Comparison of Numerical Integration Methods in OpenModelica Status and Plans on Integration methods

February 6, 2017

Motivation

Basic criteria

Stability vs. Performance.

Motivation

FH Bielefeld University of Applied Sciences

Basic criteria

Stability vs. Performance.

Motivation

Basic criteria

Stability vs. Performance.

We are 2 times slower, but we want to get 3 times faster.

Rüdiger

• Outline:

- Overview of the current available solver
- Comparision of IDA and DASSL
- Improved Symbolic Inline Solver
- Comparison of DAEMode vs. ODEMode

We are 2 times slower, but we want to get 3 times faster.

Rüdiger

• Outline:

- Overview of the current available solver
- Comparision of IDA and DASSL
- Improved Symbolic Inline Solver
- Comparison of DAEMode vs. ODEMode

$$\underline{0} = f(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{u}(t), t)$$

$$\downarrow$$

$$\underline{0} = f(\underline{x}(t), \underline{z}(t), \underline{u}(t), t), \underline{z}(t) = \left(\begin{array}{c} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{array}\right)$$

$$\underline{z}(t) = \left(\begin{array}{c} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{array}\right) = \underline{g}(\underline{x}(t), \underline{u}(t), \underline{p}, t)$$

$$\downarrow$$

$$\underline{\dot{x}}(t) = \underline{h}(\underline{x}(t), \underline{u}(t), \underline{p}, t)$$

$$\underline{y}(t) = \underline{k}(\underline{x}(t), \underline{u}(t), \underline{p}, t)$$

General Characteristic

- explicit vs. implicit
- higher order
- with step size control
- multi-step methods

General Characteristic

FH Bielefeld University of Applied Sciences

General Characteristic:

- explicit vs. implicit
- higher order
- step size control
- multi-step methods

General Characteristic

General Characteristic:

- explicit vs. implicit
- higher order
- step size control
- multi-step methods

Explicit Euler

x

$$\dot{x} \approx \frac{x(t_{n+1}) - x(t_n)}{h_n}$$
$$(t_{n+1}) = x(t_n) + h_n \cdot f(t_n, x(t_n))$$

- very cheap
- poor stability region

solver name: euler

FH Bielefeld

University of Applied Sciences

General Characteristic

General Characteristic:

- explicit vs. implicit
- higher order
- step size control
- multi-step methods

Implicit Euler

x

$$\dot{x} \approx \frac{x(t_n) - x(t_{n-1})}{h_n}$$
$$(t_n) = x(t_{n-1}) + h_n \cdot f(t_n, x(t_n))$$

- very stable
- quite expensive
- non-linear loop solved by KINSOL

solver name: impeuler

General Characteristic

Explicit Runge-Kutta Methods

General Characteristic:

- explicit vs. implicit
- higher order
- step size control
- multi-step methods

solver name: heun, rungekutta

General Characteristic

General Characteristic:

- explicit vs. implicit
- higher order
- step size control
- multi-step methods

Explicit Runge-Kutta Methods

- orders 2 and 4
- good performace
- still small stability region

solver name: heun, rungekutta

General Characteristic

General Characteristic:

- explicit vs. implicit
- higher order
- step size control
- multi-step methods

implicit Runge-Kutta methods

Butcher tableau :

solver name: impeuler, trapzoide, imprungekutta

General Characteristic

General Characteristic:

- explicit vs. implicit
- higher order
- step size control
- multi-step methods

implicit Runge-Kutta methods

- order 1-6 (-impRKOrder=X)
- very stable
- quite expensice
- non-linear loop solved by KINSOL

solver name: impeuler, trapzoide, imprungekutta

General Characteristic

General Characteristic:

- explicit vs. implicit
- higher order
- step size control
- multi-step methods

Explicit Runge-Kutta Step Size Control

Butcher tableau :

c_1	0	0	0	 0	0
c_2	a_{21}	0	0	 0	0
c_3	a_{31}	a_{32}	0	 0	0
c_n	a_{n1}	a_{n2}	a_{n3}	 $a_{n(s-1)}$	0
	b_1	b_2	b_3	 b_{s-1}	b_s
	\hat{b}_1	\hat{b}_2	\hat{b}_{3}	 \hat{b}_{s-1}	\hat{b}_s

