
Status of the New Backend

Karim Abdelhak, Philip Hannebohm, Bernhard Bachmann

February 6, 2023

University of Applied Sciences Bielefeld
Bielefeld, Germany

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 1 / 37

Proper Hybrid Models for Smarter Vehicles

https://phymos.de

The presented work is part of the PHyMoS project, supported by the German Federal Ministry
for Economic Affairs and Climate Action.

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 2 / 37

1 Overview

2 Two Step Sorting

3 Generalized For-Loops

4 Symbolic Simplification

5 Summary

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 3 / 37

Overview

1. Overview

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 4 / 37

Overview

Backend Modules
Status on Array-Handling

Lowering Simplify Events

DetectStates

Alias

Partitioning Causalize Categorize

Initialization

DAE-Mode

Tearing Solve Jacobian SimCode

Finished Partially Finished Work in Progress

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 5 / 37

Overview

Backend Modules
Status on Array-Handling

Lowering Simplify Events

DetectStates

Alias

Partitioning Causalize Categorize

Initialization

DAE-Mode

Tearing Solve Jacobian SimCode

Finished Partially Finished Work in Progress

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 5 / 37

Overview

Backend Modules
Status on Array-Handling

Lowering Simplify EventsEvents

DetectStates

Alias

Partitioning Causalize Categorize

Initialization

DAE-Mode

Tearing Solve Jacobian SimCode

Finished Partially Finished Work in Progress

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 5 / 37

Overview

Backend Modules
Status on Array-Handling

Lowering Simplify EventsEvents

DetectStates

Alias

Partitioning Causalize Categorize

Initialization

DAE-Mode

Tearing Solve Jacobian SimCode

Finished Partially Finished Work in Progress

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 5 / 37

Overview

Backend Modules
Status on Array-Handling

Lowering Simplify EventsEvents

DetectStates

Alias

Partitioning Causalize Categorize

Initialization

DAE-Mode

Tearing Solve Jacobian SimCode

Finished Partially Finished Work in Progress

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 5 / 37

Overview

Backend Modules
Status on Array-Handling

Lowering Simplify EventsEvents

DetectStates

Alias

Partitioning Causalize Categorize

Initialization

DAE-Mode

Tearing Solve Jacobian SimCode

Finished Partially Finished Work in Progress

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 5 / 37

Overview

Backend Modules
Status on Array-Handling

Lowering Simplify EventsEvents

DetectStates

Alias

Partitioning Causalize Categorize

Initialization

DAE-Mode

Tearing Solve JacobianJacobian SimCode

Finished Partially Finished Work in Progress

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 5 / 37

Overview

Backend Modules
Status on Array-Handling

Lowering Simplify EventsEvents

DetectStates

Alias

Partitioning Causalize Categorize

Initialization

DAE-Mode

Tearing Solve JacobianJacobian SimCode

Finished Partially Finished Work in Progress

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 5 / 37

Two Step Sorting

2. Two Step Sorting

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 6 / 37

Two Step Sorting

Algorithm Outline
1 Pseudo-Array Matching
2 Scalar Sorting
3 Merge algebraic loop nodes
4 Merge array nodes
5 Array sorting
6 Sort array nodes internally

Advantages
Force arrays to be solved in succession if possible
Prevent entwining of arrays as much as possible

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 7 / 37

Two Step Sorting

Algorithm Outline
1 Pseudo-Array Matching
2 Scalar Sorting
3 Merge algebraic loop nodes
4 Merge array nodes
5 Array sorting
6 Sort array nodes internally

Advantages
Force arrays to be solved in succession if possible
Prevent entwining of arrays as much as possible

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 7 / 37

Two Step Sorting

Algorithm Outline
1 Pseudo-Array Matching
2 Scalar Sorting
3 Merge algebraic loop nodes
4 Merge array nodes
5 Array sorting
6 Sort array nodes internally

Advantages
Force arrays to be solved in succession if possible
Prevent entwining of arrays as much as possible

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 7 / 37

Two Step Sorting

Algorithm Outline
1 Pseudo-Array Matching
2 Scalar Sorting
3 Merge algebraic loop nodes
4 Merge array nodes
5 Array sorting
6 Sort array nodes internally

Advantages
Force arrays to be solved in succession if possible
Prevent entwining of arrays as much as possible

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 7 / 37

Two Step Sorting

Algorithm Outline
1 Pseudo-Array Matching
2 Scalar Sorting
3 Merge algebraic loop nodes
4 Merge array nodes
5 Array sorting
6 Sort array nodes internally

Advantages
Force arrays to be solved in succession if possible
Prevent entwining of arrays as much as possible

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 7 / 37

Two Step Sorting

Algorithm Outline
1 Pseudo-Array Matching
2 Scalar Sorting
3 Merge algebraic loop nodes
4 Merge array nodes
5 Array sorting
6 Sort array nodes internally

Advantages
Force arrays to be solved in succession if possible
Prevent entwining of arrays as much as possible

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 7 / 37

Two Step Sorting

Algorithm Outline
1 Pseudo-Array Matching
2 Scalar Sorting
3 Merge algebraic loop nodes
4 Merge array nodes
5 Array sorting
6 Sort array nodes internally

Advantages
Force arrays to be solved in succession if possible
Prevent entwining of arrays as much as possible

