

Modelica transformational Debugger and
implementation in the OpenModelica Compiler

Martin Sjölund <martin.sjolund@liu.se>
Peter Fritzson <peter.fritzson@liu.se>

Linköping University, Sweden

OpenModelica Workshop
Feb 2012, Linköping University, Sweden

mailto:martin.sjolund@liu.se
mailto:peter.fritzson@liu.se

What Happens in a Modelica Compiler?

Example - RC Circuit (Diagram)

Example - RC Circuit (Code)

model RC

 Modelica.Electrical.Analog.Basic.Ground ground1;

 Modelica.Electrical.Analog.Basic.Resistor resistor1(R = 100);

 Modelica.Electrical.Analog.Basic.Capacitor capacitor1(C = 0.01);

 Modelica.Electrical.Analog.Sources.SineVoltage sinevoltage1(V = 240,
freqHz = 50);

equation

 connect(capacitor1.n,ground1.p);

 connect(sinevoltage1.n,ground1.p);

 connect(resistor1.n,sinevoltage1.p);

 connect(resistor1.p,capacitor1.p);

end RC;

Example - RC Circuit (Flat Code)

class RC // 24 equations and variables

 …

equation

 …

 ground1.p.v = 0.0;

 0.0 = resistor1.p.i + resistor1.n.i;

 resistor1.i = resistor1.p.i;

 resistor1.T_heatPort = resistor1.T;

 capacitor1.i = capacitor1.C * der(capacitor1.v);

 capacitor1.v = capacitor1.p.v - capacitor1.n.v;

 0.0 = capacitor1.p.i + capacitor1.n.i;

 capacitor1.i = capacitor1.p.i;

 …

end RC;

From Unsorted DAE to Sorted ODE

class RC // 24 equations and variables

 …

equation

 …

 ground1.p.v = 0.0;

 0.0 = resistor1.p.i + resistor1.n.i;

 resistor1.i = resistor1.p.i;

 resistor1.T_heatPort = resistor1.T;

 capacitor1.i = capacitor1.C * der(capacitor1.v);

 capacitor1.v = capacitor1.p.v - capacitor1.n.v;

 0.0 = capacitor1.p.i + capacitor1.n.i;

 capacitor1.i = capacitor1.p.i;

 ...

end RC;

class RC // 5 equations and variables

 …

 // 14 alias variables 5 constants

equation

 sinevoltage1.signalSource.y =
sinevoltage1.signalSource.offset + (if time <
sinevoltage1.signalSource.startTime then 0.0 else
sinevoltage1.signalSource.amplitude *
sin(6.28318530717959 *
(sinevoltage1.signalSource.freqHz * (time -
sinevoltage1.signalSource.startTime)) +
sinevoltage1.signalSource.phase));

 resistor1.v = capacitor1.v -
sinevoltage1.signalSource.y;

 capacitor1.i = -resistor1.v / resistor1.R_actual;

 resistor1.LossPower = -resistor1.v * capacitor1.i;

 der(capacitor1.v) = capacitor1.i / capacitor1.C;

end RC;

Debugging Equation Systems

 Modelica involves a lot of magic

● Lots of math
● Hidden to users
● Users want to access this information
● Some algorithms work better for certain input
● Not intuitive

– No explicit control flow
– Numerical solvers
– Linear/Non-linear blocks
– Optimization
– Events

Typical OMC Error Message

Error solving nonlinear system 132

 time = 0.002

 residual[0] = 0.288956

 x[0] = 1.105149

 residual[1] = 17.000400

 x[1] = 1.248448

 ...

Better Message (Post-Mortem)

Error solving nonlinear system 132 <more info>

 time = 0.002

 residual[0] = 0.288956

 x[0] = 1.105149

 residual[1] = 17.000400

 x[1] = 1.248448

 ...

