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2. Two Step Sorting
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Two Step Sorting

Algorithm Outline
1 Pseudo-Array Matching
2 Scalar Sorting
3 Merge algebraic loop nodes
4 Merge array nodes
5 Array sorting
6 Sort array nodes internally

Advantages
Force arrays to be solved in succession if possible
Prevent entwining of arrays as much as possible
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Two Step Sorting

Abstract Graph

Equations Variables

For-Loop 1

For-Loop 2

Array-Variable 1

Array-Variable 2
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3. Generalized For-Loops
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Generalized For-Loops

Example: Diagonal Slice Model

model d i a g on a l_ s l i c e_ f o r 1
Real x [ 4 , 4 ] ;
Real y [ 4 ] ;

equation
fo r i i n 1 :4 loop

x [ i , i ] = i ∗cos ( t ime ) ;
end fo r ;
f o r i i n 1 : 4 , j i n 1 :4 loop

x [ i , j ] = y [ j ] + i ∗ s i n ( j ∗ t ime ) ;
end fo r ;

end d i a g on a l_ s l i c e_ f o r 1 ;

Expected Results
The first for-loop will be solved for the
diagonal elements of x
The second for-loop will be split up into
two for-loops:

1 i 6= j solves the remaining non-diagonal
elements of x

2 i = j solves y
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Generalized For-Loops

Example: Diagonal Slice Model
BLT-Blocks after Solve (-d=bltdump)

−−− A l i a s o f IN I [ 1 | 1 ] −−−
BLOCK 1 : Gene r i c Component ( s t a t u s = Solve.EXPLICIT )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
### Va r i a b l e :

x [ i , i ]
### Equat ion :

[FOR− ] ( 4 ) ($RES_SIM_2)
[−−−−] f o r i i n 1 :4 l o o p
[−−−−] [ SCAL ] (1 ) x [ i , i ] = CAST( Re a l , i ) ∗ cos ( t ime ) ($RES_SIM_3)
[−−−−] end f o r ;
s l i c e : {3 , 2 , 1 , 0}
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Generalized For-Loops

Example: Diagonal Slice Model
BLT-Blocks after Solve (-d=bltdump)

−−− A l i a s o f IN I [ 1 | 2 ] −−−
BLOCK 2 : Gene r i c Component ( s t a t u s = Solve.EXPLICIT )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
### Va r i a b l e :

y [ j ]
### Equat ion :

[FOR− ] (16) ($RES_SIM_0)
[−−−−] f o r { i i n 1 : 4 , j i n 1 :4} l o o p
[−−−−] [ SCAL ] (1 ) y [ j ] = −(CAST( Re a l , i ) ∗ s i n (CAST( Re a l , j ) ∗ t ime ) − x [ i , j ] ) (

$RES_SIM_1)
[−−−−] end f o r ;
s l i c e : {15 , 10 , 5 , 0}
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Generalized For-Loops

Example: Diagonal Slice Model
BLT-Blocks after Solve (-d=bltdump)

−−− A l i a s o f IN I [ 1 | 3 ] −−−
BLOCK 3 : Gene r i c Component ( s t a t u s = Solve.EXPLICIT )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
### Va r i a b l e :

x [ i , j ]
### Equat ion :

[FOR− ] (16) ($RES_SIM_0)
[−−−−] f o r { i i n 1 : 4 , j i n 1 :4} l o o p
[−−−−] [ SCAL ] (1 ) x [ i , j ] = y [ j ] + CAST( Re a l , i ) ∗ s i n (CAST( Re a l , j ) ∗ t ime ) ($RES_SIM_1)
[−−−−] end f o r ;
s l i c e : {11 , 7 , 3 , 14 , 6 , 2 , 13 , 9 , 1 , 12 , . . . }
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Generalized For-Loops

Example: Diagonal Slice Model
SimCode Structures (-d=dumpSimCode)

INIT
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(3 ) s i n g l e g e n e r i c c a l l [ i n d e x 2 ] {3 , 2 , 1 , 0}
(2 ) s i n g l e g e n e r i c c a l l [ i n d e x 1 ] {15 , 10 , 5 , 0}
(1 ) s i n g l e g e n e r i c c a l l [ i n d e x 0 ] {11 , 7 , 3 , 14 , 6 , 2 , 13 , 9 , 1 , 12 , . . . }

A l g e b r a i c P a r t i t i o n 1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(6 ) A l i a s o f 3
(5 ) A l i a s o f 2
(4 ) A l i a s o f 1

