A Modelica library and Scenarios for Thermal and Electric Solar Energy and Storage for Cities and Buildings

Goals for the Thermal and Electric Energy Library and Scenarios

- Develop an easy-to-understand low-to-medium complexity library
- Easily **extensible** to include more model details
- Both electric and thermal solar energy
- Including a simple wind energy model
- Thermal and electric energy storage
- Electric vehicle charging models
- Simple controller models

Small rectangles – surface needed for 100% solar energy for humanity

з

World3 Simulations with Different Start Years for Sustainable Policies – Collapse if starting too late

Left. System Dynamics World3 simulation with OpenModelica. World population. (ref Meadows et al)

- 2 collapse scenarios (close to current developments)
- 1 sustainable scenario (green).

Time (Years)

Sustainable Renewable Energy System Solar Electric PV, Solar Thermal, Wind, and Storage

Large-scale Annual Storage of Solar Thermal Energy from Summer to Winter – Danish city Dronninglund

Field with 26 MW (37 500 m2) Thermal solar collectors

Heat storage 60 000 m3 hot water with insulating cover

The Danish city Dronninglund 2013 built a solar collector field and a seasonal storage that together covers 50% of the citys heat needs

Modelica Library Thermal and Electric Solar Energy Two small example models

Electric grid model, group of houses Solar PV, wind power, car charging, etc. Part of solar thermal model with storage For small residential community

Library Overview – Two parts: Electric Power Grid and Thermal Grid

- The Library contains two main packages, *Power Grid* and *Thermal Grid*. These may be used to simulate interconnected networks of electric as well as district heating systems from generation, distribution to consumption.
- The complexity of the sub-models are lowmedium and examples of annual simulations are focussed on.

Simulation of the Library Examples

• Electric Grid:

- Four predefined scenarios are available under "GridScenarios".
- Parameters may be varied by double clicking on the "SystemParameters" record.

• Thermal Grid:

- Simulation Scenarios and other examples under Test Examples.

- Each scenario has three models. The scenario and the control are decoupled into two models. A third model connects the scenario and its control. This is the model which is to be simulated.

- The parameters for each scenario may be changed by double clicking on individual components.

- To input different hourly solar data, run the python file *"DataExtractionScript.py"* under Resources folder of the main package. This will generate the corresponding combi-table *.txt* file in the "CombiTableFiles" folder, all the data source files are kept in the "DataSources" folder.

Electric Power Grid Sub library

- Interfaces: This sub package contains the port used in the library.
 - Electrical Port
- Utilities: This sub package contains the grid parameters and data related modules.
 - System Parameters
 - Wind Power Data
 - Solar Irradiance Data
 - Solar Generation Data
 - Wind Generation Data

Power Grid Library

- Components: This sub package contains the grid component modules
 - Solar Farm
 - Wind Farm
 - Power Management System
 - Energy Storage

- Conventional Grid
- Domestic Consumer
- Charging Station
- KPI
- **Grid Scenarios:** This sub package contains the library grid scenario examples.
 - Scenario-1 : Single house grid scenario
 - Scenario-2 : Group of houses grid scenario (~200 Houses)
 - Scenario-3 : City grid scenario (~75000 Houses)
 - Scenario-4 : Country grid scenario

Electric Grid Scenarios: Scenario-1 – Single House

Parameters:

- Number of PV panels : 12
- Surface Area of each panel : 2m²
- PV generation efficiency : 20%
- Energy storage capacity : 5 kWh
- Energy storage Max power limit : 1 kW
- Domestic Load : Single House

Total Energy Generated	Total Energy Transferred from Conventional Grid	Total Energy Transferred to Conventional Grid	Total Energy Demand
3.74 MWh	6.52 MWh	0.67 MWh	9.59 MWh

Electric Grid Scenarios: Scenario-2 – Group of Houses

Parameters:

- Number of PV panels : 1000
- Surface Area of each panel : 2m²
- PV power generation efficiency : 20%
- Wind turbine rotor radius : 30m
- Number of turbines : 3
- Wind power generation efficiency : 80%
- Wind power generation limit: 2MW
- Energy storage capacity : 5 MWh
- Energy storage Max power limit : 0.5 MW
- Domestic Load : ~200 Houses
- Charging Stations : 4 No.(80 Bikes, 48 Cars)

