Notes on Solving Non-Linear Equation Systems in OpenModelica

Status and Plans on Solving Non-Linear Equation Systems

Willi Braun Bernhard Bachmann

February 1, 2016

Motivation

You've never heard of Chaos theory? Non-linear equations? Strange attractors? Michael Crichton, Jurassic Park

- Current status:
- Which methods do we use?
- How are details solved?
- Work in progress

Motivation

You've never heard of Chaos theory? Non-linear equations? Strange attractors? Michael Crichton, Jurassic Park

- Current status:
- Which methods do we use?
- How are details solved?
- Work in progress

Outline

(1) Systems of Non-Linear Equations
(2) What are the crucial points?

- Initial Values
- Derivatives
(3) Current Status in OpenModelica
- Newton Solver
- Hybrid Solver
- Homotopy Solver

Systems of Non-Linear Equations

Transformation steps for simulation

$$
\underline{0}=\underline{f}(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{u}(t), \underline{p}, t)
$$

\Downarrow

$$
\underline{0}=\underline{f}(\underline{x}(t), \underline{z}(t), \underline{u}(t), \underline{p}, t), \underline{z}(t)=\binom{\underline{\dot{x}}(t)}{\underline{y}(t)}
$$

\Downarrow

$$
\underline{z}(t)=\binom{\underline{\dot{x}}(t)}{\underline{y}(t)}=\underline{g}(\underline{x}(t), \underline{u}(t), \underline{p}, t)
$$

\Downarrow

$$
\begin{aligned}
& \underline{\dot{x}}(t)=\underline{h}(\underline{x}(t), \underline{u}(t), \underline{p}, t) \\
& \underline{y}(t)=\underline{k}(\underline{x}(t), \underline{u}(t), \underline{p}, t)
\end{aligned}
$$

Transformation example

$$
\begin{aligned}
f_{2}\left(z_{2}\right) & =0 \\
f_{4}\left(z_{1}, z_{2}\right) & =0 \\
f_{3}\left(z_{2}, z_{3}, z_{5}\right) & =0 \\
f_{5}\left(z_{1}, z_{3}, z_{5}\right) & =0 \\
f_{1}\left(z_{3}, z_{4}\right) & =0
\end{aligned}
$$

Algebraic loop (SCC)

$$
\begin{aligned}
& f_{3}\left(z_{2}, z_{3}, z_{5}\right)=0 \\
& f_{5}\left(z_{1}, z_{3}, z_{5}\right)=0
\end{aligned}
$$

Systems of Non-Linear Equations

General form

$$
\begin{gathered}
f_{1}\left(x_{1}, x_{2}, \ldots x_{n}\right)=0 \\
f_{2}\left(x_{1}, x_{2}, \ldots x_{n}\right)=0 \\
\vdots \\
f_{m}\left(x_{1}, x_{2}, \ldots x_{n}\right)=0
\end{gathered}
$$

in compact matrix form:

$$
\begin{gathered}
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
\boldsymbol{f}(\underline{x})=0
\end{gathered}
$$

Example

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=0 \\
& f_{2}\left(x_{1}, x_{2}\right)=0
\end{aligned}
$$

Systems of Non-Linear Equations

Example

$$
\begin{array}{r}
x_{1}{ }^{2}-x_{2}+\alpha=0 \\
-x_{1}+x_{2}{ }^{2}+\alpha=0
\end{array}
$$

Solutions

- $\alpha=1 \Rightarrow$ no solution.
- $\alpha=\frac{1}{4} \Rightarrow$ one solution $x_{1}=x_{2}=\frac{1}{2}$
- $\alpha=0 \Rightarrow$ two solutions $x_{1}=x_{2}=0$ and $x_{1}=x_{2}=1$.
- $a=-1 \Rightarrow$ four solutions.