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 7 / 37

Two Step Sorting

Algorithm Outline
1 Pseudo-Array Matching
2 Scalar Sorting
3 Merge algebraic loop nodes
4 Merge array nodes
5 Array sorting
6 Sort array nodes internally

Advantages
Force arrays to be solved in succession if possible
Prevent entwining of arrays as much as possible

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 7 / 37

Two Step Sorting

Abstract Graph

Equations Variables

For-Loop 1

For-Loop 2

Array-Variable 1

Array-Variable 2

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 8 / 37

Two Step Sorting

Matching

Equations Variables

For-Loop 1

For-Loop 2

Array-Variable 1

Array-Variable 2

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 8 / 37

Two Step Sorting

Merge algebraic loop nodes

Equations Variables

For-Loop 1

For-Loop 2

Array-Variable 1

Array-Variable 2

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 8 / 37

Two Step Sorting

Merge array nodes

Equations Variables

For-Loop 1

For-Loop 2

Array-Variable 1

Array-Variable 2

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 8 / 37

Two Step Sorting

Merge edges

Equations Variables

For-Loop 1

For-Loop 2

Array-Variable 1

Array-Variable 2

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 8 / 37

Two Step Sorting

Equations Variables

For-Loop 1

For-Loop 2

Array-Variable 1

Array-Variable 2

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 8 / 37

Generalized For-Loops

3. Generalized For-Loops

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 9 / 37

Generalized For-Loops

Example: Diagonal Slice Model

model d i a g on a l_ s l i c e_ f o r 1
Real x [4 , 4] ;
Real y [4] ;

equation
fo r i i n 1 :4 loop

x [i , i] = i ∗cos (t ime) ;
end fo r ;
f o r i i n 1 : 4 , j i n 1 :4 loop

x [i , j] = y [j] + i ∗ s i n (j ∗ t ime) ;
end fo r ;

end d i a g on a l_ s l i c e_ f o r 1 ;

Expected Results
The first for-loop will be solved for the
diagonal elements of x
The second for-loop will be split up into
two for-loops:

1 i 6= j solves the remaining non-diagonal
elements of x

2 i = j solves y

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 10 / 37

Generalized For-Loops

Example: Diagonal Slice Model

model d i a g on a l_ s l i c e_ f o r 1
Real x [4 , 4] ;
Real y [4] ;

equation
fo r i i n 1 :4 loop

x [i , i] = i ∗cos (t ime) ;
end fo r ;
f o r i i n 1 : 4 , j i n 1 :4 loop

x [i , j] = y [j] + i ∗ s i n (j ∗ t ime) ;
end fo r ;

end d i a g on a l_ s l i c e_ f o r 1 ;

Expected Results
The first for-loop will be solved for the
diagonal elements of x
The second for-loop will be split up into
two for-loops:

1 i 6= j solves the remaining non-diagonal
elements of x

2 i = j solves y

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 10 / 37

Generalized For-Loops

Example: Diagonal Slice Model
BLT-Blocks after Solve (-d=bltdump)

−−− A l i a s o f IN I [1 | 1] −−−
BLOCK 1 : Gene r i c Component (s t a t u s = Solve.EXPLICIT)
−−
Va r i a b l e :

x [i , i]
Equat ion :

[FOR−] (4) ($RES_SIM_2)
[−−−−] f o r i i n 1 :4 l o o p
[−−−−] [SCAL] (1) x [i , i] = CAST(Re a l , i) ∗ cos (t ime) ($RES_SIM_3)
[−−−−] end f o r ;
s l i c e : {3 , 2 , 1 , 0}

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 11 / 37

Generalized For-Loops

Example: Diagonal Slice Model
BLT-Blocks after Solve (-d=bltdump)

−−− A l i a s o f IN I [1 | 2] −−−
BLOCK 2 : Gene r i c Component (s t a t u s = Solve.EXPLICIT)
−−
Va r i a b l e :

y [j]
Equat ion :

[FOR−] (16) ($RES_SIM_0)
[−−−−] f o r { i i n 1 : 4 , j i n 1 :4} l o o p
[−−−−] [SCAL] (1) y [j] = −(CAST(Re a l , i) ∗ s i n (CAST(Re a l , j) ∗ t ime) − x [i , j]) (

$RES_SIM_1)
[−−−−] end f o r ;
s l i c e : {15 , 10 , 5 , 0}

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 11 / 37

Generalized For-Loops

Example: Diagonal Slice Model
BLT-Blocks after Solve (-d=bltdump)

−−− A l i a s o f IN I [1 | 3] −−−
BLOCK 3 : Gene r i c Component (s t a t u s = Solve.EXPLICIT)
−−
Va r i a b l e :

x [i , j]
Equat ion :

[FOR−] (16) ($RES_SIM_0)
[−−−−] f o r { i i n 1 : 4 , j i n 1 :4} l o o p
[−−−−] [SCAL] (1) x [i , j] = y [j] + CAST(Re a l , i) ∗ s i n (CAST(Re a l , j) ∗ t ime) ($RES_SIM_1)
[−−−−] end f o r ;
s l i c e : {11 , 7 , 3 , 14 , 6 , 2 , 13 , 9 , 1 , 12 , . . . }

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 11 / 37

Generalized For-Loops

Example: Diagonal Slice Model
SimCode Structures (-d=dumpSimCode)

