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equation  
  sx0 = cos(frame_a.phi)*sx_norm + … 
  sy0 = -sin(frame_a.phi)*sx_norm + … 
  vy = der(frame_a.y); 
  w_roll = der(flange_a.phi); 
  v_long = vx*sx0 + vy*sy0; 
  v_lat = -vx*sy0 + vy*sx0; 
  v_slip_lat = v_lat - 0; 
  v_slip_long = v_long - R*w_roll; 
 
  v_slip = sqrt(v_slip_long^2 + … 
  -f_long*R = flange_a.tau; 
  frame_a.t = 0; 
  f = N*. S_Func(vAdhesion,vSlide,… 
  f_long =f*v_slip_long/v_slip; 
  f_lat  =f*v_slip_lat/v_slip; 
  f_long = frame_a.fx*sx0 + … 
  f_lat = -frame_a.fx*sy0 + … 
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Outline 

Part 1:  

• Basics of Planar Mechanics (Excerpts from my 
lecture) 

Part 2:  

• New features / improvements of the free 
PlanarMechanics Library 
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Part 1: 

Part 1:  

• Basics of Planar Mechanics (Excerpts from my 
lecture) 
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• In planar mechanics, we describe the physics of a multi body system in a 
two-dimensional plane. 
 
 
 
 
 
 
 

• In the planar world, all motions and positions can be described by two 
translational positions and an angular orientation 

• By convention we denote the horizontal position with x, the vertical 
position with y and the orientation by the angle φ (phi). 
 

 
 

 
 

Part 1:  Planar Mechanics 

x 

y 

φ 
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• Essentially: Sometimes 1D is too simple, 3D is too complex. 
 

• Tangible and visual systems 
 

• The simulation results can be visualized and animated. 
 

• Fundamental formulas (Newton’s law, D’Alembert’s principle) are taught 
already in high-school. 
 

• Everyone has an intuitive understanding about the motion of mechanical 
systems and how to control it. 
 

• Interactions to most other domains. (Electrical Engines, Hydraulics, Heat) 
 
 

 
 

 
 

Why Planar Mechanics? 
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• From 1D-mechanics, we know that the we should choose force and 
torque as flow-variables and position and angle as potential variables. 

• Planar mechanics combine three 1D-subsytems. Hence the following 
connector design seems natural. 

 

 Potential variables    Flow variables  

  x (horizontal position)   fx (horizontal force) 

  y (vertical position)   fy (vertical force) 

  φ (orientation angle)    τ (torque) 

 

 

 

 

Connector Variables 
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• Here, the corresponding Modelica-Code: 

 

 

 

 

 

Connector Variables: Modelica 

connector Frame  
  "General Connector for planar mechanical components" 
 
  SI.Position x  "x-position"; 
  SI.Position y  "y-position"; 
  SI.Angle phi  "angle (clockwise)"; 
  flow SI.Force fx  "force in x-direction"; 
  flow SI.Force fy  "force in y-direction"; 
  flow SI.Torque t  "torque (clockwise)"; 
 
end Frame; 
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• It is common style to extend two connectors with different icons from 
the general connector.  

• Some components contain characteristics that are directed. Hence it is 
helpful to see, if your connecting to side A or side B. 

 

 

 

 

 

 

• All of these connectors are collected in an interface package. 

 

 

 

 

 

Connectors 

  connector Frame_a 
    extends Frame; 
  end Frame_a; 
 
 
  connector Frame_b 
    extends Frame; 
  end Frame_b; 
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• Using this connector, we can build all components for a crane crab 
   

• Parts 

• Wall 

• Body (Mass and Inertia) 

• FixedTranslation 

• FixedRotation 

• Joints 

• Prismatic Joint 

• Revolute Joint 

 

 

 

Decomposition into components 
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• Parts 

• Wall 

• Body (Mass and Inertia) 

• FixedTranslation 

• FixedRotation 

• Joints 

• Prismatic Joint 

• Revolute Joint 

 

 

 

Decomposition into components 

body
revolute

fixedTra?