Systems of Non-Linear Equations

Example

$$
\begin{array}{r}
x_{1}^{2}-x_{2}+\alpha=0 \\
-x_{1}+x_{2}^{2}+\alpha=0
\end{array}
$$

Solutions

- $\alpha=1 \Rightarrow$ no solution.
- $\alpha=\frac{1}{4} \Rightarrow$ one solution $x_{1}=x_{2}=\frac{1}{2}$.
- $\alpha=0 \Rightarrow$ two solutions $x_{1}=x_{2}=0$ and $x_{1}=x_{2}=1$
- $\alpha=-1 \Rightarrow$ four solutions.

Systems of Non-Linear Equations

Example

$$
\begin{array}{r}
x_{1}{ }^{2}-x_{2}+\alpha=0 \\
-x_{1}+x_{2}{ }^{2}+\alpha=0
\end{array}
$$

Solutions

- $\alpha=1 \Rightarrow$ no solution.
- $\alpha=\frac{1}{4} \Rightarrow$ one solution $x_{1}=x_{2}=\frac{1}{2}$.
- $\alpha=0 \Rightarrow$ two solutions $x_{1}=x_{2}=0$ and $x_{1}=x_{2}=1$.
- $\alpha=-1 \Rightarrow$ four solutions.

Systems of Non-Linear Equations

Examples

Example

$$
\begin{array}{r}
x_{1}{ }^{2}-x_{2}+\alpha=0 \\
-x_{1}+x_{2}{ }^{2}+\alpha=0
\end{array}
$$

Solutions

- $\alpha=1 \Rightarrow$ no solution.
- $\alpha=\frac{1}{4} \Rightarrow$ one solution $x_{1}=x_{2}=\frac{1}{2}$.
- $\alpha=0 \Rightarrow$ two solutions $x_{1}=x_{2}=0$ and $x_{1}=x_{2}=1$.
- $\alpha=-1 \Rightarrow$ four solutions.

Systems of Non-Linear Equations

Example

$$
\begin{aligned}
\frac{1}{2} x_{1} \sin \left(\frac{1}{2} \pi x_{1}\right)-x_{2} & =0 \\
-x_{1}+x_{2}{ }^{2}+1 & =0
\end{aligned}
$$

solution

- Countable infinite many solutions.

What are the crucial points?

General form

$$
\begin{aligned}
f: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{n} \\
f(\underline{x}) & =0
\end{aligned}
$$

Iteration instruction:

$$
\underline{x}_{i+1}=\Phi\left(\underline{x}_{i}\right)
$$

Initial Values: $\underline{x}_{0} \in \mathbb{R}^{n}$

Crucial points

- Good initial values
- Quite accurate derivatives
- Fast linear solver

General problems

- Round-off effects and cancellation
- Modelica asserts

What are the crucial points?

Trajectory

Model with an algebraic loop

$$
\begin{aligned}
& f_{1}\left(y_{1}, y_{2}\right)=0 \\
& f_{2}\left(y_{1}, y_{2}\right)=0
\end{aligned}
$$

within

$$
\underline{\dot{x}}(t)=\text { function } O D E(\underline{x}(t), \underline{u}(t), \underline{y}(t), \underline{p}, t)
$$

What are the crucial points?

Integrator steps

Model with an algebraic loop

$$
\begin{aligned}
& f_{1}\left(y_{1}, y_{2}\right)=0 \\
& f_{2}\left(y_{1}, y_{2}\right)=0
\end{aligned}
$$

within

$$
\underline{\dot{x}}(t)=\text { function } O D E(\underline{x}(t), \underline{u}(t), \underline{y}(t), \underline{p}, t)
$$

What are the crucial points?

Model with an algebraic loop

$$
\begin{aligned}
& f_{1}\left(y_{1}, y_{2}\right)=0 \\
& f_{2}\left(y_{1}, y_{2}\right)=0
\end{aligned}
$$

within

$$
\underline{\dot{x}}(t)=\text { function } O D E(\underline{x}(t), \underline{u}(t), \underline{y}(t), \underline{p}, t)
$$

Extrapolation

$$
y\left(t_{*}\right)=y_{k-1}+\frac{t_{*}-t_{k-1}}{t_{k}-t_{k-1}}\left(y_{k}-y_{k-1}\right)
$$

Integrator steps

What are the crucial points?

