

Modelica transformational Debugger and
implementation in the OpenModelica Compiler

Martin Sjölund <martin.sjolund@liu.se>
Peter Fritzson <peter.fritzson@liu.se>

Linköping University, Sweden

OpenModelica Workshop
Feb 2012, Linköping University, Sweden

mailto:martin.sjolund@liu.se
mailto:peter.fritzson@liu.se

What Happens in a Modelica Compiler?

Example - RC Circuit (Diagram)

Example - RC Circuit (Code)

model RC

 Modelica.Electrical.Analog.Basic.Ground ground1;

 Modelica.Electrical.Analog.Basic.Resistor resistor1(R = 100);

 Modelica.Electrical.Analog.Basic.Capacitor capacitor1(C = 0.01);

 Modelica.Electrical.Analog.Sources.SineVoltage sinevoltage1(V = 240,
freqHz = 50);

equation

 connect(capacitor1.n,ground1.p);

 connect(sinevoltage1.n,ground1.p);

 connect(resistor1.n,sinevoltage1.p);

 connect(resistor1.p,capacitor1.p);

end RC;

Example - RC Circuit (Flat Code)

class RC // 24 equations and variables

 …

equation

 …

 ground1.p.v = 0.0;

 0.0 = resistor1.p.i + resistor1.n.i;

 resistor1.i = resistor1.p.i;

 resistor1.T_heatPort = resistor1.T;

 capacitor1.i = capacitor1.C * der(capacitor1.v);

 capacitor1.v = capacitor1.p.v - capacitor1.n.v;

 0.0 = capacitor1.p.i + capacitor1.n.i;

 capacitor1.i = capacitor1.p.i;

 …

end RC;

From Unsorted DAE to Sorted ODE

class RC // 24 equations and variables

 …

equation

 …

 ground1.p.v = 0.0;

 0.0 = resistor1.p.i + resistor1.n.i;

 resistor1.i = resistor1.p.i;

 resistor1.T_heatPort = resistor1.T;

 capacitor1.i = capacitor1.C * der(capacitor1.v);

 capacitor1.v = capacitor1.p.v - capacitor1.n.v;

 0.0 = capacitor1.p.i + capacitor1.n.i;

 capacitor1.i = capacitor1.p.i;

 ...

end RC;

class RC // 5 equations and variables

 …

 // 14 alias variables 5 constants

equation

 sinevoltage1.signalSource.y =
sinevoltage1.signalSource.offset + (if time <
sinevoltage1.signalSource.startTime then 0.0 else
sinevoltage1.signalSource.amplitude *
sin(6.28318530717959 *
(sinevoltage1.signalSource.freqHz * (time -
sinevoltage1.signalSource.startTime)) +
sinevoltage1.signalSource.phase));

 resistor1.v = capacitor1.v -
sinevoltage1.signalSource.y;

 capacitor1.i = -resistor1.v / resistor1.R_actual;

 resistor1.LossPower = -resistor1.v * capacitor1.i;

 der(capacitor1.v) = capacitor1.i / capacitor1.C;

end RC;

Debugging Equation Systems

 Modelica involves a lot of magic

● Lots of math
● Hidden to users
● Users want to access this information
● Some algorithms work better for certain input
● Not intuitive

– No explicit control flow
– Numerical solvers
– Linear/Non-linear blocks
– Optimization
– Events

Typical OMC Error Message

Error solving nonlinear system 132

 time = 0.002

 residual[0] = 0.288956

 x[0] = 1.105149

 residual[1] = 17.000400

 x[1] = 1.248448

 ...

Better Message (Post-Mortem)

Error solving nonlinear system 132 <more info>

 time = 0.002

 residual[0] = 0.288956

 x[0] = 1.105149

 residual[1] = 17.000400

 x[1] = 1.248448

 ...

