Initialisation of Models with Dynamic State-Selection

Karim Abdelhak, Bernhard Bachmann

University of Applied Sciences Bielefeld Bielefeld, Germany

Karim Abdelhak, Bernhard Bachmann

Index Reduction

Initialisation

- Static State Selection
- Dynamic State Selection

< □ > < /□ >

1. Introduction

э

イロト イヨト イヨト イヨト

Task

Problem

If a system gets modelled with to many degrees of freedom it results into a *singular* system of equations and can not be simulated.

Method of Resolution

Some equations, so called *constraint equations*, will be differentiated with pantelides algorithm to resolve the singularity.

Task

Problem

If a system gets modelled with to many degrees of freedom it results into a *singular* system of equations and can not be simulated.

Method of Resolution

Some equations, so called *constraint equations*, will be differentiated with pantelides algorithm to resolve the singularity.

Example: Planar Pendulum Layout

- *L*: Length of the Pendulum
- Gravitational Acceleration
- T: Tension
- Horizontal Position
- y: Vertical Position
- v_x : Horizontal Velocity
- Vertical Velocity

Figure: Schematic Representation of the Planar Pendulum.

Example: Planar Pendulum System Differential-Algebraic Equations

$$\begin{aligned} \dot{x} &= v_{x} & (f_{1}) \\ \dot{y} &= v_{y} & (f_{2}) \\ \dot{v}_{x} &= Tx & (f_{3}) \\ \dot{v}_{y} &= Ty - g & (f_{4}) \\ 0 &= x^{2} + y^{2} - L^{2} & (f_{5}) \end{aligned}$$

3

・ロト ・ 四ト ・ ヨト ・ ヨト

2. Index Reduction

3

イロト イヨト イヨト イヨ

StateSets

Definition

StateSet

Sets of *n* constraint equations containing a maximum of n-1 unknowns get detected during pantelides algorithm. These sets of equations each form a *StateSet*.

Abbreviation	Explanation
1	Unique Index
Ε	Constraint Eqations
С	Candidates for the State Selection
J	Jacobian-Matrix $\delta E / \delta C$

Figure: Additional StateSet-Information

Example: Planar Pendulum StateSets

Constraint Equations:

$$0 = x^{2} + y^{2} - L^{2}$$
(f₅)

$$0 = 2xv_{x} + 2yv_{y}$$
(f'₅)

StateSets:

	Set1	Set2	
1	1	2	
Ε	(f_5)	(f_{5}')	
С	(x, y)	(v_x, v_y)	
J	[2x, 2y]	[2x, 2y]	

1

・ロト ・ 四ト ・ ヨト ・ ヨト

3. Initialisation

3

イロト イヨト イヨト イヨ

Overconstraint Example: Simple Circuit

- $0 = C_1 \cdot \dot{u}_1 \dot{i}_1 \qquad (f_1)$
- $0=C_2\cdot\dot{u}_2-\dot{i}_2\qquad (f_2)$
- $0=R\cdot i-u_R\qquad (f_3)$
- $0 = \sin(t) u \qquad (f_4)$
- $0 = i i_1 i_2$ (K)
- $0 = u + u_R + u_1 \qquad (M_1)$
- $0 = u_2 u_1$ (*M*₂)

◆□ > ◆□ > ◆□ > ◆□ >

Overconstraint Example: Simple Circuit

- $0 = C_1 \cdot \dot{u}_1 \dot{i}_1 \qquad (f_1)$
- $0=C_2\cdot\dot{u}_2-\dot{i}_2\qquad (f_2)$
- $0 = R \cdot i u_R \qquad (f_3)$
- $0 = \sin(t) u \qquad (f_4)$
- $0 = i i_1 i_2$ (K)
- $0 = u + u_R + u_1 \qquad (M_1)$
- $0 = u_2 u_1$ (M₂)
- $0 = \dot{u}_2 \dot{u}_1$ (M_2')

Underconstraint

- Matching the system, but preferring all non-state variables. (uses matching of simulation system as base)
- ② All states which are not matched get fixed and therefore initial equations are generated.
- If there are unmatched equations, the system was modelled with redundant initial equations. Continue with processing the newly formed overdetermination.