Total Energy Generated	Total Energy Transferred from Conventional Grid	Total Energy Transferred to Conventional Grid	Total Energy Demand	
6.98 GWh	1.04 GWh	1.56 GWh	6.46 GWh	

Electric Grid Scenarios: Scenario-3 – Medium-sized City

Parameters:

- Number of PV panels : 200000
- Surface Area of each panel : 2m²
- PV power generation efficiency : 20%
- Wind turbine rotor radius : 30m
- Number of turbines : 600
- Wind power generation efficiency : 80%
- Wind power generation limit: 350MW
- Energy storage capacity : 900 MWh
- Energy storage Max power limit : 50 MW
- Domestic Load : ~75000 Houses
- Charging Stations : 200 No.(4000 Bikes, 2400 Cars)

TotalTotal EnergyEnergyTransferred fromGeneratedGrid		Total Energy Transferred to Conventional Grid	Total Energy Demand
1332.96 GWh	85.23 GWh	567.27 GWh	850.21 GWh

Electric Grid Scenarios: Scenario-4 – Whole Country (Actual)

Parameters:

- Solar Generation : Country solar generation power
- Wind Generation : Country wind generation power
- Solar generation factor: 1
- Wind generation factor: 1
- Energy storage capacity : 500 MWh
- Energy storage Max power limit : 500 MW
- Domestic Load : Country demand power
- Charging Stations: 20000 No.(400000 Bikes, 240000 Cars)

Total Renewable Energy Generated	TotalTotal EnergyRenewableTransferred fromEnergyConventionalGeneratedGrid		Total Energy Demand
8.9 TWh	130.57 TWh	0 TWh	139.47 TWh

Electric Grid Scenarios: Scenario-4 – Whole Country (Projected)

Parameters:

- Solar Generation : Country solar generation power
- Wind Generation : Country wind generation power
- Solar generation factor: 10
- Wind generation factor: 10
- Energy storage capacity : 500 MWh
- Energy storage Max power limit : 500 MW
- Domestic Load : Country demand power
- Charging Stations : 20000 No.(400000 Bikes, 240000 Cars)

Total Energy Generated	Total Energy Transferred from Conventional Grid	Total Energy Transferred to Conventional Grid	Total Energy Demand
89 TWh	61.3 TWh	10.8 TWh	139.5 TWh

Interface: Electrical Port

- Grid power transfer connector called as "Electrical Port".
- The port has two variables,
 - "Power" a flow variable
 - "Voltage" a potential variable (dummy variable)
- Power flowing inward to the port is considered as positive
- Power flowing outward to the port is considered as negative

Utility: System Parameters

- A record file containing all the parameters required for each library component
- This record file can be dragged on to each library example and corresponding component parameter values can be entered.
- The parameters in this record is shown in the following figure.
- Additionally, it also contains the data file links corresponding to the wind speed profile, solar radiation profile data, solar generation data, wind generation data and domestic demand profile data.

Parameters			
Air density	Energy storage capacity		
Wind speed data file	Max allowable charge %		
Turbine rotor radius	Min allowable charge %		
Turbine generation efficiency	T&D efficiency		
Number of turbines	Voltage		
Wind farm rated power	Energy storage rated power		
PV panel tilt angle	EV car charging capacity		
Solar irradiance data file	EV bike charging capacity		
PV generation efficiency	EV car charging rated power		
PV panel surface area	EV bike charging rated power		
Number of PV panels	Max number of cars per station		
Solar generation data file	Max number of bikes per station		
Solar generation factor	Number of charging stations		
Wind generation data file	EV car charging duration		
Wind generation factor	EV bike charging duration		

Utility: Data extraction

- The data is extracted from the annual hourly data source file using an python script.
- The data sources are,
 - Meteorological radiation data (2007 Sweden, Norrköping)
 - Weather data (2013 Netherland)
 - Electrical solar generation, wind generation and demand power data (2016 Netherland)
 - Heat demand data (2013 Netherland)
- The output file of the python script are the individual text files in the combi-table format.
- In the corresponding model these text files are imported as combi-tables.
- The location (Country) and the year for data extraction can be changed in the python script.

