Symbolic Initialization of Simultaneously Under- and Over-determined Models

Lennart Ochel

Bielefeld University of Applied Sciences,
Department of Mathematics and Engineering

Outline

- Brief introduction of
- Under-determined systems
- Over-determined systems
- Similarity of under- and overdetermination
- Simultaneously under- and over-determined systems
- Conclusions

Under-determined systems

- Not enough initial conditions to fully specify the system
- Additional initial conditions for states need to be determined

Under-determined systems

- Not enough initial conditions to fully specify the system
- Additional initial conditions for states need to be determined

Under-determined systems

- Not enough initial conditions to fully specify the system
- Additional initial conditions for states need to be determined

Under-determined systems

- Not enough initial conditions to fully specify the system
- Additional initial conditions for states need to be determined

$\omega=\left(\begin{array}{ll}v_{1} & v_{2}\end{array}\right)$ contains additional unknowns, compared to the system for simulation

$$
\frac{\partial \underline{h}}{\partial \underline{\omega}}=\left(\begin{array}{ll}
* & 0
\end{array}\right)
$$

0 -colums of $\frac{\partial \underline{\underline{h}}}{\partial \underline{\omega}}$ correspond with additionally needed initial conditions for corresponding ω_{i}

Under-determined systems

- Not enough initial conditions to fully specify the system
- Additional initial conditions for states need to be determined

$\omega=\left(\begin{array}{ll}v_{1} & v_{2}\end{array}\right)$ contains
additional unknowns, compared to the system for simulation

$$
\frac{\partial \underline{h}}{\partial \underline{\omega}}=(* \quad *)
$$

If there are not enough 0 -colums to fulfil initial conditions, then randomly select as many ω_{i} as needed.

Over-determined systems

- Component-based models
- Initialization is part of components
- Over-determined problems arise by adding connections

Over-determined systems

- Rather complex algorithm based on partial matchings

Over-determined systems

Find redundant equation

Over-determined systems

Find redundant equation

Verify if the removed equation is consistent
becomes unassignable and therefore get removed

$$
u=u_{1}+u_{2}
$$

Similarity of under- and overdetermination

Similarity of under- and overdetermination

Fulfil under-determined systems

Fulfil under-determined systems

$\frac{\partial h_{1}}{\partial \underline{\omega}}=\left(\begin{array}{ll|l}* & 0\end{array}\right) \quad$| SCC1 | h1 |
| :--- | :--- |
| $\boldsymbol{S C C 2}$ | f 2 |
| $\boldsymbol{S C C 3}$ | h2 |
| $\boldsymbol{S C C 4}$ | f 1 |
| $\boldsymbol{S C C 5}$ | f 3 |

Fulfil under-determined systems

$\frac{\partial h_{1}}{\partial \underline{\omega}}=\left(\begin{array}{ll|l}\hline \text { SCC1 } & \text { h1 }\end{array}\right) \quad$| SCC2 | f2 |
| :--- | :--- |
| SCC3 | h2 |
| SCC4 | f1 |
| SCC5 | f3 |

[^0]
Fulfil over-determined systems

- ? will always be part of an algebraic loop

Fulfil over-determined systems

-? will always be part of an algebraic loop

- applying tearing-alike method to select "redundant equations"

SCC1	f1
SCC2	f2, f3, f5
SCC3	h1, h2, f4

Simultaneously under- and overdetermined

systems

- Those problems are always structural singular

Simultaneously under- and overdetermined

 systems- Those problems are always structural singular
- Introducing one "green" variable node and equation node respectively
- (multiple times if needed)
- Same approach as discussed before

Conclusions

- Under- and over-determined systems can be seen as similar problems
- That allows it to solve also simultaneously under- and over-determined problems
- Available in OpenModelica 1.9.2beta

Recent and further developments

- Removing numeric initialization approach
- Separating initialization/simulation strictly to allow more specific optimization
- Proper homotopy support

Back End

[^0]: >Solvability of involved equations can be used to select proper initial conditions