Gene r i c C a l l s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(0 ) [SNGL ] : {{ i | s t a r t : 1 , s t ep : 1 , s i z e : 4} , { j | s t a r t : 1 , s t e p : 1 , s i z e : 4}}
x [ i , j ] = y [ j ] + CAST( Re a l , i ) ∗ s i n (CAST( Re a l , j ) ∗ t ime )

(1 ) [SNGL ] : {{ i | s t a r t : 1 , s t ep : 1 , s i z e : 4} , { j | s t a r t : 1 , s t e p : 1 , s i z e : 4}}
y [ j ] = −(CAST( Re a l , i ) ∗ s i n (CAST( Re a l , j ) ∗ t ime ) − x [ i , j ] )

( 2 ) [SNGL ] : {{ i | s t a r t : 1 , s t ep : 1 , s i z e : 4}}
x [ i , i ] = CAST( Re a l , i ) ∗ cos ( t ime )
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Generalized For-Loops

Example: Diagonal Slice Model
Generated C-Code

vo i d g en e r i cCa l l_0 (DATA ∗data , threadData_t ∗ threadData , i n t i d x )
{

i n t tmp = i d x ;
i n t i_ l o c = tmp % 4 ;
i n t i = 1 ∗ i_ l o c + 1 ;
tmp /= 4 ;
i n t j_ loc = tmp % 4 ;
i n t j = 1 ∗ j_ loc + 1 ;
tmp /= 4 ;
(&data−>lo c a lDa t a [0]−> r e a l V a r s [ 0 ] /∗ x [ 1 , 1 ] v a r i a b l e ∗/ ) [ ( i − 1) ∗ 4 + ( j −1) ] = (&data−>lo c a lDa t a

[0]−> r e a l V a r s [ 1 6 ] /∗ y [ 1 ] v a r i a b l e ∗/ ) [ j − 1 ] + ( ( ( mode l i c a_rea l ) i ) ) ∗ ( s i n ( ( ( ( mode l i c a_rea l ) j )
) ∗ ( data−>lo c a lDa t a [0]−> t imeVa lue ) ) ) ;

}
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Generalized For-Loops

Example: Diagonal Slice Model
Generated C-Code

vo i d g en e r i cCa l l_1 (DATA ∗data , threadData_t ∗ threadData , i n t i d x )
{

i n t tmp = i d x ;
i n t i_ l o c = tmp % 4 ;
i n t i = 1 ∗ i_ l o c + 1 ;
tmp /= 4 ;
i n t j_ loc = tmp % 4 ;
i n t j = 1 ∗ j_ loc + 1 ;
tmp /= 4 ;
(&data−>lo c a lDa t a [0]−> r e a l V a r s [ 1 6 ] /∗ y [ 1 ] v a r i a b l e ∗/ ) [ j − 1 ] = ( − ( ( ( ( mode l i c a_rea l ) i ) ) ∗ ( s i n

( ( ( ( mode l i c a_rea l ) j ) ) ∗ ( data−>lo c a lDa t a [0]−> t imeVa lue ) ) ) − (&data−>lo c a lDa t a [0]−> r e a l V a r s [ 0 ]
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Generalized For-Loops

Example: Diagonal Slice Model
Generated C-Code

vo i d g en e r i cCa l l_2 (DATA ∗data , threadData_t ∗ threadData , i n t i d x )
{

i n t tmp = i d x ;
i n t i_ l o c = tmp % 4 ;
i n t i = 1 ∗ i_ l o c + 1 ;
tmp /= 4 ;
(&data−>lo c a lDa t a [0]−> r e a l V a r s [ 0 ] /∗ x [ 1 , 1 ] v a r i a b l e ∗/ ) [ ( i − 1) ∗ 4 + ( i −1) ] = ( ( ( mode l i c a_rea l ) i

) ) ∗ ( cos ( data−>lo c a lDa t a [0]−> t imeVa lue ) ) ;
}
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Generalized For-Loops

Example: Diagonal Slice Model
Generated C-Code

/∗
equa t i on i ndex : 1
type : SES_GENERIC_ASSIGN c a l l i n d e x : 0
∗/
vo i d d iagona l_s l i c e_fo r1_eqFunct ion_1 (DATA ∗data , threadData_t ∗ th readData )
{