Utility: Solar Irradiance Data

- The annual hourly solar irradiance data is converted to the irradiance on the panel using the combi-table and tilt angle of the PV panel.
- Input

o Hourly horizontal surface irradiance data

• Parameters

 \circ PV panel tilt angle

• Output

 $\circ\,$ Solar irradiance on the PV panel

• Equation

$$E_{module} = E_e * \cos\left(\frac{\pi * \beta}{180}\right)$$

 $E_e~(W/m^2)$ - Horizontal surface data $E_{module}~(W/m^2)$ - Solar irradiance on the PV panel β (deg) - PV panel tilt angle

panel with tilt angle = 30deg.

Utility: Wind speed Data

Utility: Solar Generation Data

- The annual hourly solar generated power data for a country is imported using the combi-table.
- Input
 - o Country solar generation data
- Output
 - o Solar generation power

Utility: Wind Generation Data

- The annual hourly wind generated power data for a country is imported using the combi-table.
- Input
 - o Country wind generation data
- Output
 - o Wind generation power

Graphical representation

The generation factor is to enable carrying out sensitivity studies on (decreasing or increasing) the generation capability of renewable

Utility: (Solar/Wind) Generation Factor

- power Solar/ wind.
- The default value is 1 for both solar and wind indicating the generation capability on 2016.
- To study the impact of increasing / decreasing renewable power this factor can be changed from 0 to some large number.
- Input
 - o Actual solar/ wind generation power (2016)
- Parameter
 - \circ Factor
- Output
 - \circ Projected solar/ wind generation power

Graphical representation

Components: Solar Farm of Electric PV Panels

- This model consists of number of solar PV panels in a solar farm.
- Solar power is converted to electrical power
- Input
 - o Irradiance on the PV panels
- Parameters
 - o Surface area of each PV panel
 - Number of PV panels in the farm
 - o Generation efficiency
- Output
 - o Generated electrical power
- Equation

$$P_S = \eta_{se} * E_{module} * A_p * n_p$$

 P_{S} (W) – Solar generated electrical power E_{module} (W/m²) - Solar irradiance on the PV panel A_{p} (m²) – Surface area of the PV panel n_{p} – Number of PV panels in the farm ρ (kg/m³) - PV panel tilt angle η_{se} – Solar electric power generation efficiency

The example plot shows the solar power and the corresponding electrical power generated for n=12 panels of 2m2 surface area with an efficiency of 20%.

Components: Wind farm

- This model consists of number of wind turbines in a wind farm.
- Wind power is converted to electrical power, The generated electrical power has limiter which signifies the rated power of the turbine farm.
- Input

 Wind power per unit area
- Parameters
 - $\circ\,$ Rotor radius of the turbines
 - $\circ\,$ Number of turbines in the farm
 - o Generation efficiency
- Output
 - \circ Generated electrical power
- Equation

 $A_t = \pi * R_r^2$

$$P_w = \eta_{we} * P_{wa} * A_t * n_w$$

- $\rm P_w~$ (W) Wind generated electrical power
- P_{wa} (W/m²) Wind power per unit area
- A_t (m²) Turbine rotor swept area
 - ${\rm n_w}$ Number of wind turbines in the farm
- R_r (m) Turbine rotor radius
- η_w- Wind electric power generation efficiency

The example plot shows the wind electrical power for n=3 turbines of 30m rotor radius with an efficiency of 80% and rated power of 2MW.

Assumption:

The radius of each turbines in the farm is assumed to be same.