f ixed

prismatic body1



© Dirk Zimmer, February 2014, Slide 14 

Institute of System Dynamics and Control 

Fixed Component 

model Fixed "FixedPosition" 
 
  Interfaces.Frame_a frame_a;     
  parameter SI.Position r[2] = {0,0};  
   "fixed x-position"; 
  parameter SI.Angle phi = 0 
    "fixed angle"; 
 
equation  
  {frame_a.x, frame_a.y} = r; 
  frame_a.phi = phi; 
 
end Fixed; 

We can already model the first basic components. Let us start with the wall 
component that represents a fixation point. 
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• A little more elaborate is the 
body-component that 
represents a mass with 
inertia. 

 

 

 

 

 

• Essentially, the model 
formulates Newton’ s law. 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Body Component 

model Body 
  Interfaces.Frame_a frame_a; 
 

  parameter SI.Mass m; 
  parameter SI.Inertia I; 
 

  SI.Force f[2]; 
  SI.Position r[2]; 
  SI.Velocity v[2]; 
  SI.Acceleration a[2]; 
  SI.AngularVelocity w; 
  SI.AngularAcceleration z; 
 

equation  
  r = {frame_a.x, frame_a.y} 
  v = der(r); 
  w = der(frame_a.phi); 
 

  a = der(v); 
  z = der(w); 
   
  f = {frame_a.fx, frame_a.fy}; 
  f = m*a; 
  frame_a.t = I*z; 
end Body 
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• Since the gravitational force 
is dependent on the mass 
(m*g), it makes sense to 
compute right in the body 
model. 
  

 

 

 

• A parameter for the 
gravitational acceleration is 
added and Newton’s law is 
extended. 

 

 

 

 

 

 

 

Body Component 

model Body 
  Interfaces.Frame_a frame_a; 
 

  parameter SI.Mass m; 
  parameter SI.Inertia I; 
  parameter SI.Acceleration[2] g={0,-9.81}; 
  SI.Force f[2]; 
  SI Position r[2]; 
  SI.Velocity v[2]; 
  SI.Acceleration a[2]; 
  SI.AngularVelocity w; 
  SI.AngularAcceleration z; 
 

equation  
  r = {frame_a.x, frame_a.y} 
  v = der(r); 
  w = der(frame_a.phi); 
 

  a = der(v); 
  z = der(w); 
   
  f = {frame_a.fx, frame_a.fy}; 
  f + m*g = m*a; 
  frame_a.t = I*z; 
end Body 
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• Here is the simulation result: 
 

 

 

 

 

 

 

 

 

• It shows the parabolic descent of a body due to gravity acceleration. 

 

  

 

 

 

 

 

 

 

 

Simulating the body model 

0 1 2 

-20 

-10 

0 

  
[m] 

frame_a.y 



© Dirk Zimmer, February 2014, Slide 18 

Institute of System Dynamics and Control 

• Components that have two 
frames are little more difficult. 

 

• Let us start by modeling a 
neutral component. 

 

• The model itself is rather 
meaningless but it represents a 
good starting point for the 
design of any new component. 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Components with two Flanges 

model Neutral 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_a; 
 
 
 

equation  
 
 
 

  frame_a.fx = 0; 
  frame_a.fy = 0;  
  frame_a.t = 0; 
 
 
 

  frame_a.fx + frame_b.fx = 0; 
  frame_a.fy + frame_b.fy = 0;  
  frame_a.t   
  + frame_b.t  
  - (frame_b.x - frame_a.x)*frame_b.fy 
  + (frame_b.y – frame_a.y)*frame_b.fx 
  = 0; 
end Neutral 
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• The model imposes no 
constraints on the positions. 

• This component has two 
frames, but exhibits no effect. 

• The balance equations for the 
forces contains the lever 
principle. 