TRACE_PUSH
cons t i n t e q u a t i o n I n d e x e s [ 2 ] = {1 ,1} ;
con s t i n t i d x_ l s t [ 1 2 ] = {11 , 7 , 3 , 14 , 6 , 2 , 13 , 9 , 1 , 12 , 8 , 4} ;
f o r ( i n t i =0; i <12; i++)

gen e r i cCa l l_0 ( data , threadData , i d x_ l s t [ i ] ) ; /∗ d i a g o n a l_ s l i c e_ f o r 1_g en e r i cC a l l ∗/
TRACE_POP

}
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Generalized For-Loops

Example: Entwined For-Loops Model

model entw ine_for1
Real x [ 1 0 ] ;
Real y [ 1 0 ] ;

equation
x [ 1 ] = 1 ;
y [ 1 ] = 2 ;
f o r j i n 2 :10 loop

x [ j ] = y [ j−1 ] ∗ s i n ( t ime ) ;
end fo r ;
f o r i i n 2 :5 loop

y [ i ] = x [ i−1 ] ;
end fo r ;
f o r i i n 6 :10 loop

y [ i ] = x [ i−1 ] ∗ 2 ;
end fo r ;

end entw ine_for1 ;

Expected Results
The first two scalar equations will be
solved for x [1] and y [1]
The three for loops will be solved as
follows:

1 alternating between the first and the
second for i = 2 : 5

2 alternating between the first and the
third for i = 6 : 10
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Generalized For-Loops

BLOCK 3 : Entwined Component ( s t a t u s = Solve.EXPLICIT )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c a l l o r d e r : {$RES_SIM_2, $RES_SIM_4, $RES_SIM_2, $RES_SIM_4, $RES_SIM_2, $RES_SIM_4, $RES_SIM_2,

$RES_SIM_4, $RES_SIM_0, $RES_SIM_4, . . . }
BLOCK: Gene r i c Component ( s t a t u s = Solve.EXPLICIT )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
### Va r i a b l e :

y [ i ]
### Equat ion :

[FOR− ] ( 5 ) ($RES_SIM_0)
[−−−−] f o r i i n 6 :10 l o o p
[−−−−] [ SCAL ] (1 ) y [ i ] = 2 .0 ∗ x [ (−1) + i ] ($RES_SIM_1)
[−−−−] end f o r ;
s l i c e : {0 , 1 , 2 , 3 , 4}

BLOCK: Gene r i c Component ( s t a t u s = Solve.EXPLICIT )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
### Va r i a b l e :

x [ j ]
### Equat ion :

[FOR− ] ( 9 ) ($RES_SIM_4)
[−−−−] f o r j i n 2 :10 l o o p
[−−−−] [ SCAL ] (1 ) x [ j ] = y [ (−1) + j ] ∗ s i n ( t ime ) ($RES_SIM_5)
[−−−−] end f o r ;
s l i c e : {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8}

BLOCK: Gene r i c Component ( s t a t u s = Solve.EXPLICIT )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
### Va r i a b l e :

y [ i ]
### Equat ion :

[FOR− ] ( 4 ) ($RES_SIM_2)
[−−−−] f o r i i n 2 :5 l o o p
[−−−−] [ SCAL ] (1 ) y [ i ] = x [ (−1) + i ] ($RES_SIM_3)
[−−−−] end f o r ;
s l i c e : {0 , 1 , 2 , 3}
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Generalized For-Loops

Example: Entwined For-Loops Model
SimCode Structures (-d=dumpSimCode)

INIT
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(6 ) x [ 1 ] := 1 .0
(5 ) y [ 1 ] := 2 .0
### entwined c a l l ( 4 ) ###

(3) s i n g l e g e n e r i c c a l l [ i n d e x 2 ] {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8}
(2 ) s i n g l e g e n e r i c c a l l [ i n d e x 1 ] {0 , 1 , 2 , 3}
(1 ) s i n g l e g e n e r i c c a l l [ i n d e x 0 ] {0 , 1 , 2 , 3 , 4}

A l g e b r a i c P a r t i t i o n 1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(12) A l i a s o f 5
(11) A l i a s o f 6
### entwined c a l l (10) ###

(9) s i n g l e g e n e r i c c a l l [ i n d e x 1 ] {0 , 1 , 2 , 3}
(8 ) s i n g l e g e n e r i c c a l l [ i n d e x 2 ] {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8}
(7 ) s i n g l e g e n e r i c c a l l [ i n d e x 0 ] {0 , 1 , 2 , 3 , 4}