Components: Power Management System

- This model consists of the control algorithm to manage the grid. The control algorithm is designed such that the demand is always met.
- Input
 - o Generated electrical powers
 - o Demand powers (domestic demand & Charging station)
 - Can charge, can discharge flags from energy storage
- Parameters
 - o Energy storage power supply limit
 - o Number of turbines in the farm
 - o Transmission & distribution efficiency
- Output
 - \circ Stored power
 - o Power from or to conventional grid (infinite source& sink)
- Equation

27

$$P_{ag} = \eta_{tnd} * (P_{g1} + P_{g2})$$
$$P_{td} = \eta_{tnd} * (P_{d1} + P_{d2})$$

 $\begin{array}{l} \mathsf{P}_{ag}\left(\mathsf{W}\right)-\mathsf{Available \ generated \ electrical \ power} \\ \mathsf{P}_{g1}\left(\mathsf{W}\right)-\mathsf{Solar \ generated \ electrical \ power} \\ \mathsf{P}_{g2}\left(\mathsf{W}\right)-\mathsf{Wind \ generated \ electrical \ power} \\ \mathsf{P}_{td}\left(\mathsf{W}\right)-\mathsf{Total \ demand \ electrical \ power} \\ \mathsf{P}_{d1}\left(\mathsf{W}\right)-\mathsf{Domestic \ demand \ electrical \ power} \\ \mathsf{P}_{d2}\left(\mathsf{W}\right)-\mathsf{Charging \ station \ demand \ electrical \ power} \\ \mathsf{n}_{tnd}-\mathsf{Transmission \ \& \ distribution \ efficiency} \end{array}$

Components: Power Management System

Components: Power Management System

Components: Electric Energy Storage

- The energy storage model is used to store excess power which will be at the instance when generation is greater than the demand.
- The charging & discharging control algorithm is shown in the following flowchart.
- Input

 $\circ\,$ Power from grid

• Parameters

Storage capacity
Min allowable charge %
Max allowable charge %

- Output
 - o Stored energy
 - $_{\rm O}$ Boolean Flags : can charge, can discharge
- Equation $E_{es} = \frac{\int P_{es} dt}{3600}$

Components: Energy Storage

The example plot shows the energy storage energy profile with 5MWh max capacity

The example plot shows the energy storage Power profile with 500kW Power limit

Components: Conventional Electric Grid

- This model is an infinite source and sink of power
- Power from the conventional grid will be supplied when the generation power is less than demand and energy storage is fully discharged.
- Power to the conventional grid will be supplied when the generation power is more than demand and energy storage is fully charged.
- Input

o Input power

• Output

 \circ Output power

Graphical representation

Components: Domestic Consumer

- This model is provides the domestic consumer demand.
- Sample annual hourly demand data profiles are stored in the library resources as an text file. Four different scale sample data are provided for simulating the given four scenarios.
- Using a combi-table the domestic demand data is imported and given to the grid.
- Input

o Domestic demand power data

Output

 $_{\rm O}$ Demand power

The example plot shows the domestic consumption data for a group of houses (~200 Houses), probably air conditioning in a southern location

34 Copyright © Open Source Modelica Consortium

Iodelica Consortium

Usage: Creative Commons with attribution CC-BY

Components: Charging Station

- This model is an simulated (hypothetical) demand data generator for EV charging stations.
- Using random number generator the number of cars & bikes charging in any given station is calculated.
- After the said charging duration the random number generator will give out new number of vehicles per station.
- Parameters
 - o Number of charging stations
 - $\circ\,$ Max number of cars & bikes per station
 - Charging duration for cars & bikes
- Output
 - o Total charging station demand power
- Equation

$$P_{ch} = n_{st} * (n_{car} * P_{ch_{car}} + n_{bike} * P_{ch_{bike}})$$

 $\begin{array}{l} \mathsf{P}_{ch} \left(Wh \right) - \text{Total charging stations demand power} \\ \mathsf{P}_{ch_car} \left(W \right) - \text{Charging Power for a car} \\ \mathsf{P}_{ch_bike} \left(W \right) - \text{Charging Power for a bike} \\ \mathsf{n}_{car} \& \ \mathsf{n}_{bike} - \text{Number of cars } \& \ \text{bikes per station} \\ \mathsf{n}_{st} - \text{Number of charging stations} \end{array}$

Components: Charging Station

—— powerManagementSystem.availableChargingStationDemandPower (kW)

Components: Electric KPI (Key Performance Indicator)

- This model is used to highlight the "Key Performance Indicator" of the power grid.
- The KPI parameters are,
 - Grid power ratio
 - Storage power ratio
 - Generation power ratio
 - Storage effectiveness
 - Generation effectiveness
- Equations

