

Modelica Model Debugging

Martin Sjölund <martin.sjolund@liu.se>
Linköping University, Sweden

OpenModelica Workshop
February 2013, Linköping, Sweden

mailto:martin.sjolund@liu.se

Modelica

 No explicit control flow
 Optimization
 Symbolic manipulations
 Numerical methods and solvers
 Linear/Non-linear blocks
 Events

Modelica Debugging

 Need knowledge
 Modelica
 The tool
 Numerical methods

Typical Error Message

Error solving nonlinear system 132

 time = 0.002

 residual[0] = 0.288956

 x[0] = 1.105149

 residual[1] = 17.000400

 x[1] = 1.248448

 ...

Better Error Message

Error solving nonlinear system 132 <more info>

 time = 0.002

 residual[0] = 0.288956

 x[0] = 1.105149

 residual[1] = 17.000400

 x[1] = 1.248448

 ...

Origin

 Several Levels
 (Graphical Representation)
 Source Code
 Flat Equation-System
 Optimized Equation-System
 Translated Code (typically C)

 It should always be possible to go backwards
 Simple for flattened equation system to source
 Harder for optimized code

Symbolic Transformations

 From source code to flat equations
 Most of the structure remains
 Few symbolic manipulations (mostly

simplification/evaluation)

 Equation System Optimization
 Changes structure
 Strong connected components
 Variable replacements
 … and more

Tracing Transformations

 Simple Idea
 Store transformations as equation metadata
 Works best for operations on single equations

 Each kind of transformation is different
 Alias Elimination (a = b)
 Gaussian Elimination (linear systems, several

equations)

 Equation solving (f
1
(a,b) = f

2
(a,b), solve for a)

 ...

Alias Elimination

 boxBody1.body.w_a[3] = revolute1.w

 Can remove one variable and replace it
with the other

Operations

 Simplify

 Substitution

 Alias elimination

 Known variables

 Inline

 Scalarization

 Differentiation

 Solve w.r.t.

 Solve linear system symbolically

 New dummy derivative added

 Residual form

Debugging Using the Trace

 General Purpose
 Verify performance and correctness of the trace
 Navigate equations

 Cross-referencing
 Go to parents
 View trajectories

 Special-Purpose
 Non-linear system debugger

Trace Example

Demo

+simCodeTarget=Dump

Future Work

 Graphical debugger
 General-purpose
 Domain-specific

 Cross-references, parent blocks

 Runtime support to launch debugger

 Tracing in algorithmic code

 More operations recorded
 Control flow and events
 Forgotten optimization modules

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

