

Martin Sjölund, Linköping University
2011-02-07

3rd OpenModelica Workshop
Linköping, Sweden

OpenModelica Compiler
Bootstrapping

Vision

 Build a modular and extensive Modelica
compiler

 Compiler functionality resides in Modelica
libraries

 Build toolchains using a Modelica editor using
the components in the compiler libraries

Functionality in Libraries

 Modelica has many operators with function
syntax but special semantics
 initial, pre, sample, delay

 But many primitive operations are missing
 str[n] or stringGet(str,n)
 stringLength(str)
 If we had these, the MSL String package could be

written in Modelica instead of external C

OpenModelica Script

 A mix of external ”builtin” functions and regular
Modelica

function readFileShowLineNumbers

 input String fileName; output String out;

protected String line; Integer num:=1;

algorithm

 out := "";

 for line in strtok(readFile(fileName),"\n") loop

 out := out + String(num) + ": " + line + "\n";

 num := num + 1;

 end for;

end readFileShowLineNumbers;

Static Approach to a Modelica
Compiler

Parser Translator

Symbolic Math

Interpreter

Analyzer Optimizer CodeGen

Modular Approach: Parser

 More choices
 And customizability:

Parse your own
language into
OpenModelica
abstract syntax

Modelica2

Modelica3

MetaModelica

Custom

MetaModelica

 To realize our vision, we need to have the
compiler in the same language as Modelica
with some extensions

 MetaModelica created 2005
 OpenModelica translated to MetaModelica
 Bootstrapping effort started

Why Bootstrapping?

 MMC, the old MetaModelica Compiler
 Written in RML+SML
 Hard to maintain
 Hard to extend

 OMC, the Modelica+MetaModelica Compiler
 We get language features for free
 Easy to extend
 Easy to port MetaModelica extensions to Modelica
 Debugging, Profiling, Testing

What's missing in Modelica?

 Implementing a Parser or Symbolic Math
Library in Modelica
 ”Impossible”
 Modelica only has flat data structures
 Expressions are recursive data structures

Introducing the Union Type

uniontype Expression

 record REAL "A real constant"

 Real r;

 end REAL;

 record ADD "lhs + rhs"

 Expression lhs, rhs;

 end ADD;

 record SUB "lhs - rhs"

 Expression lhs, rhs;

 end SUB;

end Expression;

Lists

uniontype RealList

 record NIL end NIL;

 record CONS

 Real head;

 RealList tail;

 end CONS;

end RealList;

RealList myReals =
CONS(1,CONS(2, NIL));

List<Real> myReals = 1::2::{};

 The list is a common
data type

 Defining a new
uniontype for each
kind of list is not
desirable

 So we introduce a
List type

Options, Tuples

 Option type
 NONE()
 SOME(value)

 Tuples: Anonymous records
 (1,1.5,"abc",true)

Polymorphism

 Reusable functions
 Boxed data types

function listLength

 input List<TypeA> lst;

 output Integer length;

 replaceable type TypeA
subtypeof Any;

external "builtin";

end listLength;

// Works for any list

Accessing Data Structures

 Accessor functions
 j := if not listEmpty(lst) then
2*listGet(lst, 1) else 3;

 Introducing pattern-matching in Modelica

j := match lst

 case (i :: _) then 2*i;

 else 3;

end match;

The Bootstrapped Compiler

 First version, Nov-Dec 2010
 10-100x slower than MMC
 Slow compilation speed (hours)
 Most tests failed due to lack of memory

 Current version, Jan-Feb 2011
 Speed similar to MMC
 Faster compilation than MMC
 Most tests succeed despite lack of garbage

collection

PEXPipe.mo before and after
optimizations

2010-11-24

2011-02-05

Outlook

 Spring 2011
 Adding garbage collector
 Testing the implementation on all platforms (Linux,

OMDEV, OSX and Visual Studio)

 Fall 2011
 Replacing MMC with OMC
 Rewriting compiler sources using new language

extensions
 Add more optimizations

