
John Tinnerholm1 , Adrian Pop1, Martin Sjölund1

1 Department of Computer and Information Science, Linköping University, Sweden

Modelica extensions for Highly
Dynamic Systems via Julia and
OpenModelica?

LARGEDYN OM

Agenda

• Introducing a Modelica Compiler in Julia

• Initial preliminary benchmarks

– Frontend

– Backend

• Some suggested preliminary extensions for highly dynamic
systems in Modelica

2021-02-01 2Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica

Introduction and motviation

• Increasingly complex Cyber-Physical Systems

– Increased requirements on tools

– Modelica is limited when dealing with highly dynamic systems

• Attempt at a Compiler with explicit backward compatability as the
goal:

– Research languages

– Embedding: Constrained by the host language regarding
expressivity and semantics

• This presentation presents our effort in providing a standard-
compliant Modelica Compiler in Julia

Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica 2021-02-01 3

Research Aims
• Investigating support for highly dynamic systems using a standard-

compliant compiler via source-to-source compilation to Julia1:

– Is Julia suitable to achieve this goal?

– How to map MetaModelica to Julia?

– Translation issues?

– Possible language extensions?

Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica 2021-02-01 4

1Support for such systems in Julia have been demonstrated during the Modia effort

MetaModelica

Comparing MetaModelica to Julia

• Similar goals between MetaModelica
and Julia

• Similar domain to Modelica

– Dedicated to numerical computing

– Capable of handling differential
equations via
DifferentialEquations.jl

• Similarities to MetaModelica

– Symbolic-numeric capabilities

Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica 2021-02-01 5

1Or Explicit/Implicit

MetaModelica Julia

Syntax influenced by Modelica, Matlab
Standard ML, C++

Syntax influenced by Python and Matlab

Verbose syntax, more keywords1 Concise syntax1

Statically typed Dynamically typed

Structurally typed with some nominal
typing parts

Completely nominal type system

Overloading of functions and operators at
compile time

Multiple dispatch at compile time or at
runtime

Uniontypes (datatypes) as union of records Uniontypes as union of any types

Option types with some or none Option types as union of type vs. nothing

Variable Structure Systems (VSS)

• The meaning of the term VSS varies:

– Highly Dynamic Systems

– Multi-Mode DAE Systems

– VSS

– …

• Modelica1 supports a limited subset

• Embedded languages: Hydra (Haskell)2,

Modia (Julia)1

• Languages and environments: SOL,
Mosilab…

• Netiher tool was designed with backward
comptability as an explicit goal.

Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica 2021-02-01 6

1Treated by Elmqvist et al. in Modelica extensions for Multi-Mode DAE Systems 2014

2Higher-Order Non-Causal Modelling and Simulation of Structurally Dynamic Systems, Giorgidze & Nilsson

Automatic translation of MetaModelica to
Julia
• Motivation

– Efficient recompilation
during runtime. Julia
provides just that

– Automatic translation of
the OpenModelica-
frontend to aim for
backwards compatibility

• Compiler components
constructed as a collection of
libraries

Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica 2021-02-01 7

MetaModelica

Towards OpenModelica.jl

• Most MetaModelica constructs could be
mapped into Julia without manual
interference.

• Over 100 000 lines of MetaModelica code
translated into Julia

– The complete new frontend

• Algorithms translated into Julia tend to
have better performance1

• Issues

– Julia not allowing mutally recursive
dependencies

• No access modifiers

– Most issues are on the project level

– Difficult to reimplement
MetaModelica backtracking model
efficiently

Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica 2021-02-01 8

• Benefits
• Frontends of other equation-oriented languages

in Julia could share the hybrid DAE
• The hybrid DAE of OpenModelica now available

in Julia
• Promising backend performance2

• JIT-Compilation possible

1Towards Introducing Just-in-time compilation in a
Modelica Compiler

2Since DifferentialEquation.jl is used, DifferentialEquations.jl – A Performant and Feature-
Rich Ecosystem for Solving Differential Equations in Julia

 Van Der PolHello

World

• Verification

– Verification of Syntax (ANTLR + OMFrontend.jl)

– Verification of Semantics (OMFrontend.jl1 + OMBackend.jl)

Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica 2021-02-01 9

Verifing OMFrontend.jl using OMBackend.jl

1Compile-time metaprogramming

Lotka Volterra

Verifing semantics using OMBackend.jl

• Initial verification of
OMCompiler.jl via
OpenModelica

• Identical results

• Foundation for more
advanced models

Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica 2021-02-01 10

𝑦1′ = 𝑦2
𝑦2′ = 𝜀 ⋅ 1 − 𝑦1

2 ⋅ 𝑦2 − 𝑦1

model VanDerPol
parameter Real epsilon = 1;
Real y1(start = 1, fixed = true);
Real y2(start = 1, fixed = true);

equation
der(y1) = y2;
der(y2) = epsilon * (1 - y1 ^ 2) * y2 - y1;

end VanDerPol;

OpenModelica
CompilerOpenModelica.jl

IDA, implicit DAE Solver

Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica 2021-02-01 11

Interactive programming environments via Julia
• As mentioned, several packages make up