Model with an algebraic loop

$$
\begin{aligned}
& f_{1}\left(y_{1}, y_{2}\right)=0 \\
& f_{2}\left(y_{1}, y_{2}\right)=0
\end{aligned}
$$

within

$$
\underline{\dot{x}}(t)=\text { function } O D E(\underline{x}(t), \underline{u}(t), \underline{y}(t), \underline{p}, t)
$$

Extrapolation

$$
y\left(t_{*}\right)=y_{k-1}+\frac{t_{*}-t_{k-1}}{t_{k}-t_{k-1}}\left(y_{k}-y_{k-1}\right)
$$

Jacobian evaluations

What are the crucial points?

Initial Values

Model with an algebraic loop

$$
\begin{aligned}
& f_{1}\left(y_{1}, y_{2}\right)=0 \\
& f_{2}\left(y_{1}, y_{2}\right)=0
\end{aligned}
$$

within

$$
\underline{\dot{x}}(t)=\text { function } O D E(\underline{x}(t), \underline{u}(t), \underline{y}(t), \underline{p}, t)
$$

Extrapolation

$$
y\left(t_{*}\right)=y_{k-1}+\frac{t_{*}-t_{k-1}}{t_{k}-t_{k-1}}\left(y_{k}-y_{k-1}\right)
$$

Solution

Every non-linear loop uses now lists for context dependent extrapolation.

What are the crucial points?

$$
\dot{f}(x)=\frac{(f(x+\delta)-f(x))}{\delta}
$$

Drawback

Even if δ is selected optimal:

$$
\left|\frac{\partial f(x)}{\partial x}-\frac{\left(f\left(x+\delta_{o p t}\right)-f(x)\right)}{\delta_{o p t}}\right| \approx \sqrt{\epsilon_{R N D}}
$$

Some significant digits get lost by truncation.

What are the crucial points?

$$
\dot{f}(x)=\frac{(f(x+\delta)-f(x))}{\delta}
$$

Drawback

Even if δ is selected optimal:

$$
\left|\frac{\partial f(x)}{\partial x}-\frac{\left(f\left(x+\delta_{o p t}\right)-f(x)\right)}{\delta_{o p t}}\right| \approx \sqrt{\epsilon_{R N D}}
$$

Some significant digits get lost by truncation.

Even Worse

Adding values of different dimensions and leading sign to a sum lead to cancellation.

What are the crucial points?

$$
\dot{f}(x)=\frac{(f(x+\delta)-f(x))}{\delta}
$$

Drawback

Even if δ is selected optimal:

$$
\left|\frac{\partial f(x)}{\partial x}-\frac{\left(f\left(x+\delta_{o p t}\right)-f(x)\right)}{\delta_{o p t}}\right| \approx \sqrt{\epsilon_{R N D}}
$$

Some significant digits get lost by truncation.

Even Worse

Adding values of different dimensions and leading sign to a sum lead to cancellation.

Approach

Tried to sort such sums by nominal values, if states and derivatives are involved. + heats $=$ derCalls

What are the crucial points?

$$
\dot{f}(x)=\frac{(f(x+\delta)-f(x))}{\delta}
$$

Drawback

Even if δ is selected optimal:

$$
\left|\frac{\partial f(x)}{\partial x}-\frac{\left(f\left(x+\delta_{o p t}\right)-f(x)\right)}{\delta_{o p t}}\right| \approx \sqrt{\epsilon_{R N D}}
$$

Some significant digits get lost by truncation.

Even Worse

Adding values of different dimensions and leading sign to a sum lead to cancellation.

Approach

Trying of sorting terms of a sum by leading sign and adding them seperatly and peform the subtraction only once at the end.

What are the crucial points?

$$
\dot{f}(x)=\frac{(f(x+\delta)-f(x))}{\delta}
$$

Drawback

Even if δ is selected optimal:

$$
\left|\frac{\partial f(x)}{\partial x}-\frac{\left(f\left(x+\delta_{o p t}\right)-f(x)\right)}{\delta_{o p t}}\right| \approx \sqrt{\epsilon_{R N D}}
$$

Some significant digits get lost by truncation.

