Symbolic Initialization of Simultaneously Under- and Over-determined Models

Lennart Ochel

Bernhard Bachmann

Bielefeld University of Applied Sciences, Department of Mathematics and Engineering

Outline

- Brief introduction of
 - Under-determined systems
 - Over-determined systems
- Similarity of under- and overdetermination
- Simultaneously under- and over-determined systems
- Conclusions

- Not enough initial conditions to fully specify the system
- Additional initial conditions for states need to be determined

- Not enough initial conditions to fully specify the system
- Additional initial conditions for states need to be determined

$$0 = f_{1}(\dot{v}_{1}, \dot{v}_{2})$$

$$0 = f_{2}(\dot{v}_{2}, v_{1})$$

$$0 = f_{3}(y, v_{2})$$

$$0 = h_{1}(\dot{v}_{2})$$

$$v_{1} \qquad 0 = f_{3}(y, v_{2})$$

$$v_{1} \qquad 0 = h_{1}(\dot{v}_{2})$$

- Not enough initial conditions to fully specify the system
- Additional initial conditions for states need to be determined

OpenModelica Workshop 2015 - Ochel/Bachmann

- Not enough initial conditions to fully specify the system
- Additional initial conditions for states need to be determined

 $\omega = (v_1 \quad v_2)$ contains additional unknowns, compared to the system for simulation

$$\frac{\partial \underline{h}}{\partial \underline{\omega}} = (* \quad 0)$$

0-colums of $\frac{\partial h}{\partial \omega}$ correspond with additionally needed initial conditions for corresponding ω_i

OpenModelica Workshop 2015 - Ochel/Bachmann

- Not enough initial conditions to fully specify the system
- Additional initial conditions for states need to be determined

 $\omega = (v_1 \quad v_2)$ contains additional unknowns, compared to the system for simulation

If there are not enough 0-colums to fulfil initial conditions, then randomly select as many ω_i as needed.

02/02/2015

OpenModelica Workshop 2015 - Ochel/Bachmann

- Component-based models
- Initialization is part of components
- Over-determined problems arise by adding connections

Reference: L. Ochel, B. Bachmann, and F. Casella. "Symbolic Initialization of Over-determined Higher-index Models". In Proceedings 10th International Modelica Conference, pages 1179-1187, March 2014

 Rather complex algorithm based on partial matchings

Reference: L. Ochel, B. Bachmann, and F. Casella. "Symbolic Initialization of Over-determined Higher-index Models". In Proceedings 10th International Modelica Conference, pages 1179-1187, March 2014

Find redundant equation

Reference: L. Ochel, B. Bachmann, and F. Casella. "Symbolic Initialization of Over-determined Higher-index Models". In Proceedings 10th International Modelica Conference, pages 1179-1187, March 2014.

Find redundant equation

Verify if the removed equation is consistent

Reference: L. Ochel, B. Bachmann, and F. Casella. "Symbolic Initialization of Over-determined Higher-index Models". In Proceedings 10th International Modelica Conference, pages 1179-1187, March 2014.

Similarity of under- and overdetermination

Similarity of under- and overdetermination

Fulfil under-determined systems

Fulfil under-determined systems

 $\frac{\partial h_1}{\partial \underline{\omega}} = (* \quad 0)$

Fulfil under-determined systems

SCC1	f2, h1, h2
SCC2	f1
SCC3	f3

Solvability of involved equations can be used to select proper initial conditions

 $\frac{\partial h_1}{\partial \underline{\omega}} = (* \quad 0)$

 $\frac{\partial h_1}{\partial \underline{\omega}} = (* \quad *)$

Fulfil over-determined systems

• ? will always be part of an algebraic loop

SCC1	f1
SCC2	f2, f3, f5
SCC3	h1, h2, f4

Fulfil over-determined systems

- ? will always be part of an algebraic loop
- applying tearing-alike method to select
 - "redundant equations"

SCC1	f1
SCC2	f2, f3, f5
SCC3	h1, h2, f4

Simultaneously under- and overdetermined systems $v_1 + v_2 = 0$

• Those problems are always structural singular

Simultaneously under- and overdetermined systems $(v_1, v_2) = 0$

- Those problems are always structural singular
- Introducing one "green" variable node and equation node respectively
 - (multiple times if needed)
- Same approach as discussed before

Conclusions

- Under- and over-determined systems can be seen as similar problems
- That allows it to solve also simultaneously under- and over-determined problems
- Available in OpenModelica 1.9.2beta

Recent and further developments

- Removing numeric initialization approach
- Separating initialization/simulation strictly to allow more specific optimization
- Proper homotopy support

Back End

Back End

OpenModelica Workshop 2015 - Ochel/Bachmann