INIT
−−

(3) s i n g l e g e n e r i c c a l l [i n d e x 2] {3 , 2 , 1 , 0}
(2) s i n g l e g e n e r i c c a l l [i n d e x 1] {15 , 10 , 5 , 0}
(1) s i n g l e g e n e r i c c a l l [i n d e x 0] {11 , 7 , 3 , 14 , 6 , 2 , 13 , 9 , 1 , 12 , . . . }

A l g e b r a i c P a r t i t i o n 1
−−

(6) A l i a s o f 3
(5) A l i a s o f 2
(4) A l i a s o f 1

Gene r i c C a l l s
−−

(0) [SNGL] : {{ i | s t a r t : 1 , s t ep : 1 , s i z e : 4} , { j | s t a r t : 1 , s t e p : 1 , s i z e : 4}}
x [i , j] = y [j] + CAST(Re a l , i) ∗ s i n (CAST(Re a l , j) ∗ t ime)

(1) [SNGL] : {{ i | s t a r t : 1 , s t ep : 1 , s i z e : 4} , { j | s t a r t : 1 , s t e p : 1 , s i z e : 4}}
y [j] = −(CAST(Re a l , i) ∗ s i n (CAST(Re a l , j) ∗ t ime) − x [i , j])

(2) [SNGL] : {{ i | s t a r t : 1 , s t ep : 1 , s i z e : 4}}
x [i , i] = CAST(Re a l , i) ∗ cos (t ime)

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 12 / 37

Generalized For-Loops

Example: Diagonal Slice Model
SimCode Structures (-d=dumpSimCode)

INIT
−−

(3) s i n g l e g e n e r i c c a l l [i n d e x 2] {3 , 2 , 1 , 0}
(2) s i n g l e g e n e r i c c a l l [i n d e x 1] {15 , 10 , 5 , 0}
(1) s i n g l e g e n e r i c c a l l [i n d e x 0] {11 , 7 , 3 , 14 , 6 , 2 , 13 , 9 , 1 , 12 , . . . }

A l g e b r a i c P a r t i t i o n 1
−−

(6) A l i a s o f 3
(5) A l i a s o f 2
(4) A l i a s o f 1

Gene r i c C a l l s
−−

(0) [SNGL] : {{ i | s t a r t : 1 , s t ep : 1 , s i z e : 4} , { j | s t a r t : 1 , s t e p : 1 , s i z e : 4}}
x [i , j] = y [j] + CAST(Re a l , i) ∗ s i n (CAST(Re a l , j) ∗ t ime)

(1) [SNGL] : {{ i | s t a r t : 1 , s t ep : 1 , s i z e : 4} , { j | s t a r t : 1 , s t e p : 1 , s i z e : 4}}
y [j] = −(CAST(Re a l , i) ∗ s i n (CAST(Re a l , j) ∗ t ime) − x [i , j])

(2) [SNGL] : {{ i | s t a r t : 1 , s t ep : 1 , s i z e : 4}}
x [i , i] = CAST(Re a l , i) ∗ cos (t ime)

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 12 / 37

Generalized For-Loops

Example: Diagonal Slice Model
SimCode Structures (-d=dumpSimCode)

INIT
−−

(3) s i n g l e g e n e r i c c a l l [i n d e x 2] {3 , 2 , 1 , 0}
(2) s i n g l e g e n e r i c c a l l [i n d e x 1] {15 , 10 , 5 , 0}
(1) s i n g l e g e n e r i c c a l l [i n d e x 0] {11 , 7 , 3 , 14 , 6 , 2 , 13 , 9 , 1 , 12 , . . . }

A l g e b r a i c P a r t i t i o n 1
−−

(6) A l i a s o f 3
(5) A l i a s o f 2
(4) A l i a s o f 1

Gene r i c C a l l s
−−

(0) [SNGL] : {{ i | s t a r t : 1 , s t ep : 1 , s i z e : 4} , { j | s t a r t : 1 , s t e p : 1 , s i z e : 4}}
x [i , j] = y [j] + CAST(Re a l , i) ∗ s i n (CAST(Re a l , j) ∗ t ime)

(1) [SNGL] : {{ i | s t a r t : 1 , s t ep : 1 , s i z e : 4} , { j | s t a r t : 1 , s t e p : 1 , s i z e : 4}}
y [j] = −(CAST(Re a l , i) ∗ s i n (CAST(Re a l , j) ∗ t ime) − x [i , j])

(2) [SNGL] : {{ i | s t a r t : 1 , s t ep : 1 , s i z e : 4}}
x [i , i] = CAST(Re a l , i) ∗ cos (t ime)

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 12 / 37

Generalized For-Loops

Example: Diagonal Slice Model
Generated C-Code

vo i d g en e r i cCa l l_0 (DATA ∗data , threadData_t ∗ threadData , i n t i d x)
{

i n t tmp = i d x ;
i n t i_ l o c = tmp % 4 ;
i n t i = 1 ∗ i_ l o c + 1 ;
tmp /= 4 ;
i n t j_ loc = tmp % 4 ;
i n t j = 1 ∗ j_ loc + 1 ;
tmp /= 4 ;
(&data−>lo c a lDa t a [0]−> r e a l V a r s [0] /∗ x [1 , 1] v a r i a b l e ∗/) [(i − 1) ∗ 4 + (j −1)] = (&data−>lo c a lDa t a