• • • • • • • • • • • •

StateSet-Dependencies

System of DAEs Containing at Least One StateSet

0 = f(x, y, z)		Set
$0 = f'(x \ y \ z \ \dot{x} \ \dot{y})$	Ε	(f)
$0 - \sigma(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{x}, \mathbf{y})$	С	(x, y)
$0 = \mathbf{g}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{x}, \mathbf{y})$	J	$\delta f / \delta(x, y)$

- f Constraint equations
- g All other equations of the system
- × States contained in the constraint equations, will become StateCandidates
- y Algebraic variables contained in the constraint equations, will become StateCandidates
- z All other variables contained in the system, will not become StateCandidates

StateSet-Dependencies

System of DAEs Containing at Least One StateSet

0 = f(x, y, z)		Set
$0 = f'(x, y, z, \dot{x}, \dot{y}) 0 = g(x, y, z, \dot{x}, \dot{y})$	E C J	$(f) (x, y) \delta f / \delta(x, y)$

Crossdependent Selfdependent Independent

Set. J depends on $z \wedge z$ is connected to another StateSet Set. J depends on x or y Neither cross- nor selfdependent

-

• • • • • • • • • • • •

Example: Planar Pendulum Dependencies

	Set1	Set2
1	1	2
Ε	(f_5)	(f_{5}')
С	(x, y)	(v_x, v_y)
J	[2x, 2y]	[2x, 2y]

Dependencies

Set1 Selfdependent: Set1.J contains x and y Set2 Crossdependent: Set2.J contains x and y

э

• • • • • • • • • • • •

Problems with Dynamic State Selection

Problem

By the time of initialisation it is unclear which candidates are actual states. Therefore it is unclear, which candidates need to be initialised.

Method

Each *StateSet* will be processed individually. All constraint equations and initial equations for each *StateSet* will be solved for all candidates during the initialisation.

Criteria

- The square submatrix of the *jacobian matrix* containing all constraint equations derived by all candidates, which are not initialised, must be non-singular.
- The algorithm for full pivoting the jacobian matrix to find this submatrix must not be inside an algebraic loop.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Problems with Dynamic State Selection

Problem

By the time of initialisation it is unclear which candidates are actual states. Therefore it is unclear, which candidates need to be initialised.

Method

Each *StateSet* will be processed individually. All constraint equations and initial equations for each *StateSet* will be solved for all candidates during the initialisation.

Criteria

- The square submatrix of the *jacobian matrix* containing all constraint equations derived by all candidates, which are not initialised, must be non-singular.
- The algorithm for full pivoting the jacobian matrix to find this submatrix must not be inside an algebraic loop.

Problems with Dynamic State Selection

Problem

By the time of initialisation it is unclear which candidates are actual states. Therefore it is unclear, which candidates need to be initialised.

Method

Each *StateSet* will be processed individually. All constraint equations and initial equations for each *StateSet* will be solved for all candidates during the initialisation.

Criteria

- The square submatrix of the *jacobian matrix* containing all constraint equations derived by all candidates, which are not initialised, must be non-singular.
- The algorithm for full pivoting the jacobian matrix to find this submatrix must not be inside an algebraic loop.

Splitting of the Remaining Equations

Lemma

An algebraic loop during the process of initialisation containing constraint equations of a StateSet can exclusively contain other constraint equations of the same StateSet.

- 4 E b

Image: A marked and A mar A marked and A

Splitting of the Remaining Equations

Lemma

An algebraic loop during the process of initialisation containing constraint equations of a StateSet can exclusively contain other constraint equations of the same StateSet.

Implication of this Lemma

The remaining equations g and variables z can each be split up into two sets. Those which can be solved exclusively *before* (g_B , z_B) and those which can be solved exclusively *after* (g_A , z_A) the candidates of given *StateSet*.

Splitting of the Remaining Equations

Implication of this Lemma

The remaining equations g and variables z can each be split up into two sets. Those which can be solved exclusively *before* (g_B , z_B) and those which can be solved exclusively *after* (g_A , z_A) the candidates of given *StateSet*.

$$0 = f(x, y, z_B)$$

$$0 = f'(x, y, z_B, z_A \dot{x}, \dot{y})$$

$$0 = g_A(x, y, z_B, z_A, \dot{x}, \dot{y})$$

$$0 = g_B(z_B)$$

Karim Abdelhak, Bernhard Bachmann

February 4, 2019 16 / 24

Cases for each *StateSet*

Number of actual states to be initialised

 $|\chi| = |x| + |y| - |f|$

 $\begin{array}{ll} \mbox{Well Defined (Case I)} & |\chi| = |Set.Fix| \land \mbox{ remaining subset of } Set.J \mbox{ is non-singular} \\ \mbox{Underconstraint (Case II)} & |\chi| > |Set.Fix| \\ \mbox{Overconstraint (Case III)} & |\chi| < |Set.Fix| \\ \end{array}$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Underconstraint (Case II) Additional Equations