Even Worse

Adding values of different dimensions and leading sign to a sum lead to cancellation.

Approach

Trying of sorting terms of a sum by leading sign and adding them seperatly and peform the subtraction only once at the end.
\Rightarrow Use of symbolic jacobians.

What are the crucial points?

Derivatives

$$
\dot{f}(x)=\frac{(f(x+\delta)-f(x))}{\delta}
$$

Drawback

Even if δ is selected optimal:

$$
\left|\frac{\partial f(x)}{\partial x}-\frac{\left(f\left(x+\delta_{o p t}\right)-f(x)\right)}{\delta_{o p t}}\right| \approx \sqrt{\epsilon_{R N D}}
$$

Some significant digits get lost by truncation.

Even Worse

Adding values of different dimensions and leading sign to a sum lead to cancellation.

Approach

Trying of sorting terms of a sum by leading sign and adding them seperatly and peform the subtraction only once at the end.
\Rightarrow Use of symbolic jacobians with parallelization -jacPar=N

Current Status in OpenModelica

Newton iteration step:

$$
\begin{aligned}
J_{\underline{F}}\left(\underline{x}^{(k)}\right) \cdot \underline{s}^{(k)} & =-\underline{F}\left(\underline{x}^{(k)}\right) \\
\underline{x}^{(k+1)} & =\underline{x}^{(k)}+\tau^{(k)} \underline{s}^{(k)}
\end{aligned}
$$

Damping parameter:

$$
\tau^{(k)} \in[0,1]
$$

Current Status in OpenModelica

MinPack: HYBRID method

- Based on Powell's method, which is based on conjugate direction method.
- Through an Newton corrector step is has the same the convergence rate as it.
- Robostness through QR-Solver.
- $11.5 O\left(n^{2}\right)$

Current Status in OpenModelica

Possible homotopy functions

- Fixpoint-Homotopy:

$$
\underline{H}(\underline{x}, \lambda)=\lambda \underline{F}(\underline{x})+(1-\lambda)\left(\underline{x}-\underline{x}_{0}\right)=\underline{0}
$$

- Newton-Homotopy:

Simple example

$$
f(x)=2 x-4+\sin (2 \pi x)
$$

$$
x_{0}=0.5, \quad x^{*}=2 .
$$

Homotopy Path (Fixpoint)

Current Status in OpenModelica

Possible homotopy functions

- Fixpoint-Homotopy:

$$
\underline{H}(\underline{x}, \lambda)=\lambda \underline{F}(\underline{x})+(1-\lambda)\left(\underline{x}-\underline{x}_{0}\right)=\underline{0}
$$

- Newton-Homotopy:

$$
\underline{H}(\underline{x}, \lambda)=\underline{F}(\underline{x})-(1-\lambda) \underline{F}\left(\underline{x}_{0}\right)=\underline{0}
$$

Simple example

$$
\begin{gathered}
f(x)=2 x-4+\sin (2 \pi x), \\
x_{0}=0.5, \quad x^{*}=2 .
\end{gathered}
$$

Homotopy Path (Newton)

Current Status in OpenModelica

Newton

- homotopy

Current default.

- Total pivot as linear solver

Combined damping strategy with Modelica Asserts

- kinsol

Not in our hand.
KLU as linear solver

- Currently no combination with the homotopy solver.
- newton

Current testing ground.

- Lapack as linear solver
- Currently no combination with the homotopy solver.

Hybrid

- Former default solver.
- Linpack as linear solver
- Developed initial value selection.
- Currently no combination with the homotopy solver.

Outlook

- Finalize the equality of arms and compare!
- Includes same handling of initial values and homotopy combination.
- Compare own newton vs. kinsol with same linear solver.

Outlook

- Finalize the equality of arms and compare!
- Includes same handling of initial values and homotopy combination.
- Compare own newton vs. kinsol with same linear solver.