[0]−> r e a l V a r s [1 6] /∗ y [1] v a r i a b l e ∗/) [j − 1] + (((mode l i c a_rea l) i)) ∗ (s i n ((((mode l i c a_rea l) j)
) ∗ (data−>lo c a lDa t a [0]−> t imeVa lue))) ;

}

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 13 / 37

Generalized For-Loops

Example: Diagonal Slice Model
Generated C-Code

vo i d g en e r i cCa l l_1 (DATA ∗data , threadData_t ∗ threadData , i n t i d x)
{

i n t tmp = i d x ;
i n t i_ l o c = tmp % 4 ;
i n t i = 1 ∗ i_ l o c + 1 ;
tmp /= 4 ;
i n t j_ loc = tmp % 4 ;
i n t j = 1 ∗ j_ loc + 1 ;
tmp /= 4 ;
(&data−>lo c a lDa t a [0]−> r e a l V a r s [1 6] /∗ y [1] v a r i a b l e ∗/) [j − 1] = (− ((((mode l i c a_rea l) i)) ∗ (s i n

((((mode l i c a_rea l) j)) ∗ (data−>lo c a lDa t a [0]−> t imeVa lue))) − (&data−>lo c a lDa t a [0]−> r e a l V a r s [0]
/∗ x [1 , 1] v a r i a b l e ∗/) [(i − 1) ∗ 4 + (j −1)])) ;

}

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 13 / 37

Generalized For-Loops

Example: Diagonal Slice Model
Generated C-Code

vo i d g en e r i cCa l l_2 (DATA ∗data , threadData_t ∗ threadData , i n t i d x)
{

i n t tmp = i d x ;
i n t i_ l o c = tmp % 4 ;
i n t i = 1 ∗ i_ l o c + 1 ;
tmp /= 4 ;
(&data−>lo c a lDa t a [0]−> r e a l V a r s [0] /∗ x [1 , 1] v a r i a b l e ∗/) [(i − 1) ∗ 4 + (i −1)] = (((mode l i c a_rea l) i

)) ∗ (cos (data−>lo c a lDa t a [0]−> t imeVa lue)) ;
}

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 13 / 37

Generalized For-Loops

Example: Diagonal Slice Model
Generated C-Code

/∗
equa t i on i ndex : 1
type : SES_GENERIC_ASSIGN c a l l i n d e x : 0
∗/
vo i d d iagona l_s l i c e_fo r1_eqFunct ion_1 (DATA ∗data , threadData_t ∗ th readData)
{

TRACE_PUSH
cons t i n t e q u a t i o n I n d e x e s [2] = {1 ,1} ;
con s t i n t i d x_ l s t [1 2] = {11 , 7 , 3 , 14 , 6 , 2 , 13 , 9 , 1 , 12 , 8 , 4} ;
f o r (i n t i =0; i <12; i++)

gen e r i cCa l l_0 (data , threadData , i d x_ l s t [i]) ; /∗ d i a g o n a l_ s l i c e_ f o r 1_g en e r i cC a l l ∗/
TRACE_POP

}

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 13 / 37

Generalized For-Loops

Example: Entwined For-Loops Model

model entw ine_for1
Real x [1 0] ;
Real y [1 0] ;

equation
x [1] = 1 ;
y [1] = 2 ;
f o r j i n 2 :10 loop

x [j] = y [j−1] ∗ s i n (t ime) ;
end fo r ;
f o r i i n 2 :5 loop

y [i] = x [i−1] ;
end fo r ;
f o r i i n 6 :10 loop

y [i] = x [i−1] ∗ 2 ;
end fo r ;

end entw ine_for1 ;

Expected Results
The first two scalar equations will be
solved for x [1] and y [1]
The three for loops will be solved as
follows:

1 alternating between the first and the
second for i = 2 : 5

2 alternating between the first and the
third for i = 6 : 10

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 14 / 37

Generalized For-Loops

Example: Entwined For-Loops Model

model entw ine_for1
Real x [1 0] ;
Real y [1 0] ;

equation
x [1] = 1 ;
y [1] = 2 ;
f o r j i n 2 :10 loop

x [j] = y [j−1] ∗ s i n (t ime) ;
end fo r ;
f o r i i n 2 :5 loop

y [i] = x [i−1] ;
end fo r ;
f o r i i n 6 :10 loop

y [i] = x [i−1] ∗ 2 ;
end fo r ;

end entw ine_for1 ;

Expected Results
The first two scalar equations will be
solved for x [1] and y [1]
The three for loops will be solved as
follows:

1 alternating between the first and the
second for i = 2 : 5

2 alternating between the first and the
third for i = 6 : 10

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 14 / 37

Generalized For-Loops

BLOCK 3 : Entwined Component (s t a t u s = Solve.EXPLICIT)
−−
c a l l o r d e r : {$RES_SIM_2, $RES_SIM_4, $RES_SIM_2, $RES_SIM_4, $RES_SIM_2, $RES_SIM_4, $RES_SIM_2,

$RES_SIM_4, $RES_SIM_0, $RES_SIM_4, . . . }
BLOCK: Gene r i c Component (s t a t u s = Solve.EXPLICIT)
−−
Va r i a b l e :

y [i]
Equat ion :