Gene r i c C a l l s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(0 ) [SNGL ] : {{ i | s t a r t : 6 , s t ep : 1 , s i z e : 5}}
y [ i ] = 2 .0 ∗ x [ (−1) + i ]

(1 ) [SNGL ] : {{ i | s t a r t : 2 , s t ep : 1 , s i z e : 4}}
y [ i ] = x [ (−1) + i ]

(2 ) [SNGL ] : {{ j | s t a r t : 2 , s t e p : 1 , s i z e : 9}}
x [ j ] = y [ (−1) + j ] ∗ s i n ( t ime )
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Generalized For-Loops

Example: Entwined For-Loops Model
Generated C-Code

vo i d entwine_for1_eqFunct ion_4 (DATA ∗data , threadData_t ∗ th readData )
{

TRACE_PUSH
cons t i n t e q u a t i o n I n d e x e s [ 2 ] = {1 ,4} ;
i n t c a l l _ i n d i c e s [ 3 ] = {0 , 0 , 0} ;
con s t i n t c a l l_o r d e r [ 1 8 ] = {2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 0 , 2 , 0 , 2 , 0 , 2 , 0 , 2 , 0} ;
con s t i n t idx_ls t_2 [ 9 ] = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} ;
con s t i n t idx_ls t_1 [ 4 ] = {0 , 1 , 2 , 3} ;
con s t i n t idx_ls t_0 [ 5 ] = {0 , 1 , 2 , 3 , 4} ;
f o r ( i n t i =0; i <18; i++)
{

sw i t c h ( c a l l_o r d e r [ i ] )
{

ca se 2 :
g en e r i cCa l l_2 ( data , threadData , idx_ls t_2 [ c a l l _ i n d i c e s [ 0 ] ] ) ;
c a l l _ i n d i c e s [0]++;
break ;

ca se 1 :
g en e r i cCa l l_1 ( data , threadData , idx_ls t_1 [ c a l l _ i n d i c e s [ 1 ] ] ) ;
c a l l _ i n d i c e s [1]++;
break ;

ca se 0 :
g en e r i cCa l l_0 ( data , threadData , idx_ls t_0 [ c a l l _ i n d i c e s [ 2 ] ] ) ;
c a l l _ i n d i c e s [2]++;
break ;

d e f a u l t :
th rowSt reamPr in t (NULL , " C a l l i n d e x %d at pos %d unknown f o r : " , c a l l_o r d e r [ i ] , i ) ;
b reak ;

}
}
TRACE_POP
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Symbolic Simplification

4. Symbolic Simplification
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Symbolic Simplification

Solving Equations for Variables

Current Implementation
encoding expressions as a tree

rewrite rules

graph of equivalent expressions/equations

heuristic graph traversal
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Symbolic Simplification

Expression Trees

x + cos y · 3

+

x ∗

cos

y

3
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Symbolic Simplification

Expression Trees
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Symbolic Simplification

Expression Trees

x + cos(y · 3)

+

x cos

∗

y 3
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Symbolic Simplification

Algebra/Rewrite Rules

Rewrite Rules
Define equivalent terms
Also possible for arrays and
records

a ∗ b+ a ∗ c ⇔ a ∗ (b+ c)

(a+ b) · (a− b) ⇔ a2 − b2

am · an ⇔ am+n

(AB)T ⇔ BTAT

(MT )−1 ⇔ (M−1)T

zw̄ ⇔ (z̄w)

. . .
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Symbolic Simplification

Equivalent Expressions

Equivalence Structure
vertex = expression
edge = rewrite rule between e1 and e2

conceptually infinite graph
simplifying = graph search

2− (x − 1) · (x + 1)

2− (x2 − 1)

2− x2 + 1

3− x2

2− (x2 + x − x − 1)

3− (x2 + x − x)

3− x2 + 0

. . .

. . .

. . .

. . .

. . .

. . .

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 22 / 37



Symbolic Simplification
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Symbolic Simplification

OMC – Symbolic Simplify

Old Implementation
destructive rewriting, loses intermediate expressions
finds only local optima
rewrites and rewrite order have to be carefully crafted by hand

New Implementation (WIP)

non-destructive rewriting, potentially infinite
finds global optima (if e-graph is saturated), cost function can be customized
all possible rewrites are applied iteratively
saturated e-graph reusable for next expression
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Symbolic Simplification

E-Graph

E-Graphs and Equality Saturation
E-Graph structure
Equality Saturation
Extraction
Analysis
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Symbolic Simplification

E-Graph

Informal Definition
e-graph is a set of e-classes
e-class is a set of e-nodes, has unique id
e-node is (symbol, list of e-class ids)

Example:

2x = x + x = x + x + 0 = x + x + 0+ 0 = . . .
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Symbolic Simplification

E-Graph

Informal Definition
e-graph is a set of e-classes
e-class is a set of e-nodes, has unique id
e-node is (symbol, list of e-class ids)

Example:

2x = x + x = x + x + 0 = x + x + 0+ 0 = . . .