Initial Equations

$$Set.V[j] = \sum_{i=1}^{|Set.C|} Set.A[j,i] \cdot Set.C_{i,Start}, \quad \forall j = |Set.Fix| \dots |\chi|$$

Set.init(x, y, Set.F) Set.pivot(x, y, z_U, Set.A, Set.F) HEU(Set.F)

Karim Abdelhak, Bernhard Bachmann

February 4, 2019 18 / 24

3

イロト イヨト イヨト イヨト

Underconstraint (Case II) Additional Equations

Initial Equations

$$\sum_{i=1}^{Set.C|} Set.F[j,i] \cdot C_i = \sum_{i=1}^{|Set.C|} Set.F[j,i] \cdot C_{i,Start}, \quad \forall j = |Set.Fix| \dots |\chi|$$
(Set.init)

Set.init(x, y, Set.F) Set.pivot(x, y, z_U, Set.A, Set.F) HEU(Set.F)

Karim Abdelhak, Bernhard Bachmann

February 4, 2019 18 / 24

3

イロト イヨト イヨト イヨト

Underconstraint (Case II) Additional Equations

Initial Equations

$$\sum_{i=1}^{Set.C|} Set.F[j,i] \cdot C_i = \sum_{i=1}^{|Set.C|} Set.F[j,i] \cdot C_{i,Start}, \quad \forall j = |Set.Fix| \dots |\chi|$$
(Set.init)

Set.init(x, y, Set.F) Set.pivot(x, y, z_U, Set.A, Set.F) HEU(Set.F)

Karim Abdelhak, Bernhard Bachmann

February 4, 2019 18 / 24

3

イロト イポト イヨト イヨト

Digraph for the Process of Initialisation

Ξ.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Digraph for the Process of Initialisation

Example: Planar Pendulum, Set1

3

Image: A matrix

Digraph for the Process of Initialisation

Example: Planar Pendulum, Set2

		Set2	
	Ι	2	
	Ε	(f_{5}')	
	C	(v_x, v_y)	
	J	[2x, 2y]	
$g_B =$	(Set1	pivot, Se	$t1.init, f_5)$
$z_B =$	(x, y,	Set1.A, S	et1.F)
f =	(f_5')		
$f^{\prime} =$	(f_{5}'')		
$g_A =$	(f_1, f_2)	(f_3, f_4)	
$z_A =$	(T, ×	, ý)	

э

(日) (周) (日) (日)

Heuristic

Example

$$0=2xv_x+2yv_y$$

$$(f_{5}')$$

If x resolves to be zero, this equation can not be solved for v_x , likewise for y and v_y .

Method

- For every candidate count the number of elements containing other candidates appearing in the corresponding row of the jacobian matrix.
- ² Chose the candidates with the highest count until enough states are fixed.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Heuristic

Example

$$0 = 2xv_x + 2yv_y$$

If x resolves to be zero, this equation can not be solved for v_x , likewise for y and v_y .

Method

- For every candidate count the number of elements containing other candidates appearing in the corresponding row of the jacobian matrix.
- 2 Chose the candidates with the highest count until enough states are fixed.

Overconstraint (Case III)

Method

For each overconstraint dynamic *StateSet* do:

- Symbolical consistency check (like static index reduction)
- Oheck if the jacobian matrix is singular (underconstraint)
- Merge all initial and constraint equation nodes
- Merge all candidate nodes
- S Match the equation and candidate node

Continue checking the full system as if it was reduced by *static* index reduction.

Summary

Already Implemented

Local Branch: The Heuristic to find the most likely candidates to be initialised

Future Implementation

Better handling of non-selfdependent StateSets as described

Further Ideas

- Improve the handling of parameter-dependent *StateSets*
- ② Use StateSets-Dependencies during simulation

Image: A math a math

Summary

Already Implemented

Local Branch: The Heuristic to find the most likely candidates to be initialised

Future Implementation

Better handling of non-selfdependent StateSets as described

Further Ideas

- **1** Improve the handling of parameter-dependent *StateSets*
- **2** Use *StateSets*-Dependencies during simulation

Thank you for your attention!