[FOR−] (5) ($RES_SIM_0)
[−−−−] f o r i i n 6 :10 l o o p
[−−−−] [SCAL] (1) y [i] = 2 .0 ∗ x [(−1) + i] ($RES_SIM_1)
[−−−−] end f o r ;
s l i c e : {0 , 1 , 2 , 3 , 4}

BLOCK: Gene r i c Component (s t a t u s = Solve.EXPLICIT)
−−
Va r i a b l e :

x [j]
Equat ion :

[FOR−] (9) ($RES_SIM_4)
[−−−−] f o r j i n 2 :10 l o o p
[−−−−] [SCAL] (1) x [j] = y [(−1) + j] ∗ s i n (t ime) ($RES_SIM_5)
[−−−−] end f o r ;
s l i c e : {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8}

BLOCK: Gene r i c Component (s t a t u s = Solve.EXPLICIT)
−−
Va r i a b l e :

y [i]
Equat ion :

[FOR−] (4) ($RES_SIM_2)
[−−−−] f o r i i n 2 :5 l o o p
[−−−−] [SCAL] (1) y [i] = x [(−1) + i] ($RES_SIM_3)
[−−−−] end f o r ;
s l i c e : {0 , 1 , 2 , 3}

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 15 / 37

Generalized For-Loops

Example: Entwined For-Loops Model
SimCode Structures (-d=dumpSimCode)

INIT
−−

(6) x [1] := 1 .0
(5) y [1] := 2 .0
entwined c a l l (4)

(3) s i n g l e g e n e r i c c a l l [i n d e x 2] {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8}
(2) s i n g l e g e n e r i c c a l l [i n d e x 1] {0 , 1 , 2 , 3}
(1) s i n g l e g e n e r i c c a l l [i n d e x 0] {0 , 1 , 2 , 3 , 4}

A l g e b r a i c P a r t i t i o n 1
−−

(12) A l i a s o f 5
(11) A l i a s o f 6
entwined c a l l (10)

(9) s i n g l e g e n e r i c c a l l [i n d e x 1] {0 , 1 , 2 , 3}
(8) s i n g l e g e n e r i c c a l l [i n d e x 2] {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8}
(7) s i n g l e g e n e r i c c a l l [i n d e x 0] {0 , 1 , 2 , 3 , 4}

Gene r i c C a l l s
−−

(0) [SNGL] : {{ i | s t a r t : 6 , s t ep : 1 , s i z e : 5}}
y [i] = 2 .0 ∗ x [(−1) + i]

(1) [SNGL] : {{ i | s t a r t : 2 , s t ep : 1 , s i z e : 4}}
y [i] = x [(−1) + i]

(2) [SNGL] : {{ j | s t a r t : 2 , s t e p : 1 , s i z e : 9}}
x [j] = y [(−1) + j] ∗ s i n (t ime)

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 16 / 37

Generalized For-Loops

Example: Entwined For-Loops Model
Generated C-Code

vo i d entwine_for1_eqFunct ion_4 (DATA ∗data , threadData_t ∗ th readData)
{

TRACE_PUSH
cons t i n t e q u a t i o n I n d e x e s [2] = {1 ,4} ;
i n t c a l l _ i n d i c e s [3] = {0 , 0 , 0} ;
con s t i n t c a l l_o r d e r [1 8] = {2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 0 , 2 , 0 , 2 , 0 , 2 , 0 , 2 , 0} ;
con s t i n t idx_ls t_2 [9] = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} ;
con s t i n t idx_ls t_1 [4] = {0 , 1 , 2 , 3} ;
con s t i n t idx_ls t_0 [5] = {0 , 1 , 2 , 3 , 4} ;
f o r (i n t i =0; i <18; i++)
{

sw i t c h (c a l l_o r d e r [i])
{

ca se 2 :
g en e r i cCa l l_2 (data , threadData , idx_ls t_2 [c a l l _ i n d i c e s [0]]) ;
c a l l _ i n d i c e s [0]++;
break ;

ca se 1 :
g en e r i cCa l l_1 (data , threadData , idx_ls t_1 [c a l l _ i n d i c e s [1]]) ;
c a l l _ i n d i c e s [1]++;
break ;

ca se 0 :
g en e r i cCa l l_0 (data , threadData , idx_ls t_0 [c a l l _ i n d i c e s [2]]) ;
c a l l _ i n d i c e s [2]++;
break ;

d e f a u l t :
th rowSt reamPr in t (NULL , " C a l l i n d e x %d at pos %d unknown f o r : " , c a l l_o r d e r [i] , i) ;
b reak ;

}
}
TRACE_POP

} Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 17 / 37

Symbolic Simplification

4. Symbolic Simplification

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 18 / 37

Symbolic Simplification

Solving Equations for Variables

Current Implementation
encoding expressions as a tree

rewrite rules

graph of equivalent expressions/equations

heuristic graph traversal

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 19 / 37

Symbolic Simplification

Solving Equations for Variables

Current Implementation
encoding expressions as a tree

rewrite rules

graph of equivalent expressions/equations

heuristic graph traversal

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 19 / 37

Symbolic Simplification

Solving Equations for Variables

Current Implementation
encoding expressions as a tree

rewrite rules

graph of equivalent expressions/equations

heuristic graph traversal

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 19 / 37

Symbolic Simplification

Solving Equations for Variables

Current Implementation
encoding expressions as a tree

rewrite rules

graph of equivalent expressions/equations

heuristic graph traversal

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 19 / 37

Symbolic Simplification

Expression Trees

x + cos y · 3

+

x ∗

cos

y

3

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 20 / 37

Symbolic Simplification

Expression Trees

x + cos(y) · 3

+

x ∗

cos

y

3

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 20 / 37

Symbolic Simplification

Expression Trees

x + cos(y · 3)

