start=10),velocity(start=0);

equation
der(height) = velocity;
der(velocity)=-g;
when height<0 then
reinit(velocity, -c*velocity);

end when;

end BouncingBall;

The value of a continuous-time state variable can be instantaneously
changed by a reinit-equation within a when-equation

Reinit ”assigns”
continuous-time variable
velocity a new value

Initial conditions

pelab8 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

initialinitial and and terminalterminal eventsevents

Initialization actions are triggered by initial()

Actions at the end of a simulation are triggered by terminal()

time

terminal()

false

true

event at end

time

initial()

false

true

event at start

pelab9 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Terminating a SimulationTerminating a Simulation

model terminationModel
Real y;

equation
y = time;
when y >5 then
terminate("The time has elapsed 5s");

end when;
end terminationMode;

There terminate() function is useful when a wanted result is
achieved and it is no longer useful to continue the simulation. The
example below illustrates the use:

simulate(terminationModel, startTime = 0, stopTime = 10)

Simulation ends before
reaching time 10terminate

pelab10 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Expressing Event Behavior in ModelicaExpressing Event Behavior in Modelica

model Diode "Ideal diode"
extends TwoPin;
Real s;
Boolean off;

equation
off = s < 0;
if off then
v=s

else
v=0;

end if;
i = if off then 0 else s;

end Diode;

equation
when x > y.start then
...

if <condition> then
<equations>

elseif <condition> then
<equations>

else
<equations>

end if;

when <conditions> then
<equations>

end when;

when-equations become active at events

if-equations, if-statements, and if-expressions express different behavior in
different operating regions

pelab11 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

model WhenConflictX // Erroneous model: two equations define x
discrete Real x;
equation
when time>=2 then // When A: Increase x by 1.5 at time=2
x = pre(x)+1.5;
end when;
when time>=1 then // When B: Increase x by 1 at time=1
x = pre(x)+1;
end when;

end WhenConflictX;

Event PriorityEvent Priority

Erroneous multiple definitions, single assignment rule violated

Using event priority
to avoid erroneous
multiple definitions

model WhenPriorityX
discrete Real x;

equation
when time>=2 then // Higher priority
x = pre(x)+1.5;

elsewhen time>=1 then // Lower priority
x = pre(x)+1;

end when;
end WhenPriorityX;

pelab12 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Obtaining Predecessor ValuesObtaining Predecessor Values
of a Variable Using of a Variable Using pre()pre()

At an event, pre(y) gives the previous value of y immediately
before the event, except for event iteration of multiple events at
the same point in time when the value is from the previous
iteration

• The variable y has one of the basic types Boolean, Integer, Real,
String, or enumeration, a subtype of those, or an array type of one
of those basic types or subtypes

• The variable y is a discrete-time variable
• The pre operator can not be used within a function

time

y

event

y

pre(y)

pelab13 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Detecting Changes of BooleanDetecting Changes of Boolean
Variables Using Variables Using edge()edge()andand change()change()

The expression edge(b)
is true at events when b
switches from false to true

Detecting changes of boolean variables using edge()

Detecting changes of discrete-time variables using change()

The expression change(v)
is true at instants when v
changes value

time

event

b

edge(b)

event

true

true

false

false

time

event

v

change(v)

event

true

4.1

false

3.2

4.5

true

pelab14 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Creating TimeCreating Time--Delayed ExpressionsDelayed Expressions

Creating time-delayed expressions using delay()

In the expression delay(v,d) v is delayed by a delay time d

time

t1

v

t2

4.1
3.2

4.5

t1+d

delay(v,d)

t2+d

4.1
3.2

4.5

start+d

pelab15 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

A Sampler ModelA Sampler Model

model Sampler
parameter Real sample_interval = 0.1;
Real x(start=5);
Real y;

equation
der(x) = -x;
when sample(0, sample_interval) then
y = x;

end when;
end Sampler;

simulate(Sampler, startTime = 0, stopTime = 10)

plot({x,y})

2 4 6 8 10
t

1

2

3

4

5

pelab16 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Discontinuous Changes to Variables at Events via Discontinuous Changes to Variables at Events via
WhenWhen--Equations/StatementsEquations/Statements
The value of a discrete-time variable can be changed by placing the variable
on the left-hand side in an equation within a when-equation, or on the left-
hand side of an assignment statement in a when-statement

model BouncingBall "the bouncing ball model"
parameter Real g=9.18; //gravitational acc.
parameter Real c=0.90; //elasticity constant
Real x(start=0),y(start=10);

equation
der(x) = y;
der(y)=-g;
when x<0 then
reinit(y, -c*y);

end when;

end BouncingBall;