Origin

 Several Levels
 (Graphical Representation)
 Source Code
 Flat Equation-System
 Optimized Equation-System
 Translated Code (typically C)

 It should always be possible to go backwards
 Simple for flattened equation system to source
 Harder for optimized code

Symbolic Transformations

 From source code to flat equations
 Most of the structure remains
 Few symbolic manipulations (mostly

simplification/evaluation)

 Equation System Optimization
 Changes structure
 Strong connected components
 Variable replacements
 … and more

Tracing Transformations

 Simple Idea
 Store transformations as equation metadata
 Works best for operations on single equations

 Each kind of transformation is different
 Alias Elimination (a = b)
 Gaussian Elimination (linear systems, several

equations)

 Equation solving (f
1
(a,b) = f

2
(a,b), solve for a)

 ...

Before:

e2 = simplify(e1);

Now:

(e2,b) = simplify(e1);

source = addSymTSimplify
(b, source, e1, e2);

OpenModelica Implementation (1)

 Equation source has
an extra field for
transformations

 Optimization modules
add information to
this field

 Some operations now
need to keep track of
any changes made

 Expression
simplification changed
to fix-point algorithm

OpenModelica Implementation (2)

 Overhead?
 It is so fast we enable tracing by default (1 extra

comparison and/or cons operation per optimization)
 No overhead unless you print the trace

 +simCodeTarget=Dump

Alias Elimination

a = b

c = a + b

d = a - b

c = a + b (subst a=b) =>

c = b + b (simplify) =>

c = 2 * b

d = a - b (subst a=b) =>

d = b - b (simplify) =>

d = 0.0

 The alias relation a=b
stored in variable a

 The equations are
e.g. stored as
(lhs,rhs,list<ops>)

Debugging Using the Trace

 Text-file
 Initial implementation
 Verify performance and correctness of the trace

 Database (SQL/XML queries)
 Graphical debugging
 Cross-referencing equations (dependents/parents)
 Ability to see why a variable is solved in a particular

way
 Requires a schema

Trace Example

(1) subst:

 y + der(x * (time * z))

 =>

 y + der(x * (time * 1.0))

(2) simplify:

 y + der(x * (time * 1.0))

 =>

 y + der(x * time)

(3) expand derivative (symbolic
diff):

 y + der(x * time)

 =>

 y + (x + der(x) * time)

(4) solve:

 0.0 = y + (x + der(x) * time)

 =>

 der(x) = ((-y) - x) / time
 time <> 0

0 = y + der(x * time * z); z = 1.0;

 differentiation:

 d/dtime L ^ 2.0

 =>

 0.0

 differentiation:

 d/dtime x ^ 2.0 + y ^ 2.0

 =>

 2.0 * (der(x) * x + der(y) * y)

Trace of Dummy Derivatives Alg.

subst:

 2.0 * (der(x) * x + der(y) * y)

 =>

 2.0 * ($DER.x * x + $DER.y * y)

 =>

 2.0 * (u * x + $DER.y * y)

 =>

 2.0 * (u * x + v * y)

 =>

 2.0 * (u * xloc[1] + v * xloc[0])

Readability of Trace

 Most equations have
very few
transformations on
them

 Most of the
interesting equations
have a few

 Still rather readable

Ops Frequency Comment

0 457 Parameters

1 89 Dummy eq & know var

2 720 Alias vars

3 479 Alias vars

4 124 Alias after simplify

5 25 Alias after simplify

6 99 Alias after simplify

7 55 Scalar eq

8 37 ...

9 110 ...

10 72 ...

11 12 ...

12 25 ...

13 35 ...

14 3 Known constant after many
replacements

21 27 World object (3x3 matrix with
many occurances of aliased
vars)

MSL 3.1 MultiBody DoublePendulum

Future Work

 Create database instead of text-file
 Graphical debugger
 Simulation runtime uses database
 Tracing in algorithmic code
 More operations recorded

 Dead code elimination
 Control flow and events
 Forgotten optimization modules