+

x cos

∗

y 3

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 20 / 37

Symbolic Simplification

Algebra/Rewrite Rules

Rewrite Rules
Define equivalent terms
Also possible for arrays and
records

a ∗ b+ a ∗ c ⇔ a ∗ (b+ c)

(a+ b) · (a− b) ⇔ a2 − b2

am · an ⇔ am+n

(AB)T ⇔ BTAT

(MT)−1 ⇔ (M−1)T

zw̄ ⇔ (z̄w)

. . .

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 21 / 37

Symbolic Simplification

Algebra/Rewrite Rules

Rewrite Rules
Define equivalent terms
Also possible for arrays and
records

a ∗ b+ a ∗ c ⇔ a ∗ (b+ c)

(a+ b) · (a− b) ⇔ a2 − b2

am · an ⇔ am+n

(AB)T ⇔ BTAT

(MT)−1 ⇔ (M−1)T

zw̄ ⇔ (z̄w)

. . .

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 21 / 37

Symbolic Simplification

Algebra/Rewrite Rules

Rewrite Rules
Define equivalent terms
Also possible for arrays and
records

a ∗ b+ a ∗ c ⇔ a ∗ (b+ c)

(a+ b) · (a− b) ⇔ a2 − b2

am · an ⇔ am+n

(AB)T ⇔ BTAT

(MT)−1 ⇔ (M−1)T

zw̄ ⇔ (z̄w)

. . .

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 21 / 37

Symbolic Simplification

Equivalent Expressions

Equivalence Structure
vertex = expression
edge = rewrite rule between e1 and e2

conceptually infinite graph
simplifying = graph search

2− (x − 1) · (x + 1)

2− (x2 − 1)

2− x2 + 1

3− x2

2− (x2 + x − x − 1)

3− (x2 + x − x)

3− x2 + 0

. . .

. . .

. . .

. . .

. . .

. . .

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 22 / 37

Symbolic Simplification

Equivalent Expressions

Equivalence Structure
vertex = expression
edge = rewrite rule between e1 and e2

conceptually infinite graph
simplifying = graph search

2− (x − 1) · (x + 1)

2− (x2 − 1)

2− x2 + 1

3− x2

2− (x2 + x − x − 1)

3− (x2 + x − x)

3− x2 + 0

. . .

. . .

. . .

. . .

. . .

. . .

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 22 / 37

Symbolic Simplification

OMC – Symbolic Simplify

Old Implementation
destructive rewriting, loses intermediate expressions
finds only local optima
rewrites and rewrite order have to be carefully crafted by hand

New Implementation (WIP)

non-destructive rewriting, potentially infinite
finds global optima (if e-graph is saturated), cost function can be customized
all possible rewrites are applied iteratively
saturated e-graph reusable for next expression

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 23 / 37

Symbolic Simplification

OMC – Symbolic Simplify

Old Implementation
destructive rewriting, loses intermediate expressions
finds only local optima
rewrites and rewrite order have to be carefully crafted by hand

New Implementation (WIP)

non-destructive rewriting, potentially infinite
finds global optima (if e-graph is saturated), cost function can be customized
all possible rewrites are applied iteratively
saturated e-graph reusable for next expression

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 23 / 37

Symbolic Simplification

E-Graph

E-Graphs and Equality Saturation
E-Graph structure
Equality Saturation
Extraction
Analysis

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 24 / 37

Symbolic Simplification

E-Graph

Informal Definition
e-graph is a set of e-classes
e-class is a set of e-nodes, has unique id
e-node is (symbol, list of e-class ids)

Example:

2x = x + x = x + x + 0 = x + x + 0+ 0 = . . .

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 25 / 37

Symbolic Simplification

E-Graph

Informal Definition
e-graph is a set of e-classes
e-class is a set of e-nodes, has unique id
e-node is (symbol, list of e-class ids)

Example:

2x = x + x = x + x + 0 = x + x + 0+ 0 = . . .

2 x

∗

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 25 / 37

Symbolic Simplification

E-Graph

Informal Definition
e-graph is a set of e-classes
e-class is a set of e-nodes, has unique id
e-node is (symbol, list of e-class ids)

Example:

2x = x + x = x + x + 0 = x + x + 0+ 0 = . . .

2 x

∗ +

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 25 / 37

Symbolic Simplification

E-Graph

Informal Definition
e-graph is a set of e-classes
e-class is a set of e-nodes, has unique id
e-node is (symbol, list of e-class ids)

Example:

2x = x + x = x + x + 0 = x + x + 0+ 0 = . . .

2 x 0

∗ + +

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 25 / 37

Symbolic Simplification

E-Graph
Equality Saturation

Input: An expression e
Output: best expression equivalent to e

1 G ← initial e-graph from e
2 while G is not saturated do
3 M ← ∅
4 for (l → r) ∈ R do
5 for matches (σ, c) of l in G do
6 M ← M ∪ (r , σ, c)
7 for (r , σ, c) ∈ M do
8 c ′ ← add r [σ] to G and yield id
9 merge c and c ′ in G

10 rebuild G

11 return best expression from G

G is an e-graph

R is a set of rewrite rules

M is a set of matches

c , c ′ are e-classes

e, l , r are algebraic expressions

σ is a set of variable substitutions

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 26 / 37

Symbolic Simplification

E-Graph
Extraction

Get an expression out of the e-graph, according to some objective (cost function).