Origin

 Several Levels
 (Graphical Representation)
 Source Code
 Flat Equation-System
 Optimized Equation-System
 Translated Code (typically C)

 It should always be possible to go backwards
 Simple for flattened equation system to source
 Harder for optimized code

Symbolic Transformations

 From source code to flat equations
 Most of the structure remains
 Few symbolic manipulations (mostly

simplification/evaluation)

 Equation System Optimization
 Changes structure
 Strong connected components
 Variable replacements
 … and more

Tracing Transformations

 Simple Idea
 Store transformations as equation metadata
 Works best for operations on single equations

 Each kind of transformation is different
 Alias Elimination (a = b)
 Gaussian Elimination (linear systems, several

equations)

 Equation solving (f
1
(a,b) = f

2
(a,b), solve for a)

 ...

Before:

e2 = simplify(e1);

Now:

(e2,b) = simplify(e1);

source = addSymTSimplify
(b, source, e1, e2);

OpenModelica Implementation (1)

 Equation source has
an extra field for
transformations

 Optimization modules
add information to
this field

 Some operations now
need to keep track of
any changes made

 Expression
simplification changed
to fix-point algorithm

OpenModelica Implementation (2)

 Overhead?
 It is so fast we enable tracing by default (1 extra

comparison and/or cons operation per optimization)
 No overhead unless you print the trace

 +simCodeTarget=Dump

Alias Elimination

a = b

c = a + b

d = a - b

c = a + b (subst a=b) =>

c = b + b (simplify) =>

c = 2 * b

d = a - b (subst a=b) =>

d = b - b (simplify) =>

d = 0.0

 The alias relation a=b
stored in variable a

 The equations are
e.g. stored as
(lhs,rhs,list<ops>)

Debugging Using the Trace

 Text-file
 Initial implementation
 Verify performance and correctness of the trace

 Database (SQL/XML queries)
 Graphical debugging
 Cross-referencing equations (dependents/parents)
 Ability to see why a variable is solved in a particular

way
 Requires a schema

Trace Example

(1) subst:

 y + der(x * (time * z))

 =>

 y + der(x * (time * 1.0))

(2) simplify:

 y + der(x * (time * 1.0))

 =>

 y + der(x * time)

(3) expand derivative (symbolic
diff):

 y + der(x * time)

 =>

 y + (x + der(x) * time)

(4) solve:

 0.0 = y + (x + der(x) * time)

 =>

 der(x) = ((-y) - x) / time
 time <> 0

0 = y + der(x * time * z); z = 1.0;

 differentiation:

 d/dtime L ^ 2.0

 =>

 0.0

 differentiation:

 d/dtime x ^ 2.0 + y ^ 2.0

 =>

 2.0 * (der(x) * x + der(y) * y)

Trace of Dummy Derivatives Alg.

subst:

 2.0 * (der(x) * x + der(y) * y)

 =>

 2.0 * ($DER.x * x + $DER.y * y)

 =>

 2.0 * (u * x + $DER.y * y)

 =>

 2.0 * (u * x + v * y)

 =>

 2.0 * (u * xloc[1] + v * xloc[0])

Readability of Trace

 Most equations have
very few
transformations on
them

 Most of the
interesting equations
have a few

 Still rather readable

Ops Frequency Comment

0 457 Parameters

1 89 Dummy eq & know var

2 720 Alias vars

3 479 Alias vars

4 124 Alias after simplify

5 25 Alias after simplify

6 99 Alias after simplify

7 55 Scalar eq

8 37 ...

9 110 ...

10 72 ...

11 12 ...

12 25 ...

13 35 ...

14 3 Known constant after many
replacements

21 27 World object (3x3 matrix with
many occurances of aliased
vars)

MSL 3.1 MultiBody DoublePendulum

Future Work

 Create database instead of text-file
 Graphical debugger
 Simulation runtime uses database
 Tracing in algorithmic code
 More operations recorded

 Dead code elimination
 Control flow and events
 Forgotten optimization modules