- Solar generated energy
- Wind generated energy
- Domestic demand energy
- Charging station energy

- $E_{w} = \frac{\int P_{w} dt}{_{3600}} \qquad E_{dd} = \frac{\int P_{dd} dt}{_{3600}}$ $E_{s} = \frac{\int P_{s} dt}{_{3600}} \qquad E_{ch} = \frac{\int P_{ch} dt}{_{3600}}$
- P_w (W) Wind generated electrical power
- P_{S} (W) Solar generated electrical power
- P_{dd} (W) domestic demand electrical power
- P_{ch} (Wh) Total charging stations demand power
- ${\rm E_w}~({\rm W})$ Wind generated energy
- E_S (W) Solar generated energy
- E_{dd} (W) domestic demand energy
- E_{ch} (Wh) Total charging stations demand energy

Components: KPI (Key Performance Indicator)

• Equations,

Total Demand Power – Available Generated Power *Generation Effectiveness* = Total Demand Power Grid Power Ratio = $\frac{Power Supplied from Grid}{-}$ Total Demand Power Available Generated Power Generation Power Ratio = Total Demand Power Storage Power Ratio = $\frac{Power Supplied from Storage}{-}$ Total Demand Power $Storage \ Effectiveness = \frac{Average \ Storage \ Energy}{Storage \ Capacity}$

Library Overview – Thermal Sub library

Library Overview – Thermal Sub library

System Fluid

Specific medium models that can be directly utilized from Standard Modelica Library can be defined here. The flexibility of replacing the medium is provided.

Ambient Conditions

Ambient Conditions such as ambient temperature and pressure conditions assumed for each scenario is declared as a record. The objects are then defined as inner/outer to have singular access to ambient conditions of all sub-models of a scenario.

Constants

Various constants used in the system can be defined in this model.

Library Overview Thermal Sub library

Utilities

Solar Irradiation Data

The model uses a combi-table of hourly Irradiance Data. This data is used as input for SolarCSP model.

User Demand Data

The model uses a combi-table of hourly Irradiance Data. This data is used as input for SpaceHeating model.

<u>KPI</u>

Calculates Key Performance Indicators.

Functions

Functions used for internal debugging, calculating Single derivative and double derivatives.

Library Overview – Thermal Sub library

Thermal Port

<u>Connector Variables:</u> Potential Variable: Temperature (K) Flow Variable : Heat Flow Rate (W)

Water Port (Stream Connector)

<u>Connector Variables:</u> Potential Variable: Pressure (Pa) Flow Variable : Mass Flow Rate (kg/s) Stream Variable: Specific Enthalpy (W/kg)

Bus

Expandable Connector used as interface between scenario and Controller.

Library Overview – Thermal Sub library

42 Copyright © Open Source Modelica Consortium

Usage: Creative Commons with attribution CC-BY

MODELICA

Component Models - Thermal Energy Generation Models

Solar CSP Model

OBJECTIVE: Calculates outlet temperature and total useful energy collected by the receiver taking into account the various energy losses.

INPUT: Hourly Solar Irradiation Data

OUTPUT: Outlet Temperature, Useful Energy

Biomass Boiler Model

OBJECTIVE: Calculates outlet temperature and total useful energy generated by the boiler.

INPUT: Fuel Flow Rate

OUTPUT: Outlet Temperature, Useful Energy

Component Models - Thermal Energy Consumption Models

Domestic Space Heating Consumption Model

OBJECTIVE: Calculates Domestic Space Heating Consumption, return temperature is modeled, for one house.

INPUT: Energy Use Per Person Per Year, Pressure Difference, WaterPort variables

Similar Model for a residential community. **ASSUMPTION:** Four residents per house.

INPUT: Number of houses in the community.

OUTPUT: Return Temperature, WaterPort variables

A third model called SpaceHeating is added to enable the user to provide real data via the UserDemand utility to generate realistic simulations.

Component Models - Energy Consumption Models

Industrial Consumption Model

OBJECTIVE: Energy consumption model for industries, return temperature is modeled for one industry.

INPUT: Energy Use Per Industry Per Year, Pressure Difference, WaterPort Variables

Similar Model for an industrial complex. ASSUMPTION: Same average energy use for all industries.