 

 
 

 

 τ =  f∙en ∙ s = f∙ (en∙s)   
 τ = (fx,fy)∙(sy,-sx)  

 

 

 

 

 

 

 

 

Components with two Flanges 

model Neutral 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_a; 
 
 
 

equation  
 
 
 

  frame_a.fx = 0; 
  frame_a.fy = 0;  
  frame_a.t = 0; 
 
 
 

  frame_a.fx + frame_b.fx = 0; 
  frame_a.fy + frame_b.fy = 0;  
  frame_a.t   
  + frame_b.t  
  - (frame_b.x - frame_a.x)*frame_b.fy 
  + (frame_b.y – frame_a.y)*frame_b.fx 
  = 0; 
end Neutral 
 

a 

b 

f 

en 
s 
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Guidelines: 

• For each positional constraint we 
add, we have to remove the 
corresponding force equation. 

 

• For each variable that we add, 
we have to add an equation 

 

• Finally, we may be able to 
simplify the balance equations. 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Components with two Flanges 

model Revolute 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_a; 
 
 
 
 
 

equation  
 
 
 

  frame_a.fx = 0; 
  frame_a.fy = 0;  
  frame_a.t = 0; 
 
 
 

  frame_a.fx + frame_b.fx = 0; 
  frame_a.fy + frame_b.fy = 0;  
  frame_a.t   
  + frame_b.t  
  - (frame_b.x - frame_a.x)*frame_b.fy 
  + (frame_b.y – frame_a.y)*frame_b.fx 
  = 0; 
end Revolute 
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Let us start with the revolute joint: 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Revolute Joint 

model Revolute 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_b; 
  
 
 
 
 

equation  
 
 
 

  frame_a.fx = 0; 
  frame_a.fy = 0;  
  frame_a.t = 0; 
 
 
 

  frame_a.fx + frame_b.fx = 0; 
  frame_a.fy + frame_b.fy = 0;  
  frame_a.t   
  + frame_b.t  
  - (frame_b.x - frame_a.x)*frame_b.fy 
  + (frame_b.y – frame_a.y)*frame_b.fx 
  = 0; 
end Revolute 
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Let us start with the revolute joint: 

 

 

 

• The translational positions of a 
and b are equal. (2 constraints) 

• No torque can act on the joint. 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Revolute Joint 

model Revolute 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_b; 
 
 
 
 
 

equation  
 
  frame_a.fx = 0 replaced by 
  frame_a.x = frame_b.x; 
  frame_a.fy = 0 replaced by 
  frame_a.y = frame_b.y; 
  frame_a.t = 0; 
 
 
 

  frame_a.fx + frame_b.fx = 0; 
  frame_a.fy + frame_b.fy = 0;  
  frame_a.t   
  + frame_b.t  
  - (frame_b.x - frame_a.x)*frame_b.fy 
  + (frame_b.y – frame_a.y)*frame_b.fx 
  = 0; 
 

end Revolute 
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Let us start with the revolute joint: 

 

 

 

• The translational positions of a 
and b are equal. (2 constraints) 

• No torque can act on the joint. 

• The lever principle is redundant 
here… 

• That’s it! …actually 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Revolute Joint 

model Revolute 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_b; 
 
 
 
 
 

equation  
 
  frame_a.fx = 0 replaced by 
  frame_a.x = frame_b.x; 
  frame_a.fy = 0 replaced by 
  frame_a.y = frame_b.y; 
  frame_a.t = 0; 
 
 
 

  frame_a.fx + frame_b.fx = 0; 
  frame_a.fy + frame_b.fy = 0;  
  frame_a.t  + frame_b.t = 0; 
 
 
 
 
 

end Revolute 
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Let us start with the revolute joint: 

 

 

 

• For completeness, we’d like to 
add two differential equations for 
the angle, the angular velocity 
and its acceleration. 

• After all, these variables are of 
interest. 

• We can now use the joint in order 
to express motion. 