2 x 0

∗ + +

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 25 / 37



Symbolic Simplification

E-Graph
Equality Saturation

Input: An expression e
Output: best expression equivalent to e

1 G ← initial e-graph from e
2 while G is not saturated do
3 M ← ∅
4 for (l → r) ∈ R do
5 for matches (σ, c) of l in G do
6 M ← M ∪ (r , σ, c)
7 for (r , σ, c) ∈ M do
8 c ′ ← add r [σ] to G and yield id
9 merge c and c ′ in G

10 rebuild G

11 return best expression from G

G is an e-graph

R is a set of rewrite rules

M is a set of matches

c , c ′ are e-classes

e, l , r are algebraic expressions

σ is a set of variable substitutions

Karim Abdelhak, Philip Hannebohm Status of the New Backend February 6, 2023 26 / 37



Symbolic Simplification

E-Graph
Extraction

Get an expression out of the e-graph, according to some objective (cost function).

Simple cost function (e.g. minimum number of nodes): bottom-up, greedy traversal

2 x 0

∗ + +
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Simple cost function (e.g. minimum number of nodes): bottom-up, greedy traversal

2 x 0
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1 1 1
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Symbolic Simplification

E-Graph
Extraction

Get an expression out of the e-graph, according to some objective (cost function).

Simple cost function (e.g. minimum number of nodes): bottom-up, greedy traversal

2 x 0

∗ + +

1 1 1

3 2 4
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Symbolic Simplification

E-Graph
E-Class Analyses

Take some semilattice domain D and associate a value dc ∈ D to each e-class c .

make(n) → dc construct new e-class

join(dc1, dc2) → dc merge c1, c2 into c

modify(c) → c ′ optionally modify c based on dc

Can be used to
manipulate the e-graph, e.g. constant folding
steer rewrites during equality saturation
determine cost of e-nodes during extraction
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Symbolic Simplification

E-Graph
Relational E-Matching

Representation
An e-graph represents a term if any of its e-classes does.
An e-class c represents a term if any e-node n ∈ c does.
An e-node f (c1, . . . , ck) represents a term f (t1, . . . , tk) if they have the same symbol and
ci represents ti for all i .

Potential Bottleneck:
Pattern matching in the e-graph takes 60 to 90% of computation time!

Solution
Transform e-graph into data base → Conjunctive Queries are fast and can be optimized.
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Symbolic Simplification

E-Graph
Relational E-Matching

Relational e-matching allows fast lookups on pre-saturated e-graphs:
1 Generate set of "training" expressions
2 Saturate an e-graph on that set
3 Store data base representation of e-graph
4 During compilation, perform queries
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Symbolic Simplification

E-Graph
Current Status

Experimental version in MetaModelica (Bugs included)
Attempts to incorporate E-Graph implementation in Rust
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Symbolic Simplification

E-Graph
Next Step – Solving Equations with E-Graphs

First approach:

L = R ⇔ L− R = 0

BUT
Equations have a broader set of
rewrite rules than expressions, i.e.
equivalence transformations.

View equation as tuple of two
expressions

L = R 7→ (L,R)

Then e.g.

(L,R) ≡ (L+ a,R + a)

Q: reusability?
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Symbolic Simplification

E-Graph
Rewrite Rule Inference Using Equality Saturation

Compared to a similar tool built on CVC4, Ruler synthesizes 5.8× smaller rulesets 25×
faster without compromising on proving power. In an end-to-end case study, we show
Ruler-synthesized rules which perform as well as those crafted by domain experts, and
addressed a longstanding issue in a popular open source tool.

More systematic than heuristics
Instead of defining the rewrite rules by hand, let equality saturation do the job of finding the
optimal rewrites.
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Summary

5. Summary
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2-Step Sorting
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Jacobians and Sparsity Patterns
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Generalized When, If and Array Equations
Enable Sparse Solvers
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Upcoming Plans
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E-Graph based Symbolic Solving
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Thank you for your attention!
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