INPUT: Number of industries in the complex.

OUTPUT: Return Temperature, WaterPort Variables

Component Models – Valves

Valve Models

On/Off Valve: OBJECTIVE: Pressure drop valve model with on-off switch.

INPUT: Control Switch, WaterPort variables

Linear Valve: Similar Model for linear valve

INPUT: Valve Opening

PARAMETERS: Cv value

OUTPUT: Pressure drop across valve, WaterPort variables

Component Models – Thermal Energy Storage Models

Tank Models

Hot Storage Tank & Cold Storage Tank

OBJECTIVE: Tank open to atmosphere, used for storage of medium (water). The input-output enthalpy change, level of medium in the tank, enthalpy storage, output pressure are modeled.

INPUT: Initial Level, Heat Transfer Coefficient, WaterPort variables

PARAMETERS: Tank Dimensions

OUTPUT: Level of medium, Energy Stored, Energy Loss, WaterPort variables

Component Models – Pipe Models

Pipe Models

Supply Pipe & Return Pipe

OBJECTIVE: These models calculate the friction coefficient of the pipe/pipeline system, pressure drop across the pipe as well as energy losses.

INPUT: WaterPort variables

PARAMETERS: Dimensions of the pipe

Hot Pipeline System & Cold Pipeline System

OUTPUT: Friction coefficient, Energy Loss, Exit WaterPort variables.

Component Models

Pump Model

OBJECTIVE: To calculate the power consumed by the pump and pressure drop

INPUT: WaterPort variables, Control Switch input

PARAMETERS: Pump Efficiency

OUTPUT: Pressure drop, Pump Power, exit WaterPort variables

Component Models

Port Exchange Model

OBJECTIVE: This model is used to carry the information of a heat port onto a water port. It can be considered a simple heat exchanger model.

INPUT: HeatPort variables, WaterPort variables

OUTPUT: exit WaterPort variables

Controller Models

Collect Supply Tank temperature

Sensor Data

T_SUP

Collect TES temperature

Sensor Data

T_TES

NO

Input DH Setpoint

T_DH

Test Examples – Thermal Scenario 1 – Single House

Annual Simulation – Single House

Thermal Scenario 1 – Single House - Results

- House of 4 residents
- Heating load of 7000 kWh per year per person

Supply Tank Volume = 20L

Cold Tank Volume = 600L

Energy Used per year : 7000 kWh No. of people per house : 4

Usage: Creative Commons with attribution CC-BY

Domestic Supply and Return Temperatures

Solar Data

Biomass Boiler

Boiler Water Temperature : 99 ° C Boiler Power Output : 1500 W

Central Controller Modes

Test Examples – Thermal Scenario 2 (~250 houses)

Annual Simulation – Small Community

Domestic Supply and Return Temperatures

Solar Data – Solar Thermal

60 Copyright © Open Source Modelica Consortium

Biomass Boiler

Boiler Water Temperature : 100 ° C Boiler Power Output : 1500 kW

Thermal Energy Storage

time (d)

Central Controller Modes

Test Examples – Thermal Scenario 3 (Netherlands - 2013)

Annual Simulation – Netherlands

Annual Simulation – Netherlands

Space Heating Demand Data(MW) - 2013

65

Domestic Supply and Return Temperatures

Solar Irradiance Data (W/m2) and Output Power

Biomass Boiler

Boiler Water Temperature : 99 ° C Boiler Power Output : 6700 MW

68 Copyright © Open Source Modelica Consortium

Thermal Energy Storage

Thermal energy storage charged during summer months when heat load is less.