• It also helps with initialization. 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Revolute Joint 

model Revolute 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_b; 
 
  SI.Angle phi 
  SI.AngularVelocity w; 
  SI.AngularAcceleration z; 
 
 
 

equation  
  frame_a.phi + phi = frame_b.phi; 
  w = der(phi); 
  z = der(w); 
  
  frame_a.x = frame_b.x; 
  frame_a.y = frame_b.y; 
  frame_a.t = 0; 
 
 
 

  frame_a.fx + frame_b.fx = 0; 
  frame_a.fy + frame_b.fy = 0;  
  frame_a.t  + frame_b.t = 0; 
 
 

end Revolute 
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• We already have 3 components: 
• Fixation 
• Body 
• Revolute 

 
• The lecture goes on explaining two more components: 

• Fixed Translation 
• Prismatic Joint 
 

• Having just these five components available, we can already assemble 
many interesting systems.  
 
 
 
 

 
 

 
 

Further components 
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• A seemingly simple system is the double pendulum 

 

 

 

 

 

 

 

 

 

• Let us look at the motion of the peak of the second pendulum. 

 

 

 

Chaos: Double Pendulum 

bodyrevolute
fixedTra?

fixed

body1revolute1
fixedTra?
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Double Pendulum 

body
revolute

fixedTra?

fixed

body1
revolute1

fixedTra?



© Dirk Zimmer, February 2014, Slide 28 

Institute of System Dynamics and Control 

 
 
 
 
 

 
 

 
 

Double Pendulum: Peak Motion 
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• The double pendulum is wonderful example of a chaotic system. 
 

• Although the individual components are simple, the motion of the 
system cannot be predicted. 
 
 
 
 
 

 
 

 
 

Double Pendulum 
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Kinematic Loops 

bodyDrive

revolute?
fixedTra?

fixed

prismatic f ixed1
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• Discussing kinematic loops we can address the 
difficulties of initialization 
 

• Also the matter of state-selection can be addressed 
and it is a good occasion to explain the Pantelides 
Algorithm and its limitations. 
 
 
 
 
 

 
 

 
 

Kinematic Loops 
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Inverse Pendulum 

 
• The task is to balance a 

pendulum in upright 
position. 
 

• On the left you see the 
simulation result using a 
PD controller for control. 

 
 

 
 

 
 



© Dirk Zimmer, February 2014, Slide 33 

Institute of System Dynamics and Control 

Inverse Pendulum 

body
fixedTra?

f ixed

body1actuate?

actuate?

f

force

angleSensor ramp

duratio?

firstOrder

T=0.1

 
• This is the model of an 

inverted (upright) 
pendulum. 
 

• Here, model inversion is 
applied. 
 

• This means we prescribe 
the motion and compute 
the required force 
 

• The motion must be 
differentiable since this is 
a higher index system 
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• The Inverse Pendulum is nice example for control tasks. 
 

• Demonstrating model-inversion reveals to true generality of DAE-based 
modeling of physical systems. 
 
 
 
 
 

 
 

 
 

Inverse Pendulum 

0 1 2

-10

0

10

20

force.f



© Dirk Zimmer, February 2014, Slide 35 

Institute of System Dynamics and Control 

Part 2: 

Part 1:  

• Basics of Planar Mechanics (Excerpts from my 
lecture) 

Part 2:  

• New features / improvements of the free 
PlanarMechanics Library 
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• The library is designed in resemblance to the 
Multibody library 
 

• There are the classic elements such as 
• Rigid parts 
• Joint elements 
• Sensors 
 

• In addition to these elements, there are simple 
wheel and tire models and gear components 
 
 
 

 
 

 
 

Design of the Library 
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• Gravity 
 

• Coordinate System 
 

• Defaults for 
animation 
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Vehicle Components 

Wheel Joints for 

• ideal rolling 
• dry-friction based rolling 
• slip based rolling 

Examples: 

• Single track model 
• Two track model 
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Vehicle Components 

Wheel Joints for 

• ideal rolling 
• dry-friction based rolling 
• slip based rolling 

Examples: 

• Single track model 
• Two track model 
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Gear Components 

Components for Gears 

• Ideal internal contact 
• Ideal external contact 

Examples: 

• Spur Gear 
• Planetary Gear 
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Future Work 
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