OMCompiler.jl

• Existing numerical libraries can be
repurposed with minimal integration

– Libraries for symbolic
differentiation, the Reduce
computer algebra system

• Better integration with OMJulia

• Using packages such as LightGraphs.jl for
graph-datastructures and Plots.jl to allow
interactive plotting and animation

• Dynamic Optimization

– A unified language permits
Optimization of the model and the
optimizer at the same time (Within
the same framework)

Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica 2021-02-01 12

sim = OMBackend.LotkaVolterraSimulate((0.0, 100.0))
arr1 = []
arr2 = []
anim = @animate for t in 1:length(sim.t)
push!(arr1, sim[t][1])
push!(arr2, sim[t][2])
plot(sim.t[1:t], [arr1, arr2])

end

Julia for interactive programming environments

Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica 2021-02-01 13

sim = OMBackend.LotkaVolterraSimulate((0.0, 100.0))
arr1 = []
arr2 = []
anim = @animate for t in 1:length(sim.t)
push!(arr1, sim[t][1])
push!(arr2, sim[t][2])
plot(sim.t[1:t], [arr1, arr2])

end

Preliminary performance evaluation

Experimental setup

• The scaleable testsuite1

– N cascaded first order system

– 100, 200, 400 800 1600 3200 6400

• Hardware specficiation

– Intel(R) Core(TM) i7-10710U CPU @ 1.10GHz

– Architecture: x86

– CPU(s): 12

– OS: Microsoft Windows

• OpenModelica version

– OpenModelica Compiler OpenModelica 1.17.0~dev.alpha0

2021-02-01 15Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica

1 Casella, Francesco (2015). ”Simulation of Large-Scale Models in Modelica: State of the Art and
Future Perspectives”

Frontend performance

Note on Frontend design

• As discussed the frontend is identical to the frontend
currently present in the OpenModelica Compiler.

– All steps in the Julia equvivalent are handled in
the same way as in OMC.

• The output is the corresponding Hybrid-DAE

2021-02-01 17Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica

Frontend performance

• Issues

– Recursive structure of MetaModelica programs

– Previous issues due to the Julia type inference
algorithm have been adjusted, however not all
together.

• Performance comparision using the scaleable
testsuite1

2021-02-01 18Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica

1 Casella, Francesco (2015). ”Simulation of Large-Scale Models in Modelica: State of the Art and
Future Perspectives”

Frontend performance

2021-02-01 19Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica

Order N OMFrontend.j OMC-Frontend

100 1.603 s 0.003492 s

200 2.080 s 0.005483 s

400 3.096 s 0.005883 s

800 5.007 s 0.01826 s

1600 8.956 s 0.01741 s

3200 16.758 s 0.04532 s

6400 32.683 s 0.0910142

A closer look at Frontend performance

2021-02-01 20Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000 7000

Performance of OMFrontend.jl

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

0 1000 2000 3000 4000 5000 6000 7000

Performance of the OMC Frontend

A closer look at Frontend performance

• Reason for the
performance difference

– Issues with the Julia
type inference
algorithm

– OMFrontend.jl does
interpretation

• How does the translation
to SCode scale?

• Performance still needs to
be adjusted

2021-02-01 21Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica

Order N OMFrontend.j OMC-Frontend

6400 2.149 0.01124

OMFrontend.j OMC-Frontend

Backend performance

Short note on backend design

• DAE-Mode1

• The Reduce Computer algebra system for symbolic manipulation

• Graph data structure implemented using LightGraphs.jl2

• Casualisation: Matching, Sorting..

– Separation of the dynamic and static parts

• OMBackend.jl does currently not generate separate functions for
each equation

– Julia was unable to compile large equation systems because of
the size of the ODE.

– Similar scheme to OMC will be used.

• Numerical integration

– IDA

2021-02-01 23Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica

2LightGraphs.jl: An optimized lightweight graphs package for Julia. Implementations in Julia of standard Graphs
algorithms and analytics

1Solving large-scale Modelica models: new approaches and experimental results using OpenModelica

Backend performance

2021-02-01 24Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica

• C-Code need not to be generated

– Faster resimulation

– Fast feedback loops

• Important from a development perspective

– Fast recompilation

• Fast resimulation

• Julia libraries can be integrated seamlessness

– Further options for post processing

• Still more work is needed

Short demo

Proposed extensions for highly dynamical
systems

2021-02-01 27Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica

Initial approach (work in progress)
• Initial scheme

– Ongoing work

• state-if

– Controls the mode of the system

• A model consists of

– A set of common variables

– A set of modes or states

– One model active at the time

– Operator that allows adding/removing components(?)

• When the state is changed, complete recompilation to be requested

– Outer model to be merged with the active state

• Challenges

– Handling initial conditions during mode changes

– Caching

2021-02-01 28Modelica extensions for Highly Dynamic Systems via Julia and OpenModelica

Conclusion

• A Modelica Compiler in Julia is possible

• Performance is still somewhat lacking

– To be expected with automatic translation

– Library support will help augment this issue

– Currently could be used for tasks such as teaching

• Backend still work in progress

• Efficient recompilation

www.liu.se

Thanks!
...Questions?