The value of a continuous-time state variable can be instantaneously
changed by a reinit-equation within a when-equation

t

pelab17 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

A Mode Switching Model ExampleA Mode Switching Model Example

emf

ground

elastoBacklash

inertia1 inertia2
signalVoltage

step

resistor inductor
Motor side Load side

Elastic transmission with slack

phi_dev
- b/2 b/2

tau

A finite state automaton
SimpleElastoBacklash
model

DC motor transmission with elastic backlash

Backward Slack Forward

phi_dev < -b/2

tau < 0 tau > 0

phi_dev <= b/2

tau = 0

phi_dev > b/2phi_dev >= -b/2

pelab18 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

A Mode Switching Model Example contA Mode Switching Model Example cont’’

partial model SimpleElastoBacklash
Boolean backward, slack, forward; // Mode variables
parameter Real b "Size of backlash region";
parameter Real c = 1.e5 "Spring constant (c>0), N.m/rad";
Flange_a flange_a "(left) driving flange - connector";
Flange_b flange_b "(right) driven flange - connector";
parameter Real phi_rel0 = 0 "Angle when spring exerts no torque";
Real phi_rel "Relative rotation angle betw. flanges";
Real phi_dev "Angle deviation from zero-torque pos";
Real tau "Torque between flanges";

equation
phi_rel = flange_b.phi - flange_a.phi;
phi_dev = phi_rel - phi_rel0;
backward = phi_rel < -b/2; // Backward angle gives torque tau<0
forward = phi_rel > b/2; // Forward angle gives torque tau>0
slack = not (backward or forward); // Slack angle gives no torque
tau = if forward then // Forward angle gives

c*(phi_dev – b/2) // positive driving torque
else (if backward then // Backward angle gives

c*(phi_dev + b/2) // negative braking torque
else // Slack gives
0); // zero torque

end SimpleElastoBacklash

pelab19 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

A Mode Switching Model Example contA Mode Switching Model Example cont’’

Relative rotational speed between
the flanges of the Elastobacklash
transmission

5 10 15 20 25 t

-0.5

-0.25

0.25

0.5

0.75

1

t

5 10 15 20 25

-1.2

-1

-0.8

-0.6

-0.4

-0.2

We define a model with less mass in
inertia2(J=1), no damping d=0,
and weaker string constant c=1e-5,
to show even more dramatic
backlash phenomena

The figure depicts the rotational
speeds for the two flanges of the
transmission with elastic backlash

elastoBacklash.w_rel

inertia1.w

inertia2.w

pelab20 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Water Tank System with PI ControllerWater Tank System with PI Controller

TankPI

piContinuous

tank
tActuator tSensor

qIn qOut

cOut cIn

source

model TankPI
LiquidSource source(flowLevel=0.02);
Tank tank(area=1);
PIcontinuousController piContinuous(ref=0.25);

equation
connect(source.qOut, tank.qIn);
connect(tank.tActuator, piContinuous.cOut);
connect(tank.tSensor, piContinuous.cIn);

end TankPI;

model Tank
ReadSignal tOut; // Connector, reading tank level
ActSignal tInp; // Connector, actuator controlling input flow
parameter Real flowVout = 0.01; // [m3/s]
parameter Real area = 0.5; // [m2]
parameter Real flowGain = 10; // [m2/s]
Real h(start=0); // tank level [m]
Real qIn; // flow through input valve[m3/s]
Real qOut; // flow through output valve[m3/s]

equation
der(h)=(qIn-qOut)/area; // mass balance equation
qOut=if time>100 then flowVout else 0;
qIn = flowGain*tInp.act;
tOut.val = h;

end Tank;

level

maxLevel

pump tank

levelSensor

out in

pelab21 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Water Tank System with PI Controller Water Tank System with PI Controller –– contcont’’

partial model BaseController
parameter Real Ts(unit = "s") = 0.1 "Time period between discrete samples";
parameter Real K = 2 "Gain";
parameter Real T(unit = "s") = 10 "Time constant";
ReadSignal cIn "Input sensor level, connector";
ActSignal cOut "Control to actuator, connector";
parameter Real ref "Reference level";
Real error "Deviation from reference level";
Real outCtr "Output control signal";

equation
error = ref - cIn.val;
cOut.act = outCtr;

end BaseController;

model PIdiscreteController
extends BaseController(K = 2, T = 10);
discrete Real x;

equation
when sample(0, Ts) then

x = pre(x) + error * Ts / T;
outCtr = K * (x+error);

end when;
end PIdiscreteController;

model PIDcontinuousController
extends BaseController(K = 2, T = 10);
Real x;
Real y;

equation
der(x) = error/T;
y = T*der(error);
outCtr = K*(error + x + y);

end PIDcontinuousController;

pelab22 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Concurrency and Resource SharingConcurrency and Resource Sharing

model DiningTable
parameter Integer n = 5 "Number of philosophers and forks";
parameter Real sigma = 5 " Standard deviation for the random function";
// Give each philosopher a different random start seed
// Comment out the initializer to make them all hungry simultaneously.
Philosopher phil[n](startSeed=[1:n,1:n,1:n], sigma=fill(sigma,n));
Mutex mutex(n=n);
Fork fork[n];

equation
for i in 1:n loop
connect(phil[i].mutexPort, mutex.port[i]);
connect(phil[i].right, fork[i].left);
connect(fork[i].right, phil[mod(i, n) + 1].left);

end for;
end DiningTable;

mutex

Thinking

Thinking

Thinking

Thinking

Thinking

Eating

Eating

Eating

Eating

Eating

Dining Philosophers ExampleDining Philosophers Example