Simple cost function (e.g. minimum number of nodes): bottom-up, greedy traversal

2 x 0

∗ + +

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 27 / 37

Symbolic Simplification

E-Graph
Extraction

Get an expression out of the e-graph, according to some objective (cost function).

Simple cost function (e.g. minimum number of nodes): bottom-up, greedy traversal

2 x 0

∗ + +

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 27 / 37

Symbolic Simplification

E-Graph
Extraction

Get an expression out of the e-graph, according to some objective (cost function).

Simple cost function (e.g. minimum number of nodes): bottom-up, greedy traversal

2 x 0

∗ + +

1 1 1

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 27 / 37

Symbolic Simplification

E-Graph
Extraction

Get an expression out of the e-graph, according to some objective (cost function).

Simple cost function (e.g. minimum number of nodes): bottom-up, greedy traversal

2 x 0

∗ + +

1 1 1

3 2

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 27 / 37

Symbolic Simplification

E-Graph
Extraction

Get an expression out of the e-graph, according to some objective (cost function).

Simple cost function (e.g. minimum number of nodes): bottom-up, greedy traversal

2 x 0

∗ + +

1 1 1

3 2 4

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 27 / 37

Symbolic Simplification

E-Graph
E-Class Analyses

Take some semilattice domain D and associate a value dc ∈ D to each e-class c .

make(n) → dc construct new e-class

join(dc1, dc2) → dc merge c1, c2 into c

modify(c) → c ′ optionally modify c based on dc

Can be used to
manipulate the e-graph, e.g. constant folding
steer rewrites during equality saturation
determine cost of e-nodes during extraction

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 28 / 37

Symbolic Simplification

E-Graph
E-Class Analyses

Take some semilattice domain D and associate a value dc ∈ D to each e-class c .

make(n) → dc construct new e-class

join(dc1, dc2) → dc merge c1, c2 into c

modify(c) → c ′ optionally modify c based on dc

Can be used to
manipulate the e-graph, e.g. constant folding
steer rewrites during equality saturation
determine cost of e-nodes during extraction

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 28 / 37

Symbolic Simplification

E-Graph
E-Class Analyses

Take some semilattice domain D and associate a value dc ∈ D to each e-class c .

make(n) → dc construct new e-class

join(dc1, dc2) → dc merge c1, c2 into c

modify(c) → c ′ optionally modify c based on dc

Can be used to
manipulate the e-graph, e.g. constant folding
steer rewrites during equality saturation
determine cost of e-nodes during extraction

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 28 / 37

Symbolic Simplification

E-Graph
Relational E-Matching

Representation
An e-graph represents a term if any of its e-classes does.
An e-class c represents a term if any e-node n ∈ c does.
An e-node f (c1, . . . , ck) represents a term f (t1, . . . , tk) if they have the same symbol and
ci represents ti for all i .

Potential Bottleneck:
Pattern matching in the e-graph takes 60 to 90% of computation time!

Solution
Transform e-graph into data base → Conjunctive Queries are fast and can be optimized.

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 29 / 37

Symbolic Simplification

E-Graph
Relational E-Matching

Representation
An e-graph represents a term if any of its e-classes does.
An e-class c represents a term if any e-node n ∈ c does.
An e-node f (c1, . . . , ck) represents a term f (t1, . . . , tk) if they have the same symbol and
ci represents ti for all i .

Potential Bottleneck:
Pattern matching in the e-graph takes 60 to 90% of computation time!

Solution
Transform e-graph into data base → Conjunctive Queries are fast and can be optimized.

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 29 / 37

Symbolic Simplification

E-Graph
Relational E-Matching

Representation
An e-graph represents a term if any of its e-classes does.
An e-class c represents a term if any e-node n ∈ c does.
An e-node f (c1, . . . , ck) represents a term f (t1, . . . , tk) if they have the same symbol and
ci represents ti for all i .

Potential Bottleneck:
Pattern matching in the e-graph takes 60 to 90% of computation time!

Solution
Transform e-graph into data base → Conjunctive Queries are fast and can be optimized.

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 29 / 37

Symbolic Simplification

E-Graph
Relational E-Matching

Relational e-matching allows fast lookups on pre-saturated e-graphs:
1 Generate set of "training" expressions
2 Saturate an e-graph on that set
3 Store data base representation of e-graph
4 During compilation, perform queries

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 30 / 37

Symbolic Simplification

E-Graph
Relational E-Matching

Relational e-matching allows fast lookups on pre-saturated e-graphs:
1 Generate set of "training" expressions
2 Saturate an e-graph on that set
3 Store data base representation of e-graph
4 During compilation, perform queries

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 30 / 37

Symbolic Simplification

E-Graph
Relational E-Matching

Relational e-matching allows fast lookups on pre-saturated e-graphs:
1 Generate set of "training" expressions
2 Saturate an e-graph on that set
3 Store data base representation of e-graph
4 During compilation, perform queries