Heat Storage in Tank

Central Controller Modes

Conclusions

- We have developed a Solar Thermal and Electric Energy Library and Scenarios
- Available as open source, OSMC-PL license, for general usage
- It is an easy-to-understand low-to-medium complexity library
- Easily extensible to include more model details
- Both electric and thermal solar energy, and wind power
- Thermal and electric energy storage
- Simple **controller** models
- Need to calibrate with better input data

Solar Data

Source : Swedish SMHI (weather institute) in Norrköping

data-hourly-radiation-data-rad1h_92071_200701-202109 - Notepad	_		×
File Edit Format View Help			
%1-hour means or sums of meteorological radiation data.			
[*] SMHI radiation station 92071, Norrköping.			
%Latitude= 58.583 degN, Longitude= 16.152 degE, Altitude= 43 m.			
%Hour 0 represents data collected during the hour 00:00-00:59 UTC (SNT-1).			
%Hourly mean irradiance values with unit of W/m² can also be regarded as hourly accumulated irradiation with unit of Wh/m².			
%Xqf stand for "quality flag" for parameter X and is given as a 1-digit code for every observed value.			
%Xqf= 1; Properly measured value.			
Xqf= 2; Hourly mean or sum value calculated from properly measured values from redundant measurements. Examples: G replaced by GID (advanced stations), SDIss replaced by GID (advanced stations), SD	iced by	/ SDG.	
%Xqf= 3; Hourly mean or sum value calculated from 48 or more correct 1-minute mean values.			
%Xqf= 4; Value interpolated from correct hourly values immediately before and after one erroneous/missing value.			
%Xqf= 5; Modelled value, special case for I, D, and GID during tracker failure at advanced stations.			
%Xqf= 6; Modelled value.			
%Xqf= /; Not yet defined/used.			
%Xqf= 8; Manually corrected value.			
%df= 9; Missing Value.			
AFILE CONCENTS: "Parametry VVVV NO DA HO/HTC) AT Eloy I oft D oft C ofc I of TA oftA BH oftA			
aradam. TTT NO DA NOUTCE AZ ELEVITATE DA UN CALANTA ANTA ANTA ANTA ANTA ANTA ANTA ANT			
2007 01 01 03 83,768 -30.423 0.01 0.01 0.01 329.01 4.41 91.41			
2007 01 01 04 96.595 -22.637 0.0 1 0.0 1 0.0 1 329.6 1 4.5 1 93.2 1			
2007 01 01 05 108.825 -15.039 0.0 1 0.0 1 0.0 1 323.3 1 4.8 1 93.5 1			
2007 01 01 06 120.954 -7.972 0.0 1 0.1 1 0.1 1 301.7 1 5.0 1 93.4 1			
2007 01 01 07 133.333 -1.757 0.0 1 2.4 1 2.9 1 268.8 1 5.4 1 91.0 1			
2007 01 01 08 146.177 2.987 25.0 3 18.1 3 18.7 3 283.2 1 5.5 1 89.0 1			
2007 01 01 09 159.543 6.409 17.7 4 68.9 4 70.9 3 274.0 1 5.9 1 85.3 1			
2007 01 01 10 173.316 8.212 10.4 1 73.5 1 74.3 1 301.0 1 6.3 1 84.3 1			
2007 01 01 11 187.240 8.178 0.1 1 38.2 1 38.7 1 318.6 1 6.6 1 82.2 1			
2007 01 01 12 201.003 6.310 6.9 3 36.3 3 41.7 1 314.5 1 6.8 1 80.5 1			
2007 01 01 13 214.352 2.840 0.2 1 13.0 1 13.4 1 328.6 1 6.8 1 80.0 1			
2007 01 01 14 227.180 -1.960 0.0 1 0.8 1 1.0 1 333.3 1 6.6 1 80.8 1			
2007 01 01 15 239.550 -8.214 0.01 0.01 0.01 335.01 5.71 88.71			
2007 01 01 16 251.681 -15.504 0.01 0.01 0.01 328.01 5.51 85.81			
2007 01 01 1/ 205.950 -22.911 0.01 0.01 0.01 1.0.01 37(.11 5.01 89.91)			
2007 01 01 10 270.000 - 20.092 0.0 1 0.0 1 0.0 1 20.4 1 5.0 1 91.7 1			
			•
Lp.1. Col.1. 100% Windows (CRLF)	ANSI		
	1 1 4 51		

Data file screen shot

Solar Data

Source : Swedish SMHI (weather institute) in Norrköping

Horizontal and direct irradiance data was extracted from the datafile Solar CSP (from Absolicon)

Solar Irradiance and Air Temperature Data

Source: Open Power System Data - Netherland, Year: 2013

Data Platform – Open Power System Data (open-power-system-data.org)