- embedded Runge-Kutta formulas
- quite fast
- better stability region
- Current status: experimental

solver name: rungekuttaSsc

FH Bielefeld

University of Applied Sciences

General Characteristic

General Characteristic:

- explicit vs. implicit
- higher order
- step size control
- multi-step methods

Implicit Runge-Kutta Step Size Control

Butcher tableau :

$c_1 \\ c_2$	$a_{11} \\ a_{21}$	$a_{12} \\ a_{22}$	· · · · · · ·	a_{1s} a_{2s}
÷	:	÷		÷
c_n	a_{n1}	a_{n2}		a_{ns}
	b_1	b_2		b_s
	\hat{b}	\hat{b}_2		\hat{b}_s

- Own implementation
- For now order 1-2
- Using own newton solver
- Current status: experimental

solver name: irksco

FH Bielefeld

University of Applied Sciences

General Characteristic

solver name: dassl, ida

General Characteristic

General Characteristic:

- explicit vs. implicit
- higher order
- step size control
- multi-step methods

SUNDIALS IDA solver

- DASSL re-implementation in C
- Interface to fast linear solver (KLU)
- usable for large-scale models

solver name: dassl, ida

General Characteristic

Selected compared models

model	solver	steps	evalF	time
fullRobot	dassl	5475	19363	3.114
TullKobot	ida	5659	19533	3.154
HeatExhanger	dassl	158	1334	5.972
HeatExnanger	ida	161	1374	6.181
Engine)/6	dassl	15179	35622	15.0516
Enginevo	ida	15509	35667	14.9201
Thomal Motor	dassl	896	722167	2.44322
Themai. Motor	ida	920	722167	2.79349

ScaleableTestSuite DASSL vs. IDA

Get your own impression:

DASSL (2017-01-18) vs. IDA (2017-01-21)

Symbolic Inline Integration

FH Bielefeld University of Applied Sciences

Symbolic Inline

Replaces der(states) by forward difference quitient: --symSolver=expEuler or by backward difference quitient: --symSolver=impEuler

Symbolical Implications

- Result is a pure algebraic system
- Apply OpenModelica Backend(e.g. Tearing, symbolic simplification)
- Basic step size control available
- Current status: experimental

solver name: symSolver, symSolverSsc

Symbolic Inline Integration

FH Bielefeld University of Applied Sciences

Symbolic Inline

Replaces der(states) by forward difference quitient: --symSolver=expEuler or by backward difference quitient: --symSolver=impEuler

Symbolical Implications

- Result is a pure algebraic system
- Apply OpenModelica Backend(e.g. Tearing, symbolic simplification)
- Basic step size control available
- Current status: experimental

solver name: symSolver, symSolverSsc

 \Rightarrow typical ODE transformation

DAE solution

- DAE solves also for \dot{x}, y
- No inner algebraic loops -> no tearing
- potentially faster compilation phase

FH Bielefeld

University of Applied Sciences

Current Status

- additional DAE code is generated (simflags="-daeMode")
- Event handling and initialization require matching and sorting
- Two options:
 - --daeMode=[dynamic|all]

FH Bielefeld

University of Applied Sciences

Selected compared models

model	solver	steps	evalF	time
CascadedFirstOrder_N_6400	dae	2510	2766	3.00101
	ode	2512	3268	5.78234
DistributionSustanLincon N 10 M 10	dae	53	149	0.0759903
DistributionSystemLinear_N_10_M_10	ode	73	2493	5.01925

ScaleableTestSuite DAE vs. ODE

Get your own impression: ODE mode (2017-01-12) vs. DAE mode (2017-01-13)

FH Bielefeld University of Applied Sciences

- Further improvements on the DAEMode
- Develop OSI (based on FMI) for the OM runtimes
- $\bullet\,$ Include the available methods to FMI/CS
- Adding CVODE integrator from SUNDIALS suite
- Further development on irksco and symSolver

Plans and Outlook

Questions

- Further improvements on the DAEMode
- Develop OSI (based on FMI) for the OM runtimes
- $\bullet\,$ Include the available methods to FMI/CS
- Adding CVODE integrator from SUNDIALS suite
- Further development on irksco and symSolver