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 30 / 37

Symbolic Simplification

E-Graph
Relational E-Matching

Relational e-matching allows fast lookups on pre-saturated e-graphs:
1 Generate set of "training" expressions
2 Saturate an e-graph on that set
3 Store data base representation of e-graph
4 During compilation, perform queries

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 30 / 37

Symbolic Simplification

E-Graph
Relational E-Matching

Relational e-matching allows fast lookups on pre-saturated e-graphs:
1 Generate set of "training" expressions
2 Saturate an e-graph on that set
3 Store data base representation of e-graph
4 During compilation, perform queries

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 30 / 37

Symbolic Simplification

E-Graph
Current Status

Experimental version in MetaModelica (Bugs included)
Attempts to incorporate E-Graph implementation in Rust

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 31 / 37

Symbolic Simplification

E-Graph
Current Status

Experimental version in MetaModelica (Bugs included)
Attempts to incorporate E-Graph implementation in Rust

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 31 / 37

Symbolic Simplification

E-Graph
Next Step – Solving Equations with E-Graphs

First approach:

L = R ⇔ L− R = 0

BUT
Equations have a broader set of
rewrite rules than expressions, i.e.
equivalence transformations.

View equation as tuple of two
expressions

L = R 7→ (L,R)

Then e.g.

(L,R) ≡ (L+ a,R + a)

Q: reusability?

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 32 / 37

Symbolic Simplification

E-Graph
Next Step – Solving Equations with E-Graphs

First approach:

L = R ⇔ L− R = 0

BUT
Equations have a broader set of
rewrite rules than expressions, i.e.
equivalence transformations.

View equation as tuple of two
expressions

L = R 7→ (L,R)

Then e.g.

(L,R) ≡ (L+ a,R + a)

Q: reusability?

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 32 / 37

Symbolic Simplification

E-Graph
Next Step – Solving Equations with E-Graphs

First approach:

L = R ⇔ L− R = 0

BUT
Equations have a broader set of
rewrite rules than expressions, i.e.
equivalence transformations.

View equation as tuple of two
expressions

L = R 7→ (L,R)

Then e.g.

(L,R) ≡ (L+ a,R + a)

Q: reusability?

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 32 / 37

Symbolic Simplification

E-Graph
Next Step – Solving Equations with E-Graphs

First approach:

L = R ⇔ L− R = 0

BUT
Equations have a broader set of
rewrite rules than expressions, i.e.
equivalence transformations.

View equation as tuple of two
expressions

L = R 7→ (L,R)

Then e.g.

(L,R) ≡ (L+ a,R + a)

Q: reusability?

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 32 / 37

Symbolic Simplification

E-Graph
Rewrite Rule Inference Using Equality Saturation

Compared to a similar tool built on CVC4, Ruler synthesizes 5.8× smaller rulesets 25×
faster without compromising on proving power. In an end-to-end case study, we show
Ruler-synthesized rules which perform as well as those crafted by domain experts, and
addressed a longstanding issue in a popular open source tool.

More systematic than heuristics
Instead of defining the rewrite rules by hand, let equality saturation do the job of finding the
optimal rewrites.

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 33 / 37

Summary

5. Summary

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 34 / 37

Summary

Summary

Recent Development
2-Step Sorting
Generalized For-Loops
Jacobians and Sparsity Patterns

Current Development
Generalized When, If and Array Equations
Enable Sparse Solvers
E-Graph based Symbolic Simplification in MetaModelica and Rust

Upcoming Plans
Pseudo-Array Index Reduction
E-Graph based Symbolic Solving

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 35 / 37

Summary

Summary

Recent Development
2-Step Sorting
Generalized For-Loops
Jacobians and Sparsity Patterns

Current Development
Generalized When, If and Array Equations
Enable Sparse Solvers
E-Graph based Symbolic Simplification in MetaModelica and Rust

Upcoming Plans
Pseudo-Array Index Reduction
E-Graph based Symbolic Solving

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 35 / 37

Summary

Summary

Recent Development
2-Step Sorting
Generalized For-Loops
Jacobians and Sparsity Patterns

Current Development
Generalized When, If and Array Equations
Enable Sparse Solvers
E-Graph based Symbolic Simplification in MetaModelica and Rust

Upcoming Plans
Pseudo-Array Index Reduction
E-Graph based Symbolic Solving

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 35 / 37

Summary

References

Chandrakana Nandi et al. “Rewrite Rule Inference Using Equality Saturation”. In: Proc.
ACM Program. Lang. 5.OOPSLA (Oct. 2021). DOI: 10.1145/3485496. URL:
https://doi.org/10.1145/3485496.

Max Willsey et al. “egg: Fast and Extensible Equality Saturation”. In: Proc. ACM
Program. Lang. 5.POPL (Jan. 2021). DOI: 10.1145/3434304. URL:
https://doi.org/10.1145/3434304.

Yihong Zhang et al. “Relational E-Matching”. In: Proc. ACM Program. Lang. 6.POPL
(Jan. 2022). DOI: 10.1145/3498696. URL: https://doi.org/10.1145/3498696.

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 36 / 37

https://doi.org/10.1145/3485496
https://doi.org/10.1145/3485496
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3498696
https://doi.org/10.1145/3498696

Summary

Thank you for your attention!

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 37 / 37

	Overview
	Two Step Sorting
	Generalized For-Loops
	Symbolic Simplification
	Summary
	References