	А	BJ	ВК
	utc_timestamp	NL_temperature	NL_radiation_direct_horizontal
289299	2013-01-01T01:00:00Z	6.706	0
289300	2013-01-01T02:00:00Z	6.489	0
289301	2013-01-01T03:00:00Z	6.417	0
289302	2013-01-01T04:00:00Z	6.529	0
289303	2013-01-01T05:00:00Z	6.749	0
289304	2013-01-01T06:00:00Z	6.879	0
289305	2013-01-01T07:00:00Z	6.902	0.0003
289306	2013-01-01T08:00:00Z	6.839	0.3076
289307	2013-01-01T09:00:00Z	6.923	3.8352
289308	2013-01-01T10:00:00Z	7.085	24.9787
289309	2013-01-01T11:00:00Z	7.185	63.4547
289310	2013-01-01T12:00:00Z	7.049	74.4341
289311	2013-01-01T13:00:00Z	6.624	35.5017
289312	2013-01-01T14:00:00Z	5.902	8.68
289313	2013-01-01T15:00:00Z	5.033	0.2587
289314	2013-01-01T16:00:00Z	4.732	0
289315	2013-01-01T17:00:00Z	4.647	0
289316	2013-01-01T18:00:00Z	4.645	0
289317	2013-01-01T19:00:00Z	4.719	0
289318	2013-01-01T20:00:00Z	4.782	0
289319	2013-01-01T21:00:00Z	4.839	0
289320	2013-01-01T22:00:00Z	4.916	0
289321	2013-01-01T23:00:00Z	5.039	0
289322	2013-01-02T00:00:00Z	5.237	0
289323	2013-01-02T01:00:00Z	5.432	0
289324	2013-01-02T02:00:00Z	5.533	0
289325	2013-01-02T03:00:00Z	5.448	0
289326	2013-01-02T04:00:00Z	5.184	0
289327	2013-01-02T05:00:00Z	4.892	0
289328	2013-01-02T06:00:00Z	4.532	0

Wind & Domestic Data

Source:

Saman Taheri, Mohammad Jooshaki, Moein Moeini-Aghtaie, June 12, 2021, "8 years of hourly heat and electricity demand for a residential building", IEEE Dataport, doi: <u>https://dx.doi.org/10.21227/dfvb-re49</u>.

Web link:

https://ieee-dataport.org/open-access/8-years-hourly-heat-and-electricity-demandresidential-building

	A	E	Н	J 🖻
	Time	wind_speed[M/S]	electricity_demand_values[kw]	
2	01-12-2010 00:00	5	289.5675565	
3	01-12-2010 01:00	7	260.1685203	
4	01-12-2010 02:00	7	247.2735849	_
5	01-12-2010 03:00	2	257.9558777	
6	01-12-2010 04:00	3	258.2550812	
	01-12-2010 05:00	3	277.5774811	_
8	01-12-2010 06:00	4	337.4235034	_
	01-12-2010 07:00	2	436.8706332	
10	01-12-2010 08:00	3	426.7612808	
11	01-12-2010 09:00	2	337.8045938	_
12	01-12-2010 10:00	2	312.6359362	
13	01-12-2010 11:00	6	281.6173953	
14	01-12-2010 12:00	4	257.7538837	
15	01-12-2010 13:00	3	240.3376889	
16	01-12-2010 14:00	4	231.5101002	
17	01-12-2010 15:00	5	252.0345536	
18	01-12-2010 16:00	3	329.0286003	
19	01-12-2010 17:00	3	488.6252909	
20	01-12-2010 18:00	4	588.6959924	
	Load_data_n	ew 🕀		
Ready	/ 💼			

Wind speed & demand power data file screen shot

Most demand during summer. Probably air conditioning in a southern location

MOD

The plot shows the extracted domestic electrical power demand profile data.

Solar, Wind Generation and Electrical Demand Data

Source: Open Power System Data - Netherland , Year: 2016

Data Platform – Open Power System Data (open-power-system-data.org)

Space Heating Demand Data

Source: Open Power System Data - Netherland, Year: 2013

Data Platform - Open Power System Data (open-power-system-data